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Abstract 

Purpose: 

Large language models (LLMs) are increasingly applied in radiology, but key challenges remain, 

including data leakage from cloud-based systems, false outputs, and limited reasoning transparency. This 

study aimed to develop an open-source, offline-deployable retrieval-augmented LLM (RA-LLM) system 

in which local execution prevents data leakage and retrieval-augmented generation (RAG) improves 

output accuracy and transparency using reliable external knowledge (REK), demonstrated in pancreatic 

cancer staging. 

 

Materials and Methods: 

Llama-3.2 11B and Gemma-3 27B were used as local LLMs, and GPT-4o mini served as a cloud-based 

comparator. The Japanese pancreatic cancer guideline served as REK. Relevant REK excerpts were 

retrieved to generate retrieval-augmented responses. System performance, including classification 

accuracy, retrieval metrics, and execution time, was evaluated on 100 simulated pancreatic cancer CT 

cases, with non-RAG LLMs as baselines. McNemar tests were applied to TNM staging and resectability 

classification. 

 

Results: 

RAG improved TNM staging accuracy for all LLMs (GPT-4o mini 61%→90%, p<0.001; Llama-3.2 11B 

53%→72%, p<0.001; Gemma-3 27B 59%→87%, p<0.001) and mildly improved resectability 

classification (72%→84%, p=0.012; 58%→73%, p=0.006; 77%→86%, p=0.093), with Gemma-3 27B 
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showing performance comparable to GPT-4o mini. Retrieval performance was high (context recall = 1; 

context precision = 0.5–1), and local models ran at speeds comparable to the cloud-based GPT-4o mini. 

 

Conclusion: 

We developed an offline-deployable RA-LLM system for pancreatic cancer staging and publicly released 

its full source code. RA-LLMs outperformed baseline LLMs, and the offline-capable Gemma-3 27B 

performed comparably to the widely used cloud-based GPT-4o mini.  
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Introduction 

Large language models (LLMs) hold promise for transforming radiology by assisting across a variety of 

tasks, including patient record summarization, medical decision-making, report generation, research data 

management, and trainee education (1). However, their safe and effective clinical implementation will 

require overcoming several key limitations, such as the generation of false information (so-called 

hallucinations), limited transparency and reliability in reasoning, and inherent risks to data privacy and 

security (1). Retrieval-augmented generation (RAG), which integrates domain-specific knowledge into 

LLM queries, has recently emerged as a promising approach in radiology to mitigate hallucinations and 

enhance the transparency and traceability of LLM outputs (2). In addition, compared with proprietary 

cloud-based LLMs, open-source LLMs generally exhibit lower performance but offer advantages in data 

privacy and security by enabling local execution (3). Taken together, further development of high-

performance, offline-deployable retrieval-augmented large language models (RA-LLMs) is warranted in 

radiology. 

 In radiology, most evidence supporting the usefulness of RAG has come from studies using 

cloud-based LLMs (2–6), but reports on offline-deployable RA-LLMs remain extremely limited. Wada et 

al. recently demonstrated that RAG improves the performance of a local LLM (Llama 3.2 11B) for 

radiology contrast media consultation. However, the embedding model used for RAG (text-embedding-3-

large) is cloud-based, meaning that the overall system cannot be operated entirely offline. Furthermore, 

the source code for system construction has not been made publicly available (7). Choi et al. developed a 

locally executable RA-LLM (base LLM: Llama-3 7B; embedding model: paraphrase-multilingual-

MiniLM-L12-v2) for PET imaging reports, demonstrating its utility in differential diagnosis, although the 

source code was not released (8). Similarly, Welsh et al. built a local RA-LLM (base LLM: mistral-7b-

instruct-v0.2; embedding model: intfloat/e5-mistral-7b-instruct) for radiology research assistance, but its 

source code was likewise unavailable (9). Note that, in radiology, sharing and accumulating open-source 

code are increasingly regarded as vital for ensuring transparency and reproducibility and for advancing 
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artificial intelligence research (10). As a study that released its source code, Weinert et al. demonstrated 

that RAG enhances the response accuracy of LLMs in radiology examinations. Among the LLMs used, 

Command R+ and Mixtral are locally executable; however, the embedding model used for RAG (text-

embedding-3-large) is cloud-based, therefore the overall system is not offline-deployable (11). Taken 

together, truly open-source, offline-deployable RA-LLM implementations in radiology remain scarce. 

 This study aimed to develop an offline-deployable RA-LLM system for diagnostic radiology and 

to release it as open-source code. Cancer staging is one of the essential and complex tasks in diagnostic 

radiology, with pancreatic cancer staging being particularly challenging. Therefore, we evaluated the 

performance of the proposed RA-LLM system in pancreatic cancer staging using 100 simulated CT cases. 

 

Materials and Methods 

System Architecture 

The proposed RA-LLM system was implemented in Python 3.13. Three LLMs were used as the base 

models: Llama-3.2 11B (Meta), Gemma-3 27B (Google), and GPT-4o mini (OpenAI). When local models 

(Llama-3.2 11B or Gemma-3 27B) were used, the entire system was capable of fully offline operation, 

whereas GPT-4o mini served as a representative cloud-based model for comparison. The overall system 

configuration is illustrated in Figure 1 and is described in detail below. 

As the reliable external knowledge (REK) to be referenced, we used the full text (in Markdown 

format) of the Eighth Edition of the Japanese Classification of Pancreatic Carcinoma (12). The REK was 

divided into multiple chunks (smaller text units) using a standard Markdown-based text splitting method, 

with a chunk size of 1500 tokens and a chunk overlap of 500 tokens. Each chunk was embedded with the 

BAAI/bge-base-en-v1.5 model and stored locally in a FAISS vector database. 
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Figure 1: System architecture of our offline-deployable retrieval-augmented LLM (RA-LLM). A 

clinician-written query, based on patient data and clinical tasks, is decomposed into subqueries by a 

specified LLM. For each subquery, the top four similar chunks (smaller text units) are retrieved from the 

reliable external knowledge (REK) and then reranked by the LLM to select the top one or two. These 

selected chunks are combined with the subquery to form the prompt, and the LLM generates an output 

while retaining the IDs of the referenced chunks. Thereafter, the subquery-level outputs are integrated into 

a single answer, which is further reformatted into a structured final output. Note: All LLM-invoked 

processes in this workflow use the same LLM. LLM = large language model. 
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and embed each chunk

Patient data
Clinical tasks
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Figure 2: User query template with example image findings (Case 55). For each pancreatic cancer case, a 

query was constructed based on CT findings to request the classification of local invasion (Task 1), T 

category (Task 2), N category (Task 3), M category (Task 4), resectability (Task 5), and overall TNM 

stage (Task 6) for pancreatic cancer. 

 

  

You must complete Tasks 1–6 based on the image findings provided below.

Task 1: Diagnose the local invasion factors of pancreatic cancer (CH, DU, S, RP, PV, A, PL, OO), and respond in 
the format: e.g., 'CH0, DU1, S1, RP1, PV0, A0, PL0, OO1'.

Task 2: Based on the answer to Task 1, determine the classification for local invasion (T classification) of 
pancreatic cancer (T0, Tis, T1a, T1b, T1c, T2, T3, T4). If both size-based (e.g., T1, T2) and extension-based 
(e.g., T3, T4) criteria are met, assign the higher T category reflecting greater invasion.

Task 3: Determine the N classification (N0, N1a, N1b) of pancreatic cancer. First, list the stations defined as 
regional lymph nodes based on the tumor location (head, body, or tail) according to the guideline. Then identify 
which of the patient’s metastatic lymph node stations are regional, and exclude all others. Count only the 
metastatic lymph nodes—not stations—within the regional stations, and assign the N classification accordingly. 
Verify the total count of involved regional nodes.

Task 4: Determine the M classification (M0 or M1) of pancreatic cancer, based on the presence or absence of 
distant metastases, such as to non-regional lymph nodes or distant organs. Do not confuse direct tumor invasion 
with distant metastasis.

Task 5: Based on the results of Task 1 and Task 4, determine the resectability classification of pancreatic 
cancer as Resectable (R), Borderline Resectable (BR), or Unresectable (UR). Regional lymph node involvement does 
not qualify as distant or non-regional metastasis. If none of the criteria for BR or UR are met, classify as R.

Task 6: Based on the determined T, N, and M categories, classify the overall stage according to the JPS staging 
system. Output one of: Stage 0, Stage IA, Stage IB, Stage IIA, Stage IIB, Stage III, or Stage IV.

Image findings: {findings}

User query  (Tasks 1–6 and {findings} placeholder)

An infiltrative pancreatic cancer measuring 39 mm is observed in the body of the pancreas. Serosal invasion and 
retropancreatic tissue invasion are noted. Stenosis of the splenic artery is observed, suggesting invasion. The 
tumor is in contact with the aorta, with an indistinct boundary, indicating invasion. No other local invasion 
factors are identified. Lymph node metastases are observed in two nodes each at stations 9 and 10. No other 
metastases are observed.

Example of {findings} (Case 55)
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 Given a user query consisting of patient data and clinical tasks (Figure 2), a specified LLM (GPT-

4o mini, Llama-3.2 11B, or Gemma-3 27B) automatically decomposed the query into multiple subqueries 

when appropriate. Each subquery was vectorized by the embedding model, and the four most similar 

chunks were retrieved based on Euclidean distance. These retrieved chunks were then reranked by the 

LLM according to their relevance to the subquery, and the top one or two chunks were selected. The 

selected chunks were combined with the subquery to create the prompt, and the LLM generated an output 

while preserving the IDs of the referenced chunks. Thereafter, the subquery-level outputs were integrated 

into a single answer, which was further reformatted into a structured final output. 

 All experiments were conducted on a PC running Windows 11 Home. The workstation was 

equipped with an AMD Ryzen 9 7900 processor, 64 GB of RAM, a 1 TB SSD, and an NVIDIA GeForce 

RTX 4090 GPU with 24 GB of VRAM. The NVIDIA graphics driver (version 560.94) was used 

throughout the experiments. 

 

Pancreatic Cancer Dataset 

To evaluate system performance, we used 100 simulated pancreatic cancer cases with CT findings 

described in English, constructed by Japanese radiologists and previously used to assess the cloud-based 

RA-LLM system, NotebookLM (5). The dataset appears to reflect the typical stage imbalance 

encountered in clinical practice, while also including a small number of rare cases so that all staging 

components are represented.  

 

Code and Data Availability 

The complete system code and all raw experimental data are publicly available in the following 

repository: https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results 

https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results
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Data Analysis 

In response to a user query requesting pancreatic cancer staging (Figure 2), our system produced a 

structured output for each staging component as the final answer: local invasion (CH0 or CH1, DU0 or 

DU1, S0 or S1, RP0 or RP1, PV0 or PV1, A0 or A1, PL0 or PL1, and OO0 or OO1), T category (T0, Tis, 

T1a, T1b, T1c, T2, T3, or T4), N category (N0, N1a, or N1b), M category (M0 or M1), resectability (R, 

BR, or UR), and TNM stage (Stage 0, Stage IA, Stage IB, Stage IIA, Stage IIB, Stage III, or Stage IV). 

The correctness of these outputs was evaluated over the 100 cases. For local invasion, a case was counted 

as correct only when all eight factors (CH, DU, S, RP, PV, A, PL, and OO) were correctly classified. For 

TNM stage and resectability, the exact McNemar test was applied for each base LLM (GPT-4o mini, 

Llama-3.2 11B, or Gemma-3 27B) to test the null hypothesis that the population proportions of correctly 

classified cases were equal between the groups with RAG and without RAG, and the corresponding p 

values were calculated. 

 In addition to the classification accuracy, we evaluated the retrieval performance of our RA-LLM 

system based on the RAGAS framework, particularly using context recall and context precision (13,14). 

Let 𝐴 denote the set of all REK chunks and 2! its power set. For each staging task (local invasion, T 

category, N category, M category, resectability, or TNM stage), define a function 𝑓: 2! → {0,1} by 

𝑓(𝐶) = /1, if	the	correct	answer	can	be	justi@ied	by	𝐶,
0, otherwise,  

and let 𝑐", 𝑐#, … , 𝑐$ ∈ 𝐴 be the retrieved chunks in ranked order. The definition of 𝑓 was independently 

reviewed by two radiologists and one gastroenterologist, and consensus was achieved. As expected, 𝑓 

satisfied the following properties: 𝑓(𝐴) = 1, 𝑓(∅) = 0, and 𝑓(𝐶) = 1 whenever 𝑓(𝐶%) = 1 for some 

𝐶% ⊂ 𝐶. The context recall is given by  

context	recall = 𝑓({𝑐", 𝑐#, … , 𝑐$}). 
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For context precision, each retrieved chunk is labeled as relevant or not. We regard a chunk 𝑐 ∈ 𝐴 as 

relevant if 𝑓({𝑐}) = 1 and irrelevant if 𝑓({𝑐}) = 0. Then, the context precision is given by  

context	precision =
1

∑ 𝑓({𝑐&})$
&'"

M
∑ 𝑓N{𝑐(}O&
('"

𝑖
𝑓({𝑐&})

$

&'"

, 

provided that 𝑓({𝑐&}) = 1 for some 𝑖. This definition can be insufficient when an answer requires 

combining multiple chunks, for example when 𝑓({𝑐&}) = 0 for all 𝑖 but 𝑓N{𝑐& , c)}O = 1 for some 𝑖 ≠ 𝑗. 

However, such situations did not occur in our experiments. Stated informally, context recall indicates 

whether the retrieved information is sufficient to justify the correct answer, whereas context precision 

reflects how effectively the retriever places the required information near the top of the ranked chunks. 

 For each LLM (GPT-4o mini, Llama-3.2 11B, or Gemma-3 27B), with or without RAG, we 

measured the duration (in seconds) required for our system to perform pancreatic cancer staging per case. 

The median and interquartile range (IQR) across the 100 cases were computed, and the results were 

visualized using box plots. 

 

Results 

As shown in Figure 3, TNM staging accuracy improved markedly with RAG across all LLMs: GPT-4o 

mini (61%→90%, p<0.001), Llama-3.2 11B (53%→72%, p<0.001), and Gemma-3 27B (59%→87%, 

p<0.001). For resectability classification, RAG also improved accuracy, albeit more modestly: GPT-4o 

mini (72%→84%, p=0.012), Llama-3.2 11B (58%→73%, p=0.006), and Gemma-3 27B (77%→86%, 

p=0.093). Notably, GPT-4o mini and Gemma-3 27B showed comparable performance. Similar trends 

were also observed for the T, N, and M categories and for local invasion, as shown in Table 1. 

 Representative examples of system outputs are shown in Figure 4 and in Supplemental Figures S1 

and S2. In Case 55, Gemma-3 27B without RAG produced incorrect reasoning with no guideline-based 
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justification, leading to erroneous final answers (Figure 4; Supplemental Figure S1), whereas with RAG it 

generated guideline-supported and correct reasoning and produced the correct final answers (Figure 4; 

Supplemental Figure S2). The guideline contents of chunk [12] for N classification and chunk [16] for 

resectability are shown in Supplemental Figure S3. The full contents of all chunks can be accessed at 

https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results, and the function 𝑓: 2! → {0,1} 

introduced in the Materials and Methods section was defined by 𝑓*"(1) = 𝑈+ for local invasion, 

𝑓*"(1) = 𝑈, for T category, 𝑓*"(1) = 𝑈"# for N category, 𝑓*"(1) = 𝑈"# ∪ 𝑈"- for M category, 

𝑓*"(1) = 𝑈"+ for resectability, and  𝑓*"(1) = 𝑈", for TNM stage, where 𝑈& = {𝐶 ∈ 2!	|	chunk	[𝑖] ∈ 𝐶}. 

 As summarized in Table 2, we calculated the mean context recall and context precision across 

100 cases for each LLM and task. Context recall was 1 throughout, confirming that all required 

information was successfully retrieved. Context precision was 1 for most tasks with GPT-4o mini and 

Gemma-3 27B, indicating that the needed information was typically captured in the top chunk. For 

Llama-3.2 11B, context precision values of 0.5 occurred more often, but this still reflected retrieval of the 

required information within the top two chunks. 

 The processing time for pancreatic cancer staging is summarized in Figure 5. As expected, the 

RAG workflow required longer execution times than the non-RAG workflow, with median execution 

times increasing from 4 to 41 seconds for GPT-4o mini, from 3 to 14 seconds for Llama-3.2 11B, and 

from 13 to 39 seconds for Gemma-3 27B. Gemma-3 27B took longer than Llama-3.2 11B, but its 

processing time was comparable to that of GPT-4o mini. 

 

  

https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results
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Figure 3: Accuracy (%) of TNM staging and resectability classification over 100 pancreatic cancer cases 

by our system using different LLMs (GPT-4o mini, Llama-3.2 11B, and Gemma-3 27B) with and without 

RAG. For each LLM, McNemar tests compared performance with and without RAG for both TNM 

staging and resectability classification, and the corresponding p values are shown. LLM = large language 

model, RAG = retrieval-augmented generation. 
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Figure 4: Comparison of system outputs generated without RAG and with RAG. In this example, 

Gemma-3 27B was used as the base LLM to perform pancreatic cancer staging for Case 55. For N 

classification, the model without RAG misidentified the current definition of regional lymph nodes and 

produced an incorrect final answer, whereas the model with RAG correctly referenced the relevant REK 

section (chunk [12]) and generated the correct final answer. For resectability classification, the model 

without RAG again exhibited incorrect reasoning and an incorrect final answer, while the model with 

RAG referenced the appropriate REK section (chunk [16]) and produced the correct answer. LLM = large 

language model, RAG = retrieval-augmented generation, REK = reliable external knowledge. 

  

With RAGWithout RAGN classification
(Correct reasoning)

According to the guideline, 
regional lymph nodes for the 
body are 8a, 8p, 9, 10, 11p, 
11d, and 14t.

(Incorrect reasoning)
Regional lymph nodes: 
Stations 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18. 

LLM reasoning (excerpt)

[12], [10]Referenced REK chunks

N1bN1aLLM final answer

CorrectIncorrectCorrectness

With RAGWithout RAGResectability
(Correct reasoning)

Based on the guideline, tumor 
contact or invasion of the 
aorta classifies the cancer 
as Unresectable (UR-LA). 

(Incorrect reasoning)
Aortic invasion (A1) is 
present, which qualifies as a 
Borderline Resectable (BR) 
criterion.  

LLM reasoning (excerpt)

[15], [16]Referenced REK chunks

URBRLLM final answer

CorrectIncorrectCorrectness
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Figure 5: Box plot illustrating the duration (in seconds) required for pancreatic cancer staging across 100 

cases among different LLMs (GPT-4o mini, Llama-3.2 11B, and Gemma-3 27B) with and without RAG. 

Each box represents the interquartile range (IQR), the horizontal line indicates the median, and the 

whiskers extend to values within 1.5 times the IQR. Outliers beyond the whisker range were omitted, and 

median values are shown numerically beside each box. LLM = large language model, RAG = retrieval-

augmented generation. 

  



 16 

Discussion 

Although guideline-grounded reasoning via RAG and secure offline execution are increasingly 

emphasized for LLMs in radiology, systems that integrate both remain scarce, as outlined in the 

Introduction. One reason may be that local LLMs have historically lagged far behind cloud-based models. 

Recent advances, however, have been remarkable; in particular, Gemma-3 27B has emerged as a high-

performance local model comparable to Google’s earlier flagship cloud-based LLM, Gemini-1.5 Pro (15). 

Against this background, we developed an offline-deployable RAG-equipped LLM system for diagnostic 

radiology and publicly released its source code and validation data. 

Applying our system to 100 simulated pancreatic cancer cases demonstrated that RAG functioned 

effectively across all tested LLMs (Llama-3.2 11B, Gemma-3 27B, and GPT-4o mini). The system 

achieved sufficient retrieval performance, produced guideline-grounded reasoning, and improved staging 

accuracy. Notably, although the local model Llama-3.2 11B showed relatively lower accuracy, the more 

advanced local model Gemma-3 27B achieved accuracy comparable to the widely used cloud-based GPT-

4o mini, and the local models ran at speeds comparable to or faster than GPT-4o mini on our hardware. 

Together, these findings indicate the effectiveness and practical feasibility of our RAG system for 

guideline-based classification tasks. 

By releasing an open-source, locally executable RAG system for diagnostic radiology, we aim to 

position this work as a foundation for developing clinically useful offline-deployable RA-LLMs. 

Nevertheless, several limitations should be acknowledged. First, the evaluation relied on simulated cases, 

and real-world variability remains to be examined. Second, whether the system actually improves 

diagnostic accuracy or workflow efficiency when used by clinicians has not yet been assessed. Third, our 

system depends on a single guideline source, and its generalizability to other diseases or guideline 

structures has not been tested. Future work should explore broader clinical applications, such as 

supporting differential diagnosis, and evaluate clinical utility in real-world settings. 
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Table 1: Classification accuracy (%) for T, N, and M categories and local invasion among different 

LLMs (GPT-4o mini, Llama-3.2 11B, and Gemma-3 27B) with and without RAG. 

LLM RAG T category N category M category Local 
invasion 

GPT-4o mini OFF 61 79 91 68 
GPT-4o mini ON 86 84 97 80 
Llama-3.2 11B OFF 61 76 89 43 
Llama-3.2 11B ON 74 80 93 65 
Gemma-3 27B OFF 63 79 91 51 
Gemma-3 27B ON 82 81 97 79 
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Table 2: Retrieval performance of the three RA-LLMs for each staging task, summarized by the 

mean context recall and mean context precision. 

LLM Staging task Context recall Context precision 
GPT-4o mini Local invasion 1 1 
GPT-4o mini T category 1 1 
GPT-4o mini N category 1 0.5 
GPT-4o mini M category 1 1 
GPT-4o mini Resectability 1 1 
GPT-4o mini TNM stage 1 1 
Llama-3.2 11B Local invasion 1 0.5 
Llama-3.2 11B T category 1 1 
Llama-3.2 11B N category 1 0.5 
Llama-3.2 11B M category 1 0.5 
Llama-3.2 11B Resectability 1 0.5 
Llama-3.2 11B TNM stage 1 1 
Gemma-3 27B Local invasion 1 1 
Gemma-3 27B T category 1 1 
Gemma-3 27B N category 1 1 
Gemma-3 27B M category 1 1 
Gemma-3 27B Resectability 1 0.5 
Gemma-3 27B TNM stage 1 1 

 


