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Abstract

Purpose:

Large language models (LLMs) are increasingly applied in radiology, but key challenges remain,
including data leakage from cloud-based systems, false outputs, and limited reasoning transparency. This
study aimed to develop an open-source, offline-deployable retrieval-augmented LLM (RA-LLM) system
in which local execution prevents data leakage and retrieval-augmented generation (RAG) improves
output accuracy and transparency using reliable external knowledge (REK), demonstrated in pancreatic

cancer staging.

Materials and Methods:

Llama-3.2 11B and Gemma-3 27B were used as local LLMs, and GPT-40 mini served as a cloud-based
comparator. The Japanese pancreatic cancer guideline served as REK. Relevant REK excerpts were
retrieved to generate retrieval-augmented responses. System performance, including classification
accuracy, retrieval metrics, and execution time, was evaluated on 100 simulated pancreatic cancer CT
cases, with non-RAG LLMs as baselines. McNemar tests were applied to TNM staging and resectability

classification.

Results:

RAG improved TNM staging accuracy for all LLMs (GPT-40 mini 61%—90%, p<0.001; Llama-3.2 11B

53%—72%, p<0.001; Gemma-3 27B 59%—87%, p<0.001) and mildly improved resectability

classification (72%—84%, p=0.012; 58%—73%, p=0.006; 77%—86%, p=0.093), with Gemma-3 27B
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showing performance comparable to GPT-40 mini. Retrieval performance was high (context recall = 1;

context precision = 0.5-1), and local models ran at speeds comparable to the cloud-based GPT-40 mini.

Conclusion:

We developed an offline-deployable RA-LLM system for pancreatic cancer staging and publicly released
its full source code. RA-LLMs outperformed baseline LLMs, and the offline-capable Gemma-3 27B

performed comparably to the widely used cloud-based GPT-40 mini.
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Introduction

Large language models (LLMs) hold promise for transforming radiology by assisting across a variety of
tasks, including patient record summarization, medical decision-making, report generation, research data
management, and trainee education (1). However, their safe and effective clinical implementation will
require overcoming several key limitations, such as the generation of false information (so-called
hallucinations), limited transparency and reliability in reasoning, and inherent risks to data privacy and
security (1). Retrieval-augmented generation (RAG), which integrates domain-specific knowledge into
LLM queries, has recently emerged as a promising approach in radiology to mitigate hallucinations and
enhance the transparency and traceability of LLM outputs (2). In addition, compared with proprietary
cloud-based LLMs, open-source LLMs generally exhibit lower performance but offer advantages in data
privacy and security by enabling local execution (3). Taken together, further development of high-
performance, offline-deployable retrieval-augmented large language models (RA-LLMs) is warranted in

radiology.

In radiology, most evidence supporting the usefulness of RAG has come from studies using
cloud-based LLMs (2—6), but reports on offline-deployable RA-LLMs remain extremely limited. Wada et
al. recently demonstrated that RAG improves the performance of a local LLM (Llama 3.2 11B) for
radiology contrast media consultation. However, the embedding model used for RAG (text-embedding-3-
large) is cloud-based, meaning that the overall system cannot be operated entirely offline. Furthermore,
the source code for system construction has not been made publicly available (7). Choi et al. developed a
locally executable RA-LLM (base LLM: Llama-3 7B; embedding model: paraphrase-multilingual-
MiniLM-L12-v2) for PET imaging reports, demonstrating its utility in differential diagnosis, although the
source code was not released (8). Similarly, Welsh et al. built a local RA-LLM (base LLM: mistral-7b-
instruct-v0.2; embedding model: intfloat/e5-mistral-7b-instruct) for radiology research assistance, but its
source code was likewise unavailable (9). Note that, in radiology, sharing and accumulating open-source

code are increasingly regarded as vital for ensuring transparency and reproducibility and for advancing
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artificial intelligence research (10). As a study that released its source code, Weinert et al. demonstrated
that RAG enhances the response accuracy of LLMs in radiology examinations. Among the LLMs used,
Command R+ and Mixtral are locally executable; however, the embedding model used for RAG (text-
embedding-3-large) is cloud-based, therefore the overall system is not offline-deployable (11). Taken

together, truly open-source, offline-deployable RA-LLM implementations in radiology remain scarce.

This study aimed to develop an offline-deployable RA-LLM system for diagnostic radiology and
to release it as open-source code. Cancer staging is one of the essential and complex tasks in diagnostic
radiology, with pancreatic cancer staging being particularly challenging. Therefore, we evaluated the

performance of the proposed RA-LLM system in pancreatic cancer staging using 100 simulated CT cases.

Materials and Methods

System Architecture

The proposed RA-LLM system was implemented in Python 3.13. Three LLMs were used as the base
models: Llama-3.2 11B (Meta), Gemma-3 27B (Google), and GPT-40 mini (OpenAl). When local models
(Llama-3.2 11B or Gemma-3 27B) were used, the entire system was capable of fully offline operation,
whereas GPT-40 mini served as a representative cloud-based model for comparison. The overall system

configuration is illustrated in Figure 1 and is described in detail below.

As the reliable external knowledge (REK) to be referenced, we used the full text (in Markdown
format) of the Eighth Edition of the Japanese Classification of Pancreatic Carcinoma (12). The REK was
divided into multiple chunks (smaller text units) using a standard Markdown-based text splitting method,
with a chunk size of 1500 tokens and a chunk overlap of 500 tokens. Each chunk was embedded with the

BAAI/bge-base-en-v1.5 model and stored locally in a FAISS vector database.
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Figure 1: System architecture of our offline-deployable retrieval-augmented LLM (RA-LLM). A
clinician-written query, based on patient data and clinical tasks, is decomposed into subqueries by a
specified LLM. For each subquery, the top four similar chunks (smaller text units) are retrieved from the
reliable external knowledge (REK) and then reranked by the LLM to select the top one or two. These
selected chunks are combined with the subquery to form the prompt, and the LLM generates an output
while retaining the IDs of the referenced chunks. Thereafter, the subquery-level outputs are integrated into
a single answer, which is further reformatted into a structured final output. Note: All LLM-invoked

processes in this workflow use the same LLM. LLM = large language model.



User query (Tasks 1-6 and {findings} placeholder)

You must complete Tasks 1-6 based on the image findings provided below.

Task 1: Diagnose the local invasion factors of pancreatic cancer (CH, DU, S, RP, PV, A, PL, 00), and respond in
the format: e.g., 'CHO, DU1l, S1, RP1, PVO, AO, PLO, OO1'.

Task 2: Based on the answer to Task 1, determine the classification for local invasion (T classification) of
pancreatic cancer (T0, Tis, Tla, Tlb, Tlc, T2, T3, T4). If both size-based (e.g., Tl, T2) and extension-based
(e.g., T3, T4) criteria are met, assign the higher T category reflecting greater invasion.

Task 3: Determine the N classification (NO, Nla, Nlb) of pancreatic cancer. First, list the stations defined as
regional lymph nodes based on the tumor location (head, body, or tail) according to the guideline. Then identify
which of the patient’s metastatic lymph node stations are regional, and exclude all others. Count only the
metastatic lymph nodes—not stations—within the regional stations, and assign the N classification accordingly.
Verify the total count of involved regional nodes.

Task 4: Determine the M classification (MO or M1l) of pancreatic cancer, based on the presence or absence of
distant metastases, such as to non-regional lymph nodes or distant organs. Do not confuse direct tumor invasion
with distant metastasis.

Task 5: Based on the results of Task 1 and Task 4, determine the resectability classification of pancreatic
cancer as Resectable (R), Borderline Resectable (BR), or Unresectable (UR). Regional lymph node involvement does
not qualify as distant or non-regional metastasis. If none of the criteria for BR or UR are met, classify as R.

Task 6: Based on the determined T, N, and M categories, classify the overall stage according to the JPS staging
system. Output one of: Stage 0, Stage IA, Stage IB, Stage IIA, Stage IIB, Stage III, or Stage IV.

Image finding

An infiltrative pancreatic cancer measuring 39 mm is observed in the body of the pancreas. Serosal invasion and
retropancreatic tissue invasion are noted. Stenosis of the splenic artery is observed, suggesting invasion. The
tumor is in contact with the aorta, with an indistinct boundary, indicating invasion. No other local invasion
factors are identified. Lymph node metastases are observed in two nodes each at stations 9 and 10. No other
metastases are observed.

Example of {findings} (Case 55)

Figure 2: User query template with example image findings (Case 55). For each pancreatic cancer case, a
query was constructed based on CT findings to request the classification of local invasion (Task 1), T
category (Task 2), N category (Task 3), M category (Task 4), resectability (Task 5), and overall TNM

stage (Task 6) for pancreatic cancer.



Given a user query consisting of patient data and clinical tasks (Figure 2), a specified LLM (GPT-
40 mini, Llama-3.2 11B, or Gemma-3 27B) automatically decomposed the query into multiple subqueries
when appropriate. Each subquery was vectorized by the embedding model, and the four most similar
chunks were retrieved based on Euclidean distance. These retrieved chunks were then reranked by the
LLM according to their relevance to the subquery, and the top one or two chunks were selected. The
selected chunks were combined with the subquery to create the prompt, and the LLM generated an output
while preserving the IDs of the referenced chunks. Thereafter, the subquery-level outputs were integrated

into a single answer, which was further reformatted into a structured final output.

All experiments were conducted on a PC running Windows 11 Home. The workstation was
equipped with an AMD Ryzen 9 7900 processor, 64 GB of RAM, a 1 TB SSD, and an NVIDIA GeForce

RTX 4090 GPU with 24 GB of VRAM. The NVIDIA graphics driver (version 560.94) was used

throughout the experiments.

Pancreatic Cancer Dataset

To evaluate system performance, we used 100 simulated pancreatic cancer cases with CT findings
described in English, constructed by Japanese radiologists and previously used to assess the cloud-based
RA-LLM system, NotebookLM (5). The dataset appears to reflect the typical stage imbalance
encountered in clinical practice, while also including a small number of rare cases so that all staging

components are represented.

Code and Data Availability

The complete system code and all raw experimental data are publicly available in the following

repository: https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results
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Data Analysis

In response to a user query requesting pancreatic cancer staging (Figure 2), our system produced a
structured output for each staging component as the final answer: local invasion (CHO or CH1, DUO or
DUI, S0 or S1, RP0O or RP1, PVO or PV1, A0 or A1, PLO or PL1, and OO0 or OO1), T category (TO, Tis,
Tla, T1b, Tlc, T2, T3, or T4), N category (NO, Nla, or N1b), M category (MO or M1), resectability (R,
BR, or UR), and TNM stage (Stage 0, Stage IA, Stage IB, Stage I1A, Stage 11B, Stage 111, or Stage V).
The correctness of these outputs was evaluated over the 100 cases. For local invasion, a case was counted
as correct only when all eight factors (CH, DU, S, RP, PV, A, PL, and OO) were correctly classified. For
TNM stage and resectability, the exact McNemar test was applied for each base LLM (GPT-40 mini,
Llama-3.2 11B, or Gemma-3 27B) to test the null hypothesis that the population proportions of correctly
classified cases were equal between the groups with RAG and without RAG, and the corresponding p

values were calculated.

In addition to the classification accuracy, we evaluated the retrieval performance of our RA-LLM
system based on the RAGAS framework, particularly using context recall and context precision (13,14).
Let A denote the set of all REK chunks and 24 its power set. For each staging task (local invasion, T
category, N category, M category, resectability, or TNM stage), define a function f: 24 — {0,1} by

£C0) = {1, if the correct answer can be justified by C,
0, otherwise,

and let ¢4, €3, ..., ¢ € A be the retrieved chunks in ranked order. The definition of f was independently
reviewed by two radiologists and one gastroenterologist, and consensus was achieved. As expected, f
satisfied the following properties: f(A) = 1, f(@) = 0, and f(C) = 1 whenever f(C") = 1 for some

C' c C. The context recall is given by

context recall = f({cy, ¢y, ..., Ck })-

10



For context precision, each retrieved chunk is labeled as relevant or not. We regard a chunk ¢ € 4 as

relevant if f({c}) = 1 and irrelevant if f({c}) = 0. Then, the context precision is given by

k i ]
context precision = ;({c-}) Z 2jzt j;({CJ }) f{ed),
i=1 U=t

provided that f({c;}) = 1 for some i. This definition can be insufficient when an answer requires
combining multiple chunks, for example when f ({c;}) = 0 for all i but f ({ci, c]-}) =1 forsomei # j.
However, such situations did not occur in our experiments. Stated informally, context recall indicates
whether the retrieved information is sufficient to justify the correct answer, whereas context precision

reflects how effectively the retriever places the required information near the top of the ranked chunks.

For each LLM (GPT-40 mini, Llama-3.2 11B, or Gemma-3 27B), with or without RAG, we
measured the duration (in seconds) required for our system to perform pancreatic cancer staging per case.
The median and interquartile range (IQR) across the 100 cases were computed, and the results were

visualized using box plots.

Results

As shown in Figure 3, TNM staging accuracy improved markedly with RAG across all LLMs: GPT-40

mini (61%—90%, p<0.001), Llama-3.2 11B (53%—72%, p<0.001), and Gemma-3 27B (59%—87%,

p<0.001). For resectability classification, RAG also improved accuracy, albeit more modestly: GPT-40

mini (72%—84%, p=0.012), Llama-3.2 11B (58%—73%, p=0.006), and Gemma-3 27B (77%—86%,

p=0.093). Notably, GPT-40 mini and Gemma-3 27B showed comparable performance. Similar trends

were also observed for the T, N, and M categories and for local invasion, as shown in Table 1.

Representative examples of system outputs are shown in Figure 4 and in Supplemental Figures S1

and S2. In Case 55, Gemma-3 27B without RAG produced incorrect reasoning with no guideline-based

11



justification, leading to erroneous final answers (Figure 4; Supplemental Figure S1), whereas with RAG it
generated guideline-supported and correct reasoning and produced the correct final answers (Figure 4;
Supplemental Figure S2). The guideline contents of chunk [12] for N classification and chunk [16] for
resectability are shown in Supplemental Figure S3. The full contents of all chunks can be accessed at

https://github.com/mohehe1234/local-rag/tree/v1.0.0-with-results, and the function f: 24 > {0,1}

introduced in the Materials and Methods section was defined by f~1(1) = Ug for local invasion,
f~1(1) = Ug for T category, f~1(1) = U,, for N category, f~1(1) = U;, U U3 for M category,

f71(1) = Uy for resectability, and f~1(1) = U;5 for TNM stage, where U; = {C € 24 | chunk [i] € C}.

As summarized in Table 2, we calculated the mean context recall and context precision across
100 cases for each LLM and task. Context recall was 1 throughout, confirming that all required
information was successfully retrieved. Context precision was 1 for most tasks with GPT-40 mini and
Gemma-3 27B, indicating that the needed information was typically captured in the top chunk. For
Llama-3.2 11B, context precision values of 0.5 occurred more often, but this still reflected retrieval of the

required information within the top two chunks.

The processing time for pancreatic cancer staging is summarized in Figure 5. As expected, the
RAG workflow required longer execution times than the non-RAG workflow, with median execution
times increasing from 4 to 41 seconds for GPT-40 mini, from 3 to 14 seconds for Llama-3.2 11B, and
from 13 to 39 seconds for Gemma-3 27B. Gemma-3 27B took longer than Llama-3.2 11B, but its

processing time was comparable to that of GPT-40 mini.

12
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Figure 3: Accuracy (%) of TNM staging and resectability classification over 100 pancreatic cancer cases
by our system using different LLMs (GPT-40 mini, Llama-3.2 11B, and Gemma-3 27B) with and without
RAG. For each LLM, McNemar tests compared performance with and without RAG for both TNM

staging and resectability classification, and the corresponding p values are shown. LLM = large language

model, RAG = retrieval-augmented generation.
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Figure 4: Comparison of system outputs generated without RAG and with RAG. In this example,
Gemma-3 27B was used as the base LLM to perform pancreatic cancer staging for Case 55. For N
classification, the model without RAG misidentified the current definition of regional lymph nodes and
produced an incorrect final answer, whereas the model with RAG correctly referenced the relevant REK
section (chunk [12]) and generated the correct final answer. For resectability classification, the model
without RAG again exhibited incorrect reasoning and an incorrect final answer, while the model with
RAG referenced the appropriate REK section (chunk [16]) and produced the correct answer. LLM = large

language model, RAG = retrieval-augmented generation, REK = reliable external knowledge.
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Figure 5: Box plot illustrating the duration (in seconds) required for pancreatic cancer staging across 100
cases among different LLMs (GPT-40 mini, Llama-3.2 11B, and Gemma-3 27B) with and without RAG.
Each box represents the interquartile range (IQR), the horizontal line indicates the median, and the
whiskers extend to values within 1.5 times the IQR. Outliers beyond the whisker range were omitted, and
median values are shown numerically beside each box. LLM = large language model, RAG = retrieval-

augmented generation.
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Discussion

Although guideline-grounded reasoning via RAG and secure offline execution are increasingly
emphasized for LLMs in radiology, systems that integrate both remain scarce, as outlined in the
Introduction. One reason may be that local LLMs have historically lagged far behind cloud-based models.
Recent advances, however, have been remarkable; in particular, Gemma-3 27B has emerged as a high-
performance local model comparable to Google’s earlier flagship cloud-based LLM, Gemini-1.5 Pro (15).
Against this background, we developed an offline-deployable RAG-equipped LLM system for diagnostic

radiology and publicly released its source code and validation data.

Applying our system to 100 simulated pancreatic cancer cases demonstrated that RAG functioned
effectively across all tested LLMs (Llama-3.2 11B, Gemma-3 27B, and GPT-40 mini). The system
achieved sufficient retrieval performance, produced guideline-grounded reasoning, and improved staging
accuracy. Notably, although the local model Llama-3.2 11B showed relatively lower accuracy, the more
advanced local model Gemma-3 27B achieved accuracy comparable to the widely used cloud-based GPT-
40 mini, and the local models ran at speeds comparable to or faster than GPT-40 mini on our hardware.
Together, these findings indicate the effectiveness and practical feasibility of our RAG system for

guideline-based classification tasks.

By releasing an open-source, locally executable RAG system for diagnostic radiology, we aim to
position this work as a foundation for developing clinically useful offline-deployable RA-LLM:s.
Nevertheless, several limitations should be acknowledged. First, the evaluation relied on simulated cases,
and real-world variability remains to be examined. Second, whether the system actually improves
diagnostic accuracy or workflow efficiency when used by clinicians has not yet been assessed. Third, our
system depends on a single guideline source, and its generalizability to other diseases or guideline
structures has not been tested. Future work should explore broader clinical applications, such as

supporting differential diagnosis, and evaluate clinical utility in real-world settings.
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Table 1: Classification accuracy (%) for T, N, and M categories and local invasion among different

LLMs (GPT-40 mini, Llama-3.2 11B, and Gemma-3 27B) with and without RAG.

LLM RAG T category N category M category Local
invasion
GPT-40 mini OFF 61 79 91 68
GPT-40 mini ON 86 84 97 80
Llama-3.2 11B | OFF 61 76 89 43
Llama-3.2 11B | ON 74 80 93 65
Gemma-3 27B | OFF 63 79 91 51
Gemma-3 27B | ON 82 81 97 79
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Table 2: Retrieval performance of the three RA-LLMs for each staging task, summarized by the

mean context recall and mean context precision.

LLM Staging task Context recall Context precision

GPT-40 mini Local invasion 1 1
GPT-40 mini T category 1 1
GPT-40 mini N category 1 0.5
GPT-40 mini M category 1 1
GPT-40 mini Resectability 1 1
GPT-40 mini TNM stage 1 1
Llama-3.2 11B Local invasion 1 0.5
Llama-3.2 11B T category 1 1
Llama-3.2 11B N category 1 0.5
Llama-3.2 11B M category 1 0.5
Llama-3.2 11B Resectability 1 0.5
Llama-3.2 11B TNM stage 1 1
Gemma-3 27B Local invasion 1 1
Gemma-3 27B T category 1 1
Gemma-3 27B N category 1 1
Gemma-3 27B M category 1 1
Gemma-3 27B Resectability 1 0.5
Gemma-3 27B TNM stage 1 1
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