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Abstract. There are 6 types of 2-dimensional representations in

general. For any groups and any monoids, we can construct the

moduli of 2-dimensional representations for each type: the moduli

of absolutely irreducible representations, representations with Borel

mold, representations with semi-simple mold, representations with

unipotent mold, representations with unipotent mold over F2, and

representations with scalar mold. We can also construct them for

any associative algebras.
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1. Introduction

In this paper we deal with the moduli of representations of degree 2.
We can classify 2-dimensional representations into 6 types in general.
For any groups and any monoids, we can construct the moduli of 2-
dimensional representations for each type. For any associative algebras,
we can also construct them for each type.
In [12] we have introduced the notion of mold. A mold is, so to

say, a subalgebra of the full matrix ring. More precisely, a subsheaf
of OX-algebras A ⊆ Mn(OX) on a scheme X is called a mold if A is
a subbundle of Mn(OX). Let Γ be a group or a monoid. By a homo-
morphism ρ : Γ → Mn(Γ(X,OX)), we understand an n-dimensional
representation of Γ on a scheme X. We say that a representation
ρ has a mold A if the subsheaf of OX -algebras OX [ρ(Γ)] of Mn(OX)
generated by ρ(Γ) coincides with A. It is effective to classify represen-
tations with respect to molds for constructing the moduli of equivalence
classes of representations. If we try to construct the moduli of equiv-
alence classes of all representations without classifying representations
with respect to molds, then two representations which have the same
composition factors coincide as points of the moduli even if they are
not equivalent. For separating such representations in the moduli, we
need to collect only representations which have the same mold. For

1The author was partially supported by Grant-in-Aid in Scientific Research (C)
(No. 23540044 and No. 15K04814) from JSPS.
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example, we have constructed the moduli of equivalence classes of ab-
solutely irreducible representations denoted by Chn(Γ)air in [10], where
ρ : Γ → Mn(Γ(X,OX)) is absolutely irreducible if OX [ρ(Γ)] coincides
with the full matrix ring Mn(OX). We also have constructed the mod-
uli of equivalence classes of representations with Borel mold denoted
by Chn(Γ)B in [12], where ρ : Γ → Mn(Γ(X,OX)) is a representation
with Borel mold if for each x ∈ X there exists P ∈ GLn(OX(U)) on a
neighbourhood U of x such that P · OU [ρ(Γ)] · P−1 coincides with the
subsheaf of OU -algebras of Mn(OU) consisting of upper triangular ma-
trices. The author calls the plan to construct the moduli of equivalence
classes of representations for any suitable molds “mold program”. In
this article, we will complete the mold program of degree 2.
For k-subalgebras A and B of the full matrix ring M2(k) over an alge-

braically closed field k, we say that A andB are equivalent if there exists
P ∈ GL2(k) such that P−1AP = B. There are 5 equivalence classes

of k-subalgebras A of M2(k): (1) A = M2(k), (2) A =

{(
∗ ∗
0 ∗

)}
,

(3) A =

{(
∗ 0
0 ∗

)}
, (4) A =

{ (
a b
0 a

)
a, b ∈ k

}
, (5) A =

{ (
a 0
0 a

)
a ∈ k

}
. Let ρ : Γ → M2(k) be a 2-dimensional rep-

resentations of a group or a monoid Γ. By equivalence classes of the
subalgebra k[ρ(Γ)] of M2(k), we classify 2-dimensional representations
into 6-types (not 5-types!). For each cases (1)–(5), we say that ρ is
(1) an absolutely irreducible representation, (2) a representation with
Borel mold, (3) a representation with semi-simple mold, (4) a repre-
sentation with unipotent mold, (5) a representation with scalar mold,
respectively. In the case (4), we need to divide representations with
unipotent mold into 2 types: (4-a) when chk 6= 2, we say ρ is a repre-
sentation with unipotent mold, and (4-b) when chk = 2, we say ρ is a
representation with unipotent mold over F2. It is natural to divide the
case (4) into 2 types for constructing the“good” moduli of representa-
tions with unipotent mold. Here, by constructing the “good” moduli of
representations, we understand constructing smooth moduli schemes of
representations at least for free monoids (more precisely, see the begin-
ning of §5). Hence there are 6 types of 2-dimensional representations
in general.
In §3, we introduce the notions of (1), (2), (3), (4-a), (4-b), (5) on

2-dimensional representations on arbitrary schemes X (Definitions 2.7,
3.4, 3.5, 3.6, and 3.8). For 2-dimensional representations ρ1, ρ2 on X ,
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we say that ρ1, ρ2 are equivalent (or ρ1 ∼ ρ2) if there exists a Γ(X,OX)-
algebra isomorphism σ : M2(Γ(X,OX)) → M2(Γ(X,OX)) such that
σ(ρ1(γ)) = ρ2(γ) for any γ ∈ Γ. If ρ1 ∼ ρ2, then for each x ∈ X
there exists P ∈ GL2(OX(U)) on a neighbourhood U of x such that
P−1ρ1(γ)P = ρ2(γ) on U for any γ ∈ Γ. We have constructed the mod-
uli of equivalence classes of representations in the cases (1) absolutely
irreducible representations and (2) representations with Borel mold in
[10] and [12], respectively. In the case (5) representations with scalar
mold, we can easily construct the moduli (Theorem 3.12). In the cases
(3) representations with semi-simple mold, (4-a) representations with
unipotent mold, and (4-b) representations with unipotent mold over
F2, we have the following theorems:

Theorem 1.1 (Theorem 4.29). There exists a fine moduli scheme
Ch2(Γ)s.s. associated to the sheafification EqSS2(Γ) of the functor

(Sch)op → (Sets)

X 7→
{

2-dimensional representations
with semi-simple mold of Γ on X

}/
∼

with respect to Zariski topology for arbitrary group or monoid Γ. The
moduli Ch2(Γ)s.s. is separated over Z; if Γ is a finitely generated group
or monoid, then Ch2(Γ)s.s. is of finite type over Z.

Theorem 1.2 (Theorem 5.23). There exists a fine moduli scheme
Ch2(Γ)u associated to the sheafification Eq U2(Γ) of the functor

(Sch/Z[1/2])op → (Sets)

X 7→
{

2-dimensional representations
with unipotent mold of Γ on X

}/
∼

with respect to Zariski topology for arbitrary group or monoid Γ. The
moduli Ch2(Γ)u is separated over Z[1/2]; if Γ is a finitely generated
group or monoid, then Ch2(Γ)u is of finite type over Z[1/2].

Theorem 1.3 (Theorem 6.20). There exists a fine moduli scheme
Ch2(Γ)u/F2

associated to the sheafification Eq U2(Γ)F2 of the functor

(Sch/F2)
op → (Sets)

X 7→
{

2-dimensional representations with
unipotent mold over F2 of Γ on X

}/
∼

with respect to Zariski topology for arbitrary group or monoid Γ. The
moduli Ch2(Γ)u/F2

is separated over F2; if Γ is a finitely generated group
or monoid, then Ch2(Γ)u/F2 is of finite type over F2.

For any associative algebra A over any commutative ring R, we also
obtain the same theorems on 2-dimensional representations of A over R:
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There exist fine moduli schemes Ch2(A)s.s., Ch2(A)u, and Ch2(A)u/F2

separated over R. If A is finitely generated associative algebra over R,
then the fine moduli schemes Ch2(A)s.s., Ch2(A)u, and Ch2(A)u/F2 are
of finite type over R (Remarks 4.30, 5.24, 5.25, 6.22, and 6.23). These
theorems are main results of this article.

As a continuation of this article, we can deal with the absolutely
irreducible representations parts of the representation variety and the
character variety: Rep2(Γ)air and Ch2(Γ)air in [10]. For a group or a
monoid Γ, the representation variety Rep2(Γ) is the affine scheme rep-
resenting the contravariant functor which maps each scheme X to the
set of 2-dimensional representations of Γ on X . For ∗ = air, B, s.s.,
u, u/F2, or scalar, Rep2(Γ)∗ denotes the subscheme of Rep2(Γ) con-
sisting of 2-dimensional representations with the mold corresponding
to ∗. For a field k, the set of k-rational points of the representation
variety Rep2(Γ) is the disjoint union of the sets of k-rational points
of Rep2(Γ)air, Rep2(Γ)B, Rep2(Γ)s.s., Rep2(Γ)u (or Rep2(Γ)u/F2), and
Rep2(Γ)scalar. Hence for a finitely generated group or monoid Γ and for
the finite field Fq, the number of Fq-rational points of Rep2(Γ)air can
be calculated from those of Rep2(Γ) and the others Rep2(Γ)∗. Since
Rep2(Γ)air → Ch2(Γ)air is a PGL2-principal fibre bundle, the number
of Fq-rational points of Ch2(Γ)air can be also calculated from the result
of Rep2(Γ)air. Similarly, the virtual Hodge polynomials of Rep2(Γ)air
and Ch2(Γ)air over C can be calculated from those of Rep2(Γ) and the
others Rep2(Γ)∗ over C. The existence of such geometric objects as the
moduli of representations with several molds helps us to understand
relations between the numbers of equivalence classes of representations
of Γ over Fq and virtual Hodge polynomials of the moduli (cf. [13]).
In [13], the authors deal with the case that Γ is the free monoid Υm

of rank m. Since Rep2(Υm) is isomorphic to M2 × · · · ×M2 (m times),
the numbers of the Fq-rational points of Rep2(Υm)air and Ch2(Υm)air
have been calculated explicitly. (The author needs to mention that our
strategy to calculate the numbers of the Fq-rational points is essentially
same as [1] and [7]. Moreover, the method of [14] is much easier than
our strategy.) We have also calculated the virtual Hodge polynomials of
Rep2(Υm)air and Ch2(Υm)air. We see that the Hasse-Weil zeta functions
of Rep2(Υm)air and Ch2(Υm)air satisfy functional equations.

The organization of this article is as follows: in §2, we review rep-
resentations and molds on schemes. We also review the moduli of ab-
solutely irreducible representations and the moduli of representations
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with Borel mold. In §3, we introduce several molds of degree 2: semi-
simple mold, unipotent mold, unipotent mold over F2, and scalar mold.
We also introduce the moduli of representations with scalar mold. In
§4, we construct the moduli of equivalence classes of representations
with semi-simple mold. In §5, we construct the moduli of equiva-
lence classes of representations with unipotent mold over Z[1/2]. In §6,
we construct the moduli of equivalence classes of representations with
unipotent mold over F2. In §7, we deal with different approach from
§6. The approach in §7 gives us another construction of the moduli of
equivalence classes of representations with unipotent mold over F2 by
using derivations as in §5. In §8, we reformulate the moduli functors by
using the notion of representations generating sheaves of OX-algebras
which define molds of rank 2. In §9, we deal with discriminants which
describe the absolutely irreducible representation part Rep2(Γ)air in the
representation variety Rep2(Γ) as an appendix.

The author would like to thank Takeshi Torii for his essential ideas
and important suggestions on the moduli of representations. Although
his name does not appear in the list of the authors, his contribution to
this paper is not ignorable. This article has been inspired by his descrip-
tions of the moduli of representations and approaches from viewpoints
of algebraic topology, and so on, which will be written in [13].
The author would like to express his gratitude to the referee for sug-

gesting several important points. Example 6.21, §7, and §8 have been
inspired by the referee. The author also wants to thank Michiaki Inaba.
He suggested the proof of Lemma 7.20, which states the “descent” of
universal geometric quotients.

2. Preliminaries

In this section, we review representations and molds on schemes.
(For details, see [10] and [12].)

Definition 2.1 ([10]). Let Γ be a group or a monoid. By a rep-
resentation of Γ on a scheme X , we understand a group homomor-
phism (or a monoid homomorphism) ρ : Γ → Mn(Γ(X,OX)). For
two representations ρ and ρ′, we say that ρ and ρ′ are equivalent to
each other (or ρ ∼ ρ′) if there exists an OX-algebra isomorphism
σ : Mn(Γ(X,OX)) → Mn(Γ(X,OX)) such that σ(ρ(γ)) = ρ′(γ) for
each γ ∈ Γ.

Remark 2.2 ([10]). Let ρ and ρ′ be n-dimensional representations of
Γ on X . If ρ ∼ ρ′, then for each x ∈ X there exists P ∈ GLn(OX(U))
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on a neighbourhood U of x such that P−1ρ(γ)P = ρ′(γ) on U for any
γ ∈ Γ. Indeed, the group scheme PGLn over Z represents the functor

(Sch)op → (Sets)
X 7→ Aut

OX-alg(Mn(OX)).

For details, see [10, Definition 6.1 and Theorem 6.2].

Definition 2.3 ([10]). Let Γ be a group or a monoid. The following
contravariant functor is representable by an affine scheme:

Repn(Γ) : (Sch)op → (Sets)
X 7→ {ρ : rep. of deg n for Γ on X }.

We call the affine scheme Repn(Γ) the representation variety of degree n
for Γ. The group scheme PGLn over Z acts on Repn(Γ) by ρ 7→ P−1ρP .
Each PGLn-orbit forms an equivalence class of representations. If Γ is
a finitely generated group (or monoid), then Repn(Γ) is of finite type
over Z.

Definition 2.4 ([12]). Let A be a subsheaf of Mn(OX) of OX-algebras
on a scheme X . We say that A is a mold on X if Mn(OX)/A is
locally free. Let rankA denote the rank of a mold A as a locally free
sheaf. For two molds A,B ⊆ Mn(OX) on X , we say that A and B
are locally equivalent if there exist an open covering X = ∪i∈IUi and
Pi ∈ GLn(OX(Ui)) such that Pi(A |Ui

)P−1
i = B |Ui

for each i ∈ I.

Here let us introduce an example of molds.

Example 2.5 ([12]). We define the mold Bn on Spec Z by

Bn := {(aij) ∈ Mn(Z) | aij = 0 for each i > j }.
For a mold A ⊆ Mn(OX) on a scheme X , we say that A is a Borel
mold if A and Bn ⊗Z OX are locally equivalent to each other.

Definition 2.6 ([12]). Let A be a mold on a scheme X . For a repre-
sentation ρ of Γ on X , we say that ρ has mold type A if the image ρ(Γ)
generates A as an OX-algebra.

Definition 2.7 ([12]). Let ρ be an n-dimensional representation of Γ
on a scheme X . We say that ρ is an absolutely irreducible represen-
tation (or air) if ρ has mold type Mn(OX). We also say that ρ is a
representation with Borel mold if ρ has a Borel mold type.

Proposition 2.8 ([10], [12]). The contravariant functor

Repn(Γ)air : (Sch)op → (Sets)
X 7→ { air of degree n for Γ on X }
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is representable by an open subscheme Repn(Γ)air of Repn(Γ). The
contravariant functor

Repn(Γ)B : (Sch)op → (Sets)

X 7→
{

rep. with Borel mold of degree n
for Γ on X

}

is representable by a subscheme Repn(Γ)B of Repn(Γ). The action
of PGLn on Repn(Γ) induces the ones of PGLn on Repn(Γ)air and
Repn(Γ)B.

For absolutely irreducible representations, there exists a coarse mod-
uli scheme.

Theorem 2.9 ([10]). There exists a coarse moduli scheme Chn(Γ)air
separated over Z associated to the following functor:

EqAIRn(Γ) : (Sch)op → (Sets)
X 7→ {ρ : air of degree n for Γ on X}/ ∼ .

Furthermore, the canonical morphism Repn(Γ)air → Chn(Γ)air gives a
universal geometric quotient of Repn(Γ)air by PGLn. If Γ is a finitely
generated group (or monoid), then the moduli Chn(Γ)air is of finite type
over Z.

For representations with Borel mold, there exists a fine moduli scheme.

Theorem 2.10 ([12]). There exists a fine moduli scheme Chn(Γ)B sep-
arated over Z associated to the sheafification EqBn(Γ) of the following
functor with respect to Zariski topology:

(Sch)op → (Sets)

X 7→
{

rep. with Borel mold
of degree n for Γ

}/
∼ .

Furthermore, the canonical morphism Repn(Γ)B → Chn(Γ)B gives a
universal geometric quotient of Repn(Γ)B by PGLn. If Γ is a finitely
generated group (or monoid), then the moduli is of finite type over Z.

3. The degree 2 case

From now on, we deal mainly with the degree 2 case.

Let A2(Γ) be the coordinate ring of the representation variety of
degree 2 for a group or a monoid Γ. Let σΓ : Γ → M2(A2(Γ)) be the
universal representation of degree 2 for Γ.
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Definition 3.1. Let A2(Γ)
Ch be the subalgebra of A2(Γ) generated by

{tr(σΓ(γ)), det(σΓ(γ)) | γ ∈ Γ} over Z. We denote SpecA2(Γ)
Ch by

Ch2(Γ).

In [12, Example 1.3] we investigated the moduli of molds:

Mold2,1 = SpecZ,

Mold2,2 = P2
Z,

Mold2,3 = P1
Z,

Mold2,4 = SpecZ.

Let k be an algebraically closed field, for simplicity. Let us classify
k-subalgebras A of M2(k) up to inner automorphisms of M2(k) for
explaining molds of degree 2. In the case dimA = 4, A is equal to
M2(k). For any subalgebra A of dimension 3, there exists P ∈ GL2(k)
such that P−1AP = B2(k) := {(aij) ∈ M2(k) | a21 = 0}. In the case
dimA = 2, there exists X ∈ A such that A = kI2 + kX . For [X ] ∈
M2(k)/kI2, we can define a mold A = kI2 + kX , which is independent
from choosing a representative X ∈ M2(k) of [X ]. This is the reason
why Mold2,2(k) ∼= P∗(M2(k)/kI2) = P2

k. There exist two types of molds
of rank 2. The one is a semi-simple algebra, and the other is a non-semi-

simple algebra. In other words, the former is

{(
a 0
0 b

)∣∣∣∣ a, b ∈ k

}
,

and the latter is

{(
a b
0 a

)∣∣∣∣ a, b ∈ k

}
up to inner automorphisms. Of

course, a subalgebra A of dimension 1 is equal to kI2.

By using the classification of k-subalgebras of M2(k), we introduce
several molds of degree 2. For the case of rank 4, we consider the full
matrix ring mold M2(OX). For the case of rank 3, we introduced Borel
molds.
Here we introduce several types of molds of rank 2. There are two

types of molds of rank 2: the semi-simple subalgebra case and the
non-semi-simple subalgebra case. Moreover we can divide the non-
semi-simple 2-dimensional subalgebra case into two types: the ch 6= 2
type and the ch = 2 type.

Notation 3.2. Let R be a commutative ring. For X ∈ M2(R), we
denote tr(X)2 − 4 det(X) by m(X). Remark that m(X) = 2tr(X2) −
(tr(X))2.

Remark 3.3. For X ∈ M2(R), m(X) is the discriminant of the char-
acteristic polynomial of X . If R is a field, then m(X) 6= 0 if and only
if X is semi-simple and not scalar.
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Definition 3.4. Let X be a scheme. Let A ⊆ M2(OX) be a rank 2
mold on X . We say that A is semi-simple if there exists Px ∈ Ax such
that m(Px) 6≡ 0 in the residue field k(x) for each x ∈ X .

Definition 3.5. Let X be a scheme over Z[1/2]. Let A ⊆ M2(OX) be
a rank 2 mold on X . We say that A is unipotent if m(A) = 0 for each
A ∈ A(U) and for each open set U ⊆ X .

Definition 3.6. Let X be a scheme over F2. Let A ⊆ M2(OX) be a
rank 2 mold on X . We say that A is unipotent over F2 if tr(A) = 0 for
each A ∈ A(U) and for each open set U ⊆ X .

Remark 3.7. The name ”unipotent” seems to be strange. However,
the author calls non-semi-simple molds of rank 2 unipotent molds be-
cause each unipotent mold over an algebraically closed field k is gener-
ated by a unipotent matrix of M2(k).

For each type of molds of rank 2, we introduce representations with
a given mold.

Definition 3.8. For a 2-dimensional representation ρ for a group or a
monoid Γ on a scheme X , we say that ρ is a representation with semi-
simple mold if OX [ρ(Γ)] is a semi-simple mold on X . When X is a
scheme over Z[1/2] (or over F2), we say that ρ is a representation with
unipotent mold (or unipotent mold over F2) if OX [ρ(Γ)] is a unipotent
mold (or a unipotent mold over F2, respectively) on X .

For each case of molds of rank 2, we construct the moduli of repre-
sentations in §4-§6.

Finally, we consider molds of rank 1. This case is trivial. Indeed,
any mold of rank 1 is the mold consisting of scalar matrices. Let us
introduce the following definition for any degree.

Definition 3.9. Let X be a scheme. We say that A ⊆ Mn(OX) is a
scalar mold if A is a rank 1 mold on X . In other words, A is a scalar
mold if and only if A = OX · In.
Definition 3.10. For an n-dimensional representation ρ for a group
or a monoid Γ on a scheme X , we say that ρ is a representation with
scalar mold if OX [ρ(Γ)] is a scalar mold on X .

Proposition 3.11. The contravariant functor

Repn(Γ)scalar : (Sch)op → (Sets)

X 7→
{

rep. with scalar mold
of degree n for Γ on X

}
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is representable by a closed subscheme Repn(Γ)scalar of Repn(Γ). The
induced action of PGLn on Repn(Γ)scalar is trivial.

Proof. Let An(Γ) be the coordinate ring of the representation variety
Repn(Γ). Let σΓ : Γ → Mn(An(Γ)) be the universal representation
of degree n for Γ. We denote by I the ideal of An(Γ) generated by
{σΓ(γ)ij | 1 ≤ i 6= j ≤ n, γ ∈ Γ} ∪ {σΓ(γ)ii − σΓ(γ)jj | 1 ≤ i < j ≤
n, γ ∈ Γ}. Then it is easy to check that Repn(Γ)scalar is representable
by the affine scheme SpecAn(Γ)/I. Since I is PGLn-invariant and the
action of PGLn on An(Γ)/I is trivial, the induced action of PGLn on
Repn(Γ)scalar is trivial. �

Theorem 3.12. There exists a fine moduli scheme Chn(Γ)scalar sepa-
rated over Z associated to the following contravariant functor:

EqSn(Γ) : (Sch)op → (Sets)

X 7→
{

rep. with scalar mold
of degree n for Γ on X

}/
∼ .

The moduli Chn(Γ)scalar is isomorphic to Repn(Γ)scalar. Moreover, they
are isomorphic to Rep1(Γ)

∼= Ch1(Γ) := Rep1(Γ)/PGL1. In particular,
if Γ is a finitely generated group (or monoid), then the moduli is of
finite type over Z.

Proof. Since the action of PGLn on Repn(Γ)scalar is trivial, the affine
scheme Repn(Γ)scalar also represents the functor EqSn(Γ). We easily see
that An(Γ)/I ∼= A1(Γ), where I is defined in the proof of Proposition
3.11. The action of PGL1

∼= SpecZ on Rep1(Γ) is trivial. Hence we see
that Repn(Γ)scalar

∼= Rep1(Γ)
∼= Ch1(Γ). If Γ is finitely generated, then

Repn(Γ) is of finite type over Z, and therefore so is Repn(Γ)scalar. �

4. Semi-simple mold

In §4-§6, we only deal with rank 2 molds of degree 2. In this section,
we investigate the semi-simple mold case.

Definition 4.1. Let σΓ : Γ → M2(A2(Γ)) be the universal representa-
tion of degree 2 for a group or a monoid Γ. For α, β, γ ∈ Γ, we define
the matrix M(α, β, γ) by

M(α, β, γ) :=




σΓ(α)11 σΓ(β)11 σΓ(γ)11
σΓ(α)12 σΓ(β)12 σΓ(γ)12
σΓ(α)21 σΓ(β)21 σΓ(γ)21
σΓ(α)22 σΓ(β)22 σΓ(γ)22


 .
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We define the closed subscheme Rep2(Γ)rk≤2 of Rep2(Γ) by

Rep2(Γ)rk≤2 :=

{
ρ ∈ Rep2(Γ)

all (3× 3) minor determinants of
M(α, β, γ) are 0 for each α, β, γ ∈ Γ

}
.

We also define the open subscheme Rep2(Γ)rk2 of the affine scheme
Rep2(Γ)rk≤2 by

Rep2(Γ)rk2 := {ρ ∈ Rep2(Γ) | OX [ρ(Γ)] is a rank 2 mold }.

Definition 4.2. We define the representation variety with semi-simple
mold of degree 2 for a group or a monoid Γ by

Rep2(Γ)s.s. : (Sch)op → (Sets)
X 7→ {ρ ∈ Rep2(Γ) | ρ has a semi-simple mold }.

We easily see that Rep2(Γ)s.s. is an open subscheme of Rep2(Γ)rk2.

Remark 4.3. The scheme Rep2(Γ)s.s. is an open subscheme of the
affine scheme Rep2(Γ)rk≤2 where m(σΓ(γ)) does not vanish for some
γ ∈ Γ by Remark 3.3. Here recall that m(σΓ(γ)) = tr(σΓ(γ))

2 −
4 det(σΓ(γ)).

Let us denote by A2(Γ)rk≤2 the coordinate ring of the affine scheme
Rep2(Γ)rk≤2. We define A2(Γ)

Ch
rk≤2 as the subring of A2(Γ)rk≤2 gener-

ated by {tr(σΓ(γ)), det(σΓ(γ)) | γ ∈ Γ} over Z. We also denote by
Ch2(Γ)rk≤2 the spectrum of A2(Γ)

Ch
rk≤2. We define the open subscheme

Ch2(Γ)s.s. of Ch2(Γ)rk≤2 by

Ch2(Γ)s.s. :=
⋃

γ∈Γ

Spec (A2(Γ)
Ch
rk≤2)m(σΓ(γ)).

Then we have the canonical morphism

πΓ,s.s. : Rep2(Γ)s.s. → Ch2(Γ)s.s..

For γ ∈ Γ we define

Rep2(Γ)s.s.,γ := {x ∈ Rep2(Γ)s.s. | m(σΓ(γ)) 6≡ 0 in k(x)}
= Spec (A2(Γ)rk≤2)m(σΓ(γ))

and

Ch2(Γ)s.s.,γ := {x ∈ Ch2(Γ)s.s. | m(σΓ(γ)) 6≡ 0 in k(x)}
= Spec (A2(Γ)

Ch
rk≤2)m(σΓ(γ)).

Then we have the canonical morphism

πΓ,s.s.,γ : Rep2(Γ)s.s.,γ → Ch2(Γ)s.s.,γ.
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For a group or a monoid Γ, we have the following diagram for each
γ ∈ Γ:

Rep2(Γ)rk≤2 ⊇ Rep2(Γ)s.s. ⊇ Rep2(Γ)s.s.,γ
↓ ↓ ↓

Ch2(Γ)rk≤2 ⊇ Ch2(Γ)s.s. ⊇ Ch2(Γ)s.s.,γ.

Proposition 4.4. If Γ is a finitely generated group or monoid, then
Rep2(Γ)rk≤2 and Ch2(Γ)rk≤2 are of finite type over Z.

Proof. Let S = {α1, . . . , αn} be a set of generators of Γ. We may
assume that α−1

i is also an element of S for each 1 ≤ i ≤ n if Γ is
a group. The coordinate ring A2(Γ)rk≤2 is generated by all entries of
σΓ(αi) for 1 ≤ i ≤ n over Z. Hence Rep2(Γ)rk≤2 is of finite type over
Z. Let Ai := σΓ(αi) for 1 ≤ i ≤ n. Then the coordinate ring A2(Γ)

Ch
rk≤2

is generated by {det(Ai) | 1 ≤ i ≤ n} and {tr(Ai1Ai2 · · ·Aik) | 1 ≤
i1 < i2 < · · · < ik ≤ n} over Z. Indeed, we can verify it by using the
following equalities:

tr(X2Y ) = tr(X)tr(XY )− det(X)tr(Y )

tr(XY Z) = −tr(XZY ) + tr(X)tr(Y Z) + tr(Y )tr(ZX)

+tr(Z)tr(Y X)− tr(X)tr(Y )tr(Z)

for 2× 2 matrices X, Y, Z. These equalities have been well known (For
proofs see [15] or [11, Appendix]). Therefore Ch2(Γ)rk≤2 is of finite
type over Z. �

Definition 4.5. Let Υ1 = 〈α〉 be the free monoid of rank 1. We call
the morphism πΥ1,s.s.,α : Rep2(Υ1)s.s.,α → Ch2(Υ1)s.s.,α the prototype
with semi-simple mold of degree 2.
Let F1 = 〈α〉 be the free group of rank 1. We call the morphism

πF1,s.s.,α : Rep2(F1)s.s.,α → Ch2(F1)s.s.,α the prototype for group repre-
sentations with semi-simple mold of degree 2.

Let σΥ1 be the universal representation of degree 2 for Υ1. Put

σΥ1(α) =

(
a b
c d

)
. Then we see that the coordinate ring A2(Υ1) of

Rep2(Υ1) is isomorphic to the polynomial ring Z[a, b, c, d]. Note that
Rep2(Υ1) = Rep2(Υ1)rk≤2 and that Rep2(Υ1)rk2 = D(a − d) ∪ D(b) ∪
D(c) ⊆ Rep2(Υ1) = SpecZ[a, b, c, d].
Put D := ad− bc and T := a+d. Let A2(Υ1)

Ch be the subalgebra of
A2(Υ1) generated by {tr(σΥ1(γ)), det(σΥ1(γ)) | γ ∈ Υ1} over Z. Then
A2(Υ1)

Ch is isomorphic to the polynomial ring Z[T,D]. Set Ch2(Υ1) :=
SpecA2(Υ1)

Ch. Then Ch2(Υ1) = Ch2(Υ1)rk≤2.



13

Proposition 4.6. Let R be a commutative ring. Let A ∈ M2(R).
For each n ∈ N, there exists f(x, y) ∈ Z[x, y] such that m(An) =
m(A)f(trA, detA).

Proof. Let us claim that

m(An) =



m(A) ·




(n−3)/2∑

k=0

det(A)ktr(An−2k−1) + det(A)(n−1)/2



2

(n : odd )

m(A) ·




(n−2)/2∑

k=0

det(A)ktr(An−2k−1)



2

(n : even ).

Since tr(Ak) can be expressed by a polynomial in Z[tr(A), det(A)] for
each k ∈ N, the statement follows from this claim. It only suffices to
prove that this claim holds for A = σΥ1(α) ∈ M2(A2(Υ1)).
For A ∈ M2(k) with an algebraically closed field k, let λ, µ be eigen-

values of A. Note that m(A) = (λ − µ)2 and m(An) = (λn − µn)2.
Then

m(An) = (λ− µ)2(λn−1 + λn−2µ+ · · ·+ λµn−2 + µn−1)2

= m(A){tr(An−1) + det(A)tr(An−3) + det(A)2tr(An−5) + · · · }2.
Hence the claim holds for A ∈ M2(k) with k = k. Because the claim
holds for an algebraic closure k of the quotient field Q(A2(Υ1)) of
A2(Υ1), it also holds for Q(A2(Υ1)) and for A2(Υ1). This completes
the proof. �

Remark 4.7. Using Proposition 4.6, we easily see that Rep2(Υ1)s.s. =
Rep2(Υ1)s.s.,α and that Ch2(Υ1)s.s. = Ch2(Υ1)s.s.,α. Note thatm(A−1) =
m(A)(det(A))−2 for A ∈ GL2(R) with a commutative ring R. Hence
we also see that Rep2(F1)s.s. = Rep2(F1)s.s.,α and that Ch2(F1)s.s. =
Ch2(F1)s.s.,α.

We have the following diagram for the free monoid Υ1 = 〈α〉:
Rep2(Υ1)

‖
Rep2(Υ1)rk≤2 ⊃ Rep2(Υ1)rk2 ⊃ Rep2(Υ1)s.s. = Rep2(Υ1)s.s.,α

↓ ↓ ↓ ↓
Ch2(Υ1) = Ch2(Υ1)rk≤2 ⊃ Ch2(Υ1)s.s. = Ch2(Υ1)s.s.,α.

Put m := T 2 − 4D. The morphism π : Rep2(Υ1)rk2 → Ch2(Υ1)
is given by D(a − d) ∪ D(b) ∪ D(c) → SpecZ[T,D]. The prototype
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πΥ1,s.s. : Rep2(Υ1)s.s. → Ch2(Υ1)s.s. is induced by the ring homomor-
phism Z[T,D]m → Z[a, b, c, d]m.

Lemma 4.8. Let (R,m) be a local ring. Let A ∈ M2(R). Suppose that
(A mod m) is not a scalar matrix of M2(R/m). Then there exists
P ∈ GL2(R) such that

P−1AP =

(
0 − det(A)
1 tr(A)

)
.

If Q ∈ M2(R) satisfies AQ = QA, then Q = λI2 + µA for some
λ, µ ∈ R.

Proof. Put A =

(
a b
c d

)
. From the assumption, at least one of

a− d, b, c is contained in R×. Assume that b ∈ R×. Then the vectors
e2 := t(0, 1) and Ae2 ∈ R2 form a basis of R2. With respect to the
basis {e2, Ae2}, the linear map A : R2 → R2 can be expressed as(

0 − det(A)
1 tr(A)

)
. In the case c ∈ R×, we can choose {e1, Ae1} as

a basis of R2, where e1 := t(1, 0). Then we can change A into the
form which we want. If a − d ∈ R× and b, c 6∈ R×, then the vectors
e1 + e2 = t(1, 1) and A(e1 + e2) form a basis of R2. Similarly we can
change A into the desired form.
To prove the latter part of the statement, we may assume that A =(
0 − det(A)
1 tr(A)

)
. By direct calculation, we see that AQ = QA implies

Q = λI2 + µA for some λ, µ ∈ R. �

Proposition 4.9. The morphism Rep2(Υ1)rk2 → Ch2(Υ1) is smooth
and surjective. In particular, it is faithfully flat.

Proof. Let I be an ideal of a local ring R with I2 = 0. For a given
commutative diagram

Rep2(Υ1)rk2 → Ch2(Υ1)
↑ ↑

SpecR/I → SpecR,

we obtain (T,D) ∈ R2 and A ∈ Rep2(Υ1)rk2(R/I) ⊂ M2(R/I) such
that tr(A) ≡ T and det(A) ≡ D (mod I). By Lemma 4.8, there exists
P ∈ GL2(R/I) such that

P
−1
A P ≡ B :=

(
0 −D
1 T

)
(mod I).
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Let us take P ∈ GL2(R) such that P ≡ P (mod I). Put A = PBP−1.
Then A ∈ Rep2(Υ1)rk2(R) such that tr(A) = T and det(A) = D. Hence
we obtain a morphism SpecR → Rep2(Υ1)rk2 satisfying the commuta-
tivity. This implies that the morphism Rep2(Υ1)rk2 → Ch2(Υ1) is
smooth. Surjectivity follows from that we can take such matrix as B
above for a given k-valued point (T,D) ∈ Ch2(Υ1)(k) with a field k.
Since smoothness implies flatness, it is faithfully flat. �

Lemma 4.10. Let R be a commutative ring. For X, Y ∈ M2(R) and
a, b ∈ R, we have

det(aX + bY ) = a2 det(X) + b2 det(Y ) + ab(tr(X)tr(Y )− tr(XY )).

Proof. By direct calculation, we can check the formula above. �

Lemma 4.11. Let (R,m, k) be an artinian local ring, and I be an
ideal of R with mI = 0. For A ∈ M2(R), let us define the k-linear map
[A,−] : M2(I) → M2(I) by X 7→ AX − XA. If (A mod m) is not a
scalar matrix of M2(k), then

Im[A,−] = {Y ∈ M2(I) | tr(Y ) = tr(AY ) = 0}.

Proof. Since mI = 0, we can regard I as a vector space over R/m =
k. Put d := dimk I < ∞. Set N := {Y ∈ M2(I) | tr(Y ) = tr(AY ) =
0}. If Y = [A,X ] ∈ Im[A,−], then tr(Y ) = tr(AX) − tr(XA) = 0
and tr(AY ) = tr(AAX) − tr(AXA) = 0. Hence Im[A,−] ⊆ N . For
showing that Im[A,−] = N , we prove that the dimensions of the both
sides coincide. In order to calculate the dimensions, we may change A
into

P−1AP =

(
0 −D
1 T

)

for suitable P ∈ GL2(R) by considering the automorphism Ad(P ) :
M2(I) → M2(I) by X 7→ P−1XP .
If X ∈ Ker[A,−], then X = λI2 + µA for some λ, µ ∈ R by

Lemma 4.8. Since X ∈ M2(I), we get λ, µ ∈ I. Hence we see that
dimkKer[A,−] = dimk(I · I2 + I · A) = 2d and that dimk Im[A,−] =
dimkM2(I)−dimkKer[A,−] = 2d. On the other hand, if X ∈ N , then
tr(X) = tr(AX) = 0. By direct calculation, we have dimkN = 2d.
Thus we have proved that dimk Im[A,−] = dimkN = 2d and that
Im[A,−] = N . �

Let s : Ch2(Υ1) → Rep2(Υ1)rk2 by (T,D) 7→
(

0 −D
1 T

)
. Then

π ◦ s = 1Ch2(Υ1). We have the following proposition:
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Proposition 4.12. The composition of the morphisms

Ch2(Υ1)× PGL2
(s,id)→ Rep2(Υ1)rk2 × PGL2

σ→ Rep2(Υ1)rk2

((T,D), P ) 7→
((

0 −D
1 T

)
, P

)
7→ P−1

(
0 −D
1 T

)
P

is smooth and surjective. In particular, it is faithfully flat.

Proof. Let (R,m, k) be an artinian local ring, and let I be an ideal
of R with mI = 0. For a given commutative diagram

Ch2(Υ1)× PGL2
σ◦(s,id)→ Rep2(Υ1)rk2

↑ ↑
Spec R/I → Spec R,

we obtain A ∈ Rep2(Υ1)rk2(R), (T ,D) ∈ Ch2(Υ1)(R/I), and P ∈
GL2(R/I) such that P

−1
(

0 −D
1 T

)
P ≡ A in M2(R/I). Take P ∈

GL2(R) such that (P mod I) = P . Put D := detA and T := tr(A).
Note that (D mod I) = D and (T mod I) = T .

Set Y := P −1

(
0 −D
1 T

)
P − A ∈ M2(I). Let us show that

tr(AY ) = 0. Remark that det Y = 0 by I2 = 0 and that tr(Y ) = 0.
Using Lemma 4.10, we have

D = det(P−1

(
0 −D
1 T

)
P )

= det(A + Y )

= detA+ det Y + tr(A)tr(Y )− tr(AY )

= D − tr(AY ).

Hence we have proved tr(AY ) = 0.
By Lemma 4.11, we have Y ∈ Im[A,−]. There exists X ∈ M2(I)

such that [A,X ] = Y . Put P ′ := P (I2 − X) ∈ GL2(R). Then

P ′−1

(
0 −D
1 T

)
P ′ = (I2+X)(A+Y )(I2−X) = A+Y − [A,X ] = A.

Now let us define the morphism SpecR → Ch2(Υ1) × PGL2 cor-
responding to ((T,D), P ′). Verifying the commutativity, we see that
the morphism is smooth. By Lemma 4.8 we see that the morphism is
surjective. Hence it is faithfully flat. �

Proposition 4.13. The morphism

Rep2(Υ1)rk2 × PGL2 → Rep2(Υ1)rk2 ×Ch2(Υ1) Rep2(Υ1)rk2
(ρ, P ) 7→ (ρ, P−1ρP )
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is smooth and surjective. In particular, it is faithfully flat.

Proof. Let (R,m, k) be an artinian local ring, and let I be an ideal
of R with mI = 0. For a given commutative diagram

Rep2(Υ1)rk2 × PGL2 → Rep2(Υ1)rk2 ×Ch2(Υ1) Rep2(Υ1)rk2
↑ ↑

Spec R/I → Spec R,

we obtain (A,B) ∈ Rep2(Υ1)rk2(R)×Ch2(Υ1)(R)Rep2(Υ1)rk2(R) and P ∈
GL2(R/I) such that P

−1
AP ≡ B in M2(R/I). For proving that the

morphism is smooth, we define a morphism SpecR → Rep2(Υ1)rk2 ×
PGL2 satisfying the commutativity. Put T = tr(A) = tr(B) and D =
detA = detB. Let us take P ∈ GL2(R) such that (P mod I) = P .
Then set C := P−1AP − B ∈ M2(I).
Let us show that tr(C) = tr(BC) = 0. Indeed, tr(C) = tr(P−1AP )−

tr(B) = T − T = 0. Note that detC = 0 by I2 = 0. Using Lemma
4.10, we have

D = det(P−1AP ) = det(B + C)

= detB + detC + tr(B)tr(C)− tr(BC)

= D − tr(BC).

Hence we have verified tr(BC) = 0.
By Lemma 4.11, we have C ∈ Im[B,−]. There exists X ∈ M2(I)

such that [B,X ] = C. Put P ′ := P (I2 − X) ∈ GL2(R). Then
P ′−1AP ′ = (I2 + X)(B + C)(I2 − X) = B + C − [B,X ] = B. Now
let us define the morphism SpecR→ Rep2(Υ1)rk2 × PGL2 correspond-
ing to (A, P ′). Since P ′−1AP ′ = B, we can verify the commutativity.
Therefore the morphism is smooth.
By Lemma 4.8 we see that the morphism is surjective. Hence it is

faithfully flat. �

Let us introduce the following two lemmas on sufficient conditions
for a given morphism to be a universal geometric quotient (For the
definition of universal geometric quotient, see [9]).

Lemma 4.14. Let G be an affine group scheme over an affine scheme
S. Assume that the S-morphism σ : G×SX → X is a group action of G
on an S-schemeX and that the action of G on an S-scheme Y is trivial.
Let π : X → Y be an affine G-equivariant faithfully flat locally of finite
presentation S-morphism. If the morphism (σ, p2) : G×SX → X×Y X
is faithfully flat, then π : X → Y is a universal geometric quotient by
G.
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Proof. From the assumption, we have π ◦ σ = π ◦ p2 : G×S X → Y .
We also see that π is surjective and that the image of the morphism
(σ, p2) : G×SX → X×SX isX×YX . Since π is faithfully flat locally of
finite presentation, it is universally open (cf. [4, Theorem 2.4.6]). For
verifying π∗(OX)

G = OY , we only need to check that OX(π
−1(U))G =

OY (U) for each affine open subscheme U of Y . Set U = SpecA and

π−1(U) = SpecB. Because A → B is faithfully flat, 0 → A → B
φ1−φ2→

B ⊗A B is exact, where φ1(b) = b⊗ 1 and φ2(b) = 1 ⊗ b for b ∈ B (for
example, see [8, Proposition 2.18]). Put S = Spec C and G = SpecR.
The ring homomorphism B ⊗A B → R ⊗C B induced by (σ, p2) :
G×SX → X×YX is faithfully flat. Since B⊗AB → R⊗CB is injective,

0 → A → B
σ∗−p∗2→ R ⊗C B is also exact. This implies that BG = A

and that π∗(OX)
G = OY . Hence we see that π : X → Y is a geometric

quotient by G. For all morphisms Y ′ → Y , π′ : X ′ := X×Y Y
′ → Y ′ is

also a geometric quotient by G because π′ and G×S X
′ → X ′ ×Y ′ X ′

are faithfully flat. This completes the proof. �

Lemma 4.15. Let X and Y be schemes over a scheme S. Let G be a
group scheme over S. Assume that an S-morphism σ : G ×S X → X
is a group action of G on X and that the action of G on Y is trivial.
Let π : X → Y be a G-equivariant S-morphism and s : Y → X be an
S-morphism such that π ◦ s = 1Y . Suppose that

(i) π is faithfully flat and locally of finite presentation, and

(ii) G×S Y
(1G,s)−→ G×S X

σ→ X is faithfully flat.

Then π : X → Y is a universal geometric quotient by G.

Proof. From the assumption (i), π : X → Y is surjective and uni-
versally open. Let us show that the image of the morphism (σ, p2) :
G×SX → X×SX is X×Y X . Assume that (f1, f2) ∈ X(Ω)×Y (Ω)X(Ω)
is a Ω-valued point with a field Ω. Set h := π◦f1 = π◦f2 : SpecΩ → Y
and f := s ◦ h : Spec Ω → X . By the condition (ii), there exist
(gi, f) : Spec Ω → G ×S X such that σ ◦ (gi, f) = fi for each i = 1, 2
(if necessary, take an extension field of Ω). Then (σ, p2) ◦ (g1g−1

2 , f2) :
Spec Ω → G×S X → X ×S X is (f1, f2). Hence the image of (σ, p2) is
X ×Y X .
Let us show that π∗(OX)

G = OY . Since π is faithfully flat, OY →
π∗(OX)

G is injective. For an open set U of Y , put V := π−1(U).
Assume that φ : V → A1

S satisfies φ ◦ (σ|G×SV ) = φ ◦ (p2|G×SV ). Set

ψ := φ ◦ (s| U) : U → A1
S. By the assumption (ii), G ×S U

(1G,s|U )−→
G×S V

σ|G×SV→ V is faithfully flat. Put Φ := (σ |G×SV ) ◦ (1G, s |U). It
is easy to verify that φ ◦Φ = ψ ◦ (π|V ) ◦Φ. Since OV → Φ∗(OG×SV ) is
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injective, φ = ψ◦(π|V ). This implies that OY → π∗(OX)
G is surjective,

and hence π∗(OX)
G = OY .

The assumptions (i) and (ii) are stable under any base change Y ′ →
Y . Therefore π : X → Y is a universal geometric quotient by G. �

Remark 4.16. We can extend Lemma 4.15 in the following way: Let
S,G,X, Y , and π : X → Y be as above. Let Y = ∪i∈IYi be an open
covering of Y . Set Xi := π−1(Yi). Let si : Yi → Xi be an S-morphism
with π |Xi

◦si = 1Yi for each i ∈ I. Suppose that (i) and the following
(ii)’ hold:

(ii)’ G×S Yi
(1G,si)−→ G×S Xi

σ→ Xi is faithfully flat for each i ∈ I.

Then π : X → Y is a universal geometric quotient by G.

Theorem 4.17. The morphism π : Rep2(Υ1)rk2 → Ch2(Υ1) is a uni-
versal geometric quotient by PGL2.

Proof. Obviously, π is locally of finite presentation. By Propositions

4.9 and 4.12, π and Ch2(Υ1)× PGL2
σ◦(s,id)→ Rep2(Υ1)rk2 are faithfully

flat. Hence Lemma 4.15 implies that π : Rep2(Υ1)rk2 → Ch2(Υ1) is a
universal geometric quotient by PGL2. (Of course, Lemma 4.15 also
holds for right group actions.) �

Corollary 4.18. The prototype πΥ1,s.s. : Rep2(Υ1)s.s. → Ch2(Υ1)s.s. is
a universal geometric quotient by PGL2.

Proof. The morphism πΥ1,s.s. : Rep2(Υ1)s.s. → Ch2(Υ1)s.s. is a base
change of π : Rep2(Υ1)rk2 → Ch2(Υ1) by Ch2(Υ1)s.s. → Ch2(Υ1). The
statement follows from Theorem 4.17. �

Corollary 4.19. The prototype πF1,s.s. : Rep2(F1)s.s. → Ch2(F1)s.s. for
group representations is a universal geometric quotient by PGL2.

Proof. The morphism πF1,s.s. : Rep2(F1)s.s. → Ch2(F1)s.s. is a base
change of π : Rep2(Υ1)s.s. → Ch2(Υ1)s.s. by Ch2(F1)s.s. → Ch2(Υ1)s.s..
The statement follows from the previous corollary. �

Proposition 4.20. Let A ⊆ M2(R) be a rank 2 semi-simple mold over
a commutative ring R. Suppose that there exists A ∈ A such that
m(A) ∈ R×. Then the following bilinear form is perfect:

tr(··) : A×A → R
(X, Y ) 7→ tr(XY ).

In other words, the R-linear map A → HomR(A, R) defined by X 7→
(Y 7→ tr(XY )) is an isomorphism. In particular, for each X ∈ A, we
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have

X = (I2, A)

(
tr(I2) tr(A)
tr(A) tr(A2)

)−1(
tr(X)
tr(AX)

)

= (I2, A)
1

m(A)

(
tr(A2) −tr(A)
−tr(A) 2

)(
tr(X)
tr(AX)

)
.

Proof. Remark that {I2, A} forms a basis of A over R. The deter-
minant of the matrix (

tr(I2) tr(A)
tr(A) tr(A2)

)

is equal to m(A) ∈ R×, and hence the inverse matrix exists.
For each X = aI2 + bA ∈ A with a, b ∈ R, we have

(
tr(X)
tr(AX)

)
=

(
tr(I2) tr(A)
tr(A) tr(A2)

)(
a
b

)
.

Since (
a
b

)
=

(
tr(I2) tr(A)
tr(A) tr(A2)

)−1(
tr(X)
tr(AX)

)
,

we have

X = (I2, A)

(
tr(I2) tr(A)
tr(A) tr(A2)

)−1(
tr(X)
tr(AX)

)

= (I2, A)
1

m(A)

(
tr(A2) −tr(A)
−tr(A) 2

)(
tr(X)
tr(AX)

)
.

Therefore we see that tr(··) : A×A → R is perfect. �

Proposition 4.21. For each element γ of a monoid Γ, (A2(Γ)
Ch
rk≤2)m(σΓ(γ))

is generated by {tr(σΓ(δ)) | δ ∈ Γ} and m(σΓ(γ)))
−1 over Z.

Proof. By the definition of A2(Γ)
Ch
rk≤2, (A2(Γ)

Ch
rk≤2)m(σΓ(γ)) is generated

by {tr(σΓ(δ)), det(σΓ(δ)) | δ ∈ Γ} and m(σΓ(γ)))
−1 over Z. Let S be

the subalgebra of (A2(Γ)
Ch
rk≤2)m(σΓ(γ)) generated by {tr(σΓ(δ)) | δ ∈ Γ}

and m(σΓ(γ)))
−1 over Z. It only suffices to prove that det(σΓ(δ)) ∈ S

for each δ ∈ Γ. Using Proposition 4.20, we have

σΓ(δ) = (σΓ(e), σΓ(γ))

(
tr(σΓ(e)) tr(σΓ(γ))
tr(σΓ(γ)) tr(σΓ(γ

2))

)−1(
tr(σΓ(δ))
tr(σΓ(γδ))

)

in M2((A2(Γ)rk≤2)m(σΓ(γ))) for each δ ∈ Γ. Since the determinant of the
matrix

T :=

(
tr(σΓ(e)) tr(σΓ(γ))
tr(σΓ(γ)) tr(σΓ(γ

2))

)
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is equal to m(σΓ(γ)) = 2tr(σΓ(γ
2))− (tr(σΓ(γ)))

2, σΓ(δ) = aI2+bσΓ(γ)
with some a, b ∈ S for each δ ∈ Γ. By Lemma 4.10, the statement
follows from the claim that det(σΓ(γ)) ∈ S. Let us prove the claim.
Putting δ = γ2, we have

σΓ(γ
2) = (σΓ(e), σΓ(γ)) T

−1

(
tr(σΓ(γ

2))
tr(σΓ(γ

3))

)

= (I2, σΓ(γ))
1

m(σΓ(γ))

(
tr(σΓ(γ

2))2 − tr(σΓ(γ))tr(σΓ(γ
3))

−tr(σΓ(γ))tr(σΓ(γ
2)) + 2tr(σΓ(γ

3))

)
.

We also obtain σΓ(γ
2) = tr(σΓ(γ))σΓ(γ) − det σΓ(γ)I2 by the Cayley-

Hamilton Theorem. Comparing the coefficients of I2, we have

det(σΓ(γ)) =
tr(σΓ(γ))tr(σΓ(γ

3))− tr(σΓ(γ
2))2

m(σΓ(γ))
.

Hence we have proved the statement. �

Let Γ1,Γ2 be monoids. Let ψ : Γ1 → Γ2 be a monoid homomorphism.
Then ψ induces canonical ring homomorphisms ψ∗ : A2(Γ1)rk≤2 →
A2(Γ2)rk≤2 and ψ∗ : A2(Γ1)

Ch
rk≤2 → A2(Γ2)

Ch
rk≤2. Set γ2 := ψ(γ1) for

γ1 ∈ Γ1. We obtain the ring homomorphisms

ψ∗ : (A2(Γ1)rk≤2)m(σΓ1
(γ1)) → (A2(Γ2)rk≤2)m(σΓ2

(γ2)),

ψ∗ : (A2(Γ1)
Ch
rk≤2)m(σΓ1

(γ1)) → (A2(Γ2)
Ch
rk≤2)m(σΓ2

(γ2)).

Hence we have the morphisms

Rep2(Γ2)rk≤2
ψ∗

→ Rep2(Γ1)rk≤2

↓ ↓
Ch2(Γ2)rk≤2

ψ∗

→ Ch2(Γ1)rk≤2

and

Rep2(Γ2)s.s.,γ2
ψ∗

→ Rep2(Γ1)s.s.,γ1
↓ ↓

Ch2(Γ2)s.s.,γ2
ψ∗

→ Ch2(Γ1)s.s.,γ1 .

Lemma 4.22. Let γ be an element of a monoid Γ. Let ψ : Υ1 → Γ
be the monoid homomorphism sending α to γ. Then ψ induces the
following diagram which is a fibre product:

Rep2(Γ)s.s.,γ
πΓ,s.s.,γ→ Ch2(Γ)s.s.,γ

↓ ↓
Rep2(Υ1)s.s.,α → Ch2(Υ1)s.s.,α.

In particular, the morphism πΓ,s.s.,γ can be obtained by base change of
the prototype for each γ ∈ Γ.
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Proof. Put X := Rep2(Γ)s.s.,γ and Y := Rep2(Υ1)s.s.,α ×Ch2(Υ1)s.s.,α

Ch2(Γ)s.s.,γ. We shall show that the morphism f : X → Y induced by
ψ is an isomorphism. Let R be a commutative ring. For two R-valued
points σ1, σ2 of X , assume that f(σ1) = f(σ2) as R-valued points of
Y . Considering σ1 and σ2 as representations of degree 2 for Γ in R, we
have

σi(δ) = (I2, σi(γ))

(
tr(I2) tr(σi(γ))

tr(σi(γ)) tr(σi(γ
2))

)−1(
tr(σi(δ))
tr(σi(δγ))

)

for each δ ∈ Γ and i = 1, 2. Since f(σ1) = f(σ2), we obtain σ1(γ) =
f(σ1)(α) = f(σ2)(α) = σ2(γ) and tr(σ1(δ

′)) = tr(σ2(δ
′)) for each δ′ ∈

Γ. Hence we have σ1 = σ2.
Let y = (ρ, χ) be an R-valued point of Y . Here ρ : Υ1 → M2(R) and

χ are R-valued points of Rep2(Υ1)s.s.,α and Ch2(Γ)s.s.,γ, respectively.
Let us denote by χ(δ) the image of tr(σΓ(δ)) by the ring homomorphism
φ : (A2(Γ)

Ch
rk≤2)m(σΓ(γ)) → R associated to χ. Then φ(m(σΓ(γ))) =

m(ρ(α)) and χ(γm) = tr(ρ(αm)) for m ∈ N. We define the map σ :
Γ → M2(R) by

σ(δ) := (I2, ρ(α))

(
tr(I2) tr(ρ(α))

tr(ρ(α)) tr(ρ(α2))

)−1(
χ(δ)
χ(δγ)

)

for δ ∈ Γ. It is easy to see that σ(e) = I2 and σ(γ) = ρ(α).
Note that

σΓ(δ) = (I2, σΓ(γ))

(
tr(I2) tr(σΓ(γ))

tr(σΓ(γ)) tr(σΓ(γ
2))

)−1(
tr(σΓ(δ))
tr(σΓ(γδ))

)

in M2((A2(Γ)rk≤2)m(σΓ(γ))) for each δ ∈ Γ. By a similar discussion
in the proof of [10, Theorem 5.1], we see that σ is a representation,
and hence that σ can be regarded as an R-valued point of X . Since
tr(σ(δ)) = χ(δ) for each δ ∈ Γ, we also see that f(σ) = y by using
Proposition 4.21. Therefore f is an isomorphism. �

Remark 4.23. We can also prove the group version of Lemma 4.22:
Let γ be an element of a group Γ. Let φ : F1 → Γ be the group
homomorphism sending α to γ. Then φ induces the following diagram
which is a fibre product:

Rep2(Γ)s.s.,γ → Ch2(Γ)s.s.,γ
↓ ↓

Rep2(F1)s.s.,α → Ch2(F1)s.s.,α.

In particular, the morphism πΓ,s.s.,γ can be obtained by base change of
the prototype for group representations.
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Corollary 4.24. The morphism πΓ,s.s. : Rep2(Γ)s.s. → Ch2(Γ)s.s. is a
universal geometric quotient by PGL2 for a group or a monoid Γ.

Proof. From Lemma 4.22 and Corollary 4.18 we see that πΓ,s.s. gives
a universal geometric quotient. �

Remark 4.25. The morphism πΓ,s.s. : Rep2(Γ)s.s. → Ch2(Γ)s.s. is smooth
and surjective. Indeed, the prototype πΥ1,s.s. : Rep2(Υ1)s.s. → Ch2(Υ1)s.s.
is smooth and surjective because it is obtained by base change of
π : Rep2(Υ1)rk2 → Ch2(Υ1) and π is smooth and surjective by Propo-
sition 4.9.

Remark 4.26. For each point x ∈ Ch2(Γ)s.s., there exists a local
section sx : Vx → Rep2(Γ)s.s. on a neighbourhood Vx of x such that
πΓ,s.s. ◦ sx = idVx . Indeed, take γ ∈ Γ such that x ∈ Ch2(Γ)s.s.,γ. By
Lemma 4.22, πΓ,s.s. : Rep2(Γ)s.s.,γ → Ch2(Γ)s.s.,γ has a section sΓ,γ be-
cause Rep2(Υ1)s.s. → Ch2(Υ1)s.s. has a section s. Hence we can take
Ch2(Γ)s.s.,γ as a neighbourhood Vx of x.

Lemma 4.27. Let ρ1, ρ2 be representations with semi-simple mold for
a group (or a monoid) Γ on a scheme X. Let fi : X → Rep2(Γ)s.s. be
the morphism associated to ρi for i = 1, 2. If πΓ,s.s. ◦ f1 = πΓ,s.s. ◦ f2 :
X → Ch2(Γ)s.s., then for each x ∈ X there exists Px ∈ GL2(Γ(Vx,OX))
on a neighbourhood Vx of x such that P−1

x ρ1Px = ρ2 on Vx.

Proof. For x ∈ X , take γ ∈ Γ such that (πΓ,s.s. ◦ f1)(x) = (πΓ,s.s. ◦
f2)(x) ∈ Ch2(Γ)s.s.,γ. We may assume that fi : X → Rep2(Γ)s.s.,γ for
i = 1, 2 from the beginning. By Remark 4.26, πΓ,s.s. : Rep2(Γ)s.s.,γ →
Ch2(Γ)s.s.,γ has a section sΓ,γ. Let ρ3 be the representations with semi-
simple mold on X associated to sΓ,γ ◦πΓ,s.s. ◦f1 = sΓ,γ ◦πΓ,s.s. ◦f2. Note
that

ρ3(γ) =

(
0 − det(ρ1(γ))
1 tr(ρ1(γ))

)
=

(
0 − det(ρ2(γ))
1 tr(ρ2(γ))

)

and that tr(ρ1(δ)) = tr(ρ2(δ)) = tr(ρ3(δ)) for each δ ∈ Γ. There
exist Q1, Q2 ∈ GL2(Γ(Vx,OX)) on a neighbourhood Vx of x such that
Q−1

1 ρ1(γ)Q1 = ρ3(γ) and Q
−1
2 ρ2(γ)Q2 = ρ3(γ) by Lemma 4.8. Since

ρi(δ) = (I2, ρi(γ))

(
tr(I2) tr(ρi(γ))

tr(ρi(γ)) tr(ρi(γ
2))

)−1(
tr(ρi(δ))
tr(ρi(γδ))

)

on Vx for δ ∈ Γ and for i = 1, 2, 3, we have Q−1
1 ρ1(δ)Q1 = ρ3(δ) and

Q−1
2 ρ2(δ)Q2 = ρ3(δ) for each δ ∈ Γ. Hence (Q1Q

−1
2 )−1ρ1(Q1Q

−1
2 ) = ρ2

on Vx. This completes the proof. �
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Theorem 4.28. Let R be a local ring. For two representations with
semi-simple mold ρ1, ρ2 : Γ → GL2(R) for a group (or a monoid) Γ,
ρ1 and ρ2 are equivalent to each other (in other words, there exists
P ∈ GL2(R) such that P−1ρ1(γ)P = ρ2(γ) for any γ ∈ Γ) if and only
if tr(ρ1(γ)) = tr(ρ2(γ)) for each γ ∈ Γ.

Proof. Let f1, f2 be the R-valued points of Rep2(Γ)s.s. associated to
ρ1, ρ2, respectively. Using Proposition 4.21 andm(ρi(γ)) = 2tr(ρi(γ

2))−
(tr(ρi(γ)))

2 for i = 1, 2, we see that tr(ρ1(γ)) = tr(ρ2(γ)) for each γ ∈ Γ
if and only if πΓ,s.s. ◦ f1 = πΓ,s.s. ◦ f2 as R-valued points of Ch2(Γ)s.s..
The statement follows from Lemma 4.27. �

Let us define EqSS2(Γ) as the sheafification of the following con-
travariant functor with respect to Zariski topology:

(Sch)op → (Sets)
X 7→ {ρ | rep. with s.s. mold for Γ on X}/ ∼ .

By a generalized representation with semi-simple mold for Γ on a
scheme X , we understand pairs {(Ui, ρi)}i∈I of an open set Ui and a
representation with semi-simple mold ρi : Γ → M2(Γ(Ui,OX)) satisfy-
ing the following two conditions:

(i) ∪i∈IUi = X ,
(ii) for each x ∈ Ui ∩ Uj , there exists Px ∈ GL2(Γ(Vx,OX)) on a

neighbourhood Vx ⊆ Ui ∩ Uj of x such that P−1
x ρiPx = ρj on

Vx.

Generalized representations with semi-simple mold {(Ui, ρi)}i∈I and
{(Vj, σj)}j∈J are called equivalent if {(Ui, ρi)}i∈I ∪ {(Vj, σj)}j∈J is a
generalized representation with semi-simple mold again. We easily see
that EqSS2(Γ)(X) is the set of equivalence classes of generalized rep-
resentations with semi-simple mold for Γ on a scheme X .

Theorem 4.29. The scheme Ch2(Γ)s.s. is a fine moduli scheme asso-
ciated to the functor EqSS2(Γ) for a group or a monoid Γ:

EqSS2(Γ) : (Sch)op → (Sets)

X 7→
{

gen. rep. with s.s. mold
for Γ on X

}/
∼ .

In other words, Ch2(Γ)s.s. represents the functor EqSS2(Γ). The moduli
Ch2(Γ)s.s. is separated over Z; if Γ is a finitely generated group or
monoid, then Ch2(Γ)s.s. is of finite type over Z.

Proof. It is easy to define a canonical morphism EqSS2(Γ) →
hCh2(Γ)s.s. := Hom(−,Ch2(Γ)s.s.). Let us define a morphism hCh2(Γ)s.s. →
EqSS2(Γ). Let g ∈ hCh2(Γ)s.s.(X) with a scheme X . For each x ∈ X ,
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take γx ∈ Γ such that g(x) ∈ Ch2(Γ)s.s.,γx . By using the section
sΓ,γx : Ch2(Γ)s.s.,γx → Rep2(Γ)s.s.,γx in Remark 4.26, we can define a
representation with semi-simple mold ρx on a neighbourhood Ux of x.
By Lemma 4.27, we see that {(Ux, ρx)}x∈X ∈ EqSS2(Γ)(X) and that
the morphism hCh2(Γ)s.s. → EqSS2(Γ) is well-defined. It is easy to see
that Ch2(Γ)s.s. represents the functor EqSS2(Γ).
Since Ch2(Γ)s.s. is an open subscheme of the affine scheme Ch2(Γ)rk≤2,

Ch2(Γ)s.s. is separated over Z. Suppose that Γ is finitely generated.
Then Ch2(Γ)rk≤2 is of finite type over Z by Proposition 4.4. Hence
Ch2(Γ)s.s. is also of finite type over Z. �

Remark 4.30. Let A be an associative algebra over a commutative
ring R. For an R-scheme X , we say that an R-algebra homomorphism
ρ : A → M2(Γ(X,OX)) is a 2-dimensional representation of A on X .
For a 2-dimensional representation ρ of A, ρ is called a representation
with semi-simple mold if the subalgebra ρ(A) of M2(OX) generates a
semi-simple mold on X . In a similar way as group or monoid cases,
we can define generalized representations with semi-simple mold for
A on an R-scheme X . The contravariant functor EqSS2(A) from the
category of R-schemes to the category of sets is defined as

EqSS2(A) : (Sch/R)op → (Sets)

X 7→
{

gen. rep. with s.s. mold
for A on X

}/
∼ .

Then we can construct the fine moduli Ch2(A)s.s. associated to EqSS2(A)
in the same way as Theorem 4.29. The moduli Ch2(A)s.s. is separated
over R. If A is a finitely generated algebra over R, then Ch2(A)s.s.
is of finite type over R. For a local ring S over R, we see that two
representations with semi-simple mold ρ1, ρ2 : A → M2(S) are equiva-
lent to each other (in other words, there exists P ∈ GL2(S) such that
P−1ρ1(a)P = ρ2(a) for any a ∈ A) if and only if tr(ρ1(a)) = tr(ρ2(a))
for each a ∈ A (the associative algebra version of Theorem 4.28).

Remark 4.31. We have introduced the notion of generalized repre-
sentations with semi-simple mold for describing the moduli functors
EqSS2(Γ) and EqSS2(A). However, the moduli functors can also be
described as EqSS ′

2(Γ) and EqSS ′
2(A) by using the notion of represen-

tations generating sheaves of algebras which define semi-simple molds.
More precisely, see §8.

5. Unipotent mold (ch 6= 2 case)

Recall that a rank 2 mold A ⊆ M2(OX) over a Z[1/2]-scheme X is
called unipotent if m(s) := tr(s)2 − 4 det(s) = 0 for each open subset
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U ⊆ X and for each s ∈ A(U). In this section, all schemes are over
Spec Z[1/2] and all commutative rings are over Z[1/2]. We construct
the moduli of representations with unipotent mold over Spec Z[1/2].
As seen in Theorem 4.17, π : Rep2(Υ1)rk2 → Ch2(Υ1) is a universal

geometric quotient by PGL2. Put A := σΥ1(α) for the universal repre-
sentation σΥ1 of Υ1 = 〈α〉. Let Z be the closed subscheme of Ch2(Υ1)
defined by m(A) = tr(A)2−4 det(A) = 0. By base change, we obtain a
universal geometric quotient π′ : Rep2(Υ1)rk2×Ch2(Υ1)Z → Z by PGL2.
However, this quotient π′ is not so good, because Z has a singular fibre
over F2 which is defined by tr(A)2 = 0. Therefore we assume that
all schemes are over SpecZ[1/2] in this section. The case of unipotent
molds over F2 will be discussed in the next section.
Assume that R is a Z[1/2]-algebra and that A ⊆ M2(R) is a unipo-

tent mold over R through this section.

Notation 5.1. For X ∈ M2(R), we define η(X) := X − tr(X)

2
I2.

Lemma 5.2. Suppose that X ∈ M2(R) satisfies m(X) = tr(X)2 −
4 det(X) = 0. Then η(X)2 = 0.

Proof. By the Cayley-Hamilton theorem, we have

η(X)2 = X2 − tr(X)X +
(tr(X))2

4
I2

= tr(X)X − det(X)I2 − tr(X)X +
(tr(X))2

4
I2

= 0,

since tr(X)2 = 4det(X). �

Lemma 5.3. Let R be a Z[1/2]-algebra. Let A ⊆ M2(R) be a unipotent
mold over R. If X, Y ∈ A, then 2tr(XY ) = tr(X)tr(Y ).

Proof. Since we have only to prove that the equality holds locally,
we may assume that there exists Z ∈ A such that A = R ·I2+R ·Z and
m(Z) = tr(Z)2 − 4 det(Z) = 0. Put X = aI2 + bZ and Y = cI2 + dZ.
Then we have

2tr(XY ) = 2ac tr(I2) + 2(ad+ bc) tr(Z) + 2bd tr(Z2)

= 4ac+ 2(ad+ bc) tr(Z) + 2bd (tr(Z))2 − 4bd det(Z)

= 4ac+ 2(ad+ bc) tr(Z) + 4bd det(Z)
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and

tr(X)tr(Y ) = (2a+ b tr(Z))(2c+ d tr(Z))

= 4ac+ 2(ad+ bc) tr(Z) + bd (tr(Z))2

= 4ac+ 2(ad+ bc) tr(Z) + 4bd det(Z).

This completes the proof. �

Notation 5.4. Let R and A be as above. For X ∈ M2(R), we denote
tr(X)/2 by r(X). Note that η(X) = X − r(X)I2. From Lemma 5.3,
we have r(XY ) = r(X)r(Y ) for X, Y ∈ A. If X = aI2 + bZ, then
η(X) = aI2 + bZ − r(aI2 + bZ)I2 = b(Z − r(Z)I2) = bη(Z).

Lemma 5.5. Let R and A be as in Lemma 5.3. For X, Y ∈ A,

η(XY ) = r(X)η(Y ) + η(X)r(Y ).

Proof. As in the proof of Lemma 5.3, we may assume that there exists
Z ∈ A such that A = R · I2 +R ·Z and m(Z) = tr(Z)2− 4 det(Z) = 0.
For X, Y ∈ A, there exists λ, µ ∈ R such that η(X) = λη(Z) and
η(Y ) = µη(Z). Since η(X)η(Y ) = λµη(Z)2 = 0, we have

η(XY ) = XY − r(XY )I2

= (X − r(X)I2)(Y − r(Y )I2) + r(Y )(X − r(X)I2)

+r(X)(Y − r(Y )I2)

= η(X)η(Y ) + r(X)η(Y ) + η(X)r(Y )

= r(X)η(Y ) + η(X)r(Y ).

This completes the proof. �

Notation 5.6. Let Γ be a group or a monoid. Let ρ : Γ → M2(R) be a
representation with the unipotent mold A. For each γ ∈ Γ, we denote
η(ρ(γ)) and r(ρ(γ)) by η(γ) and r(γ), respectively. Assume that there
exists α ∈ Γ such that A = R · I2+R · ρ(α). Then A = R · I2+R · η(α)
and for each γ ∈ Γ there exists a unique aα(γ) ∈ R such that η(γ) =
aα(γ)η(α).

Remark 5.7. Note that the map r(·) : Γ → R is a character of Γ. In
other words, r(e) = 1 and r(γδ) = r(γ)r(δ) for γ, δ ∈ Γ. From Lemma
5.5 we see that the map aα(·) : Γ → R is a derivation with respect to
r, that is, aα satisfies the condition aα(γδ) = r(γ)aα(δ) + aα(γ)r(δ) for
each γ, δ ∈ Γ.

For a representation ρ : Γ → M2(R) with the unipotent mold A such
that A = R ·I2+R ·ρ(α) for some α ∈ Γ, we have a character r : Γ → R
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and a derivation aα : Γ → R with respect to r. Conversely, a character
and a derivation give us a representation with unipotent mold.

Lemma 5.8. Let r : Γ → R be a character and let a : Γ → R be a
derivation with respect to r. Assume that there exists α ∈ Γ such that
a(α) ∈ R×. Furthermore assume that there exists Z ∈ M2(R) such that
A := R · I2 +R · Z ⊆ M2(R) is a unipotent mold. Then the map

ρ : Γ → M2(R)
γ → r(γ)I2 + a(γ)η(Z)

is a representation for Γ with the unipotent mold A.

Proof. For γ, δ ∈ Γ, we have

ρ(γ)ρ(δ) = (r(γ)I2 + a(γ)η(Z))(r(δ)I2 + a(δ)η(Z))

= r(γ)r(δ)I2 + a(γ)r(δ)η(Z) + r(γ)a(δ)η(Z)

= r(γδ)I2 + a(γδ)η(Z)

= ρ(γδ).

Since ρ(e) = I2 and ρ(α) = (r(α)− a(α)tr(Z)/2)I2 + a(α)Z, the map
ρ is a representation with the unipotent mold A. �

Definition 5.9. Let us denote Rep2(Γ)⊗ZZ[1/2] by Rep2(Γ)[1/2]. We
define the subscheme Rep2(Γ)u of Rep2(Γ)[1/2] by

Rep2(Γ)u := {ρ ∈ Rep2(Γ)[1/2] | ρ has a unipotent mold }.
We call Rep2(Γ)u the unipotent part of the representation variety of de-
gree 2 for Γ over Z[1/2]. Recall that Rep2(Γ)rk≤2 is a closed subscheme
of Rep2(Γ) and that Rep2(Γ)rk2 is an open subscheme of Rep2(Γ)rk≤2

(Definition 4.1). Set Rep2(Γ)rk≤2[1/2] := Rep2(Γ)rk≤2 ⊗Z Z[1/2] and
Rep2(Γ)rk2[1/2] := Rep2(Γ)rk2 ⊗Z Z[1/2]. Then Rep2(Γ)u is a closed
subscheme of Rep2(Γ)rk2[1/2] defined by m(σΓ(γ)) = 0 for all γ ∈ Γ.

Definition 5.10. Let us Rep1(Γ)[1/2] denote the representation va-
riety Rep1(Γ) ⊗Z Z[1/2] of degree 1 for Γ over Z[1/2]. Let us denote
by A1(Γ)[1/2] the coordinate ring of Rep1(Γ)[1/2]. For an A1(Γ)[1/2]-
module M , we define the A1(Γ)[1/2]-module of derivations by

Der(Γ,M) :=

{
a : Γ →M

a(γδ) = χΓ(γ)a(δ) + a(γ)χΓ(δ)
for each γ, δ ∈ Γ

}
.

Here we denote by χΓ : Γ → A1(Γ)[1/2] the universal representation of
degree 1 for Γ.
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Lemma 5.11. There exists a universal A1(Γ)[1/2]-module ΩΓ repre-
senting the covariant functor

Der(Γ,−) : (A1(Γ)[1/2]-Mod) → (A1(Γ)[1/2]-Mod)
M 7→ Der(Γ,M).

In particular,

Der(Γ,M)
∼→ HomA1(Γ)[1/2](ΩΓ,M)

is an isomorphism for each A1(Γ)[1/2]-module M .

Proof. We define the A1(Γ)[1/2]-module ΩΓ by

ΩΓ := (⊕γ∈ΓA1(Γ)[1/2] · dγ)/N,

whereN is theA1(Γ)[1/2]-submodule generated by {χΓ(γ)dδ+χΓ(δ)dγ−
d(γδ) | γ, δ ∈ Γ} of the free A1(Γ)[1/2]-module ⊕γ∈ΓA1[1/2](Γ) · dγ. It
is easy to check that ΩΓ represents the above functor. �

Remark 5.12. If Γ is a finitely generated group or monoid, then
A1(Γ)[1/2] is a finitely generated algebra over Z[1/2] and ΩΓ is a
finitely generated A1(Γ)[1/2]-module. Indeed, let S = {α1, · · · , αn}
be a set of generators of Γ. We may assume that α−1

i is also an el-
ement of S for each 1 ≤ i ≤ n if Γ is a group. Then A1(Γ)[1/2] is
generated by {χΓ(α1), . . . , χΓ(αn)} over Z[1/2] and ΩΓ is generated by
{d(α1), . . . , d(αn)} over A1(Γ)[1/2].

Definition 5.13. We define the scheme Ch2(Γ)u over A1(Γ)[1/2] by

Ch2(Γ)u := ProjS(ΩΓ),

where S(ΩΓ) is the the symmetric algebra of ΩΓ over A1(Γ)[1/2].

Example 5.14. Let Υ1 = 〈α0〉 be the free monoid of rank 1. The
A1(Υ1)[1/2]-module ΩΥ1 is isomorphic to A1(Υ1)[1/2]. Indeed, the
A1(Υ1)[1/2]-module homomorphism

A1(Υ1)[1/2] → ΩΥ1

1 7→ dα0

gives an isomorphism. In particular, Ch2(Υ1)u ∼= Rep1(Υ1)[1/2].
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Let ψ : X → Rep1(Γ)[1/2] be a Z[1/2]-morphism. Let us regard ΩΓ

as a quasi-coherent sheaf on Rep1(Γ)[1/2]. There exists a one-to-one
correspondence

Hom Rep1(Γ)[1/2] (X,Ch2(Γ)u) ∼=
{ψ∗(ΩΓ) ։ L → 0 | L is a line bundle on X}/ ∼ .

Here we say that ψ∗(ΩΓ)
f1
։ L1 and ψ∗(ΩΓ)

f2
։ L2 are equivalent if

there exists an isomorphism g : L1

∼=→ L2 such that g ◦ f1 = f2.

The group scheme PGL2[1/2] := PGL2 ⊗Z Z[1/2] over Z[1/2] acts
on Rep2(Γ)u by ρ 7→ P−1ρP . We define the morphism λ : Rep2(Γ)u →
Rep1(Γ)[1/2] by ρ 7→ r = tr(ρ)/2. For α ∈ Γ, we define the open
subscheme Rep2(Γ)u,α of Rep2(Γ)u by

Rep2(Γ)u,α := {ρ ∈ Rep2(Γ)u | 〈I2, ρ(α)〉 generates a unipotent mold }.
Then Rep2(Γ)u,α is a PGL2[1/2]-invariant open subscheme of Rep2(Γ)u.
The derivation aα : Γ → Γ(Rep2(Γ)u,α,ORep2(Γ)u,α) in Remark 5.7 in-
duces the A1(Γ)[1/2]-module homomorphism λ∗(ΩΓ) → ORep2(Γ)u,α ,
and hence we can define the morphism πα : Rep2(Γ)u,α → Ch2(Γ)u
over Rep1(Γ)[1/2] associated to λ∗(ΩΓ) ։ ORep2(Γ)u,α . Gluing the mor-
phisms {πα}α∈Γ, we have the morphism πΓ,u : Rep2(Γ)u → Ch2(Γ)u
over Rep1(Γ)[1/2].

For α ∈ Γ, we define the open subscheme Ch2(Γ)u,α of Ch2(Γ)u by
Ch2(Γ)u,α := D(dα) = {dα 6= 0}. From the definition of πΓ,u, we see
that π−1

Γ,u(Ch2(Γ)u,α) = Rep2(Γ)u,α. For a Z[1/2]-morphism ψ : X →
Rep1(Γ)[1/2], there exists a one-to-one correspondence

Hom Rep1(Γ)[1/2] (X,Ch2(Γ)u,α) ∼={
ψ∗(ΩΓ) ։ L → 0

L is a line bundle on X and ψ∗(dα) is
nowhere vanishing as a section of L

}/
∼ .

Since L is generated by ψ∗(dα), L is isomorphic to OX . Let r : Γ →
Γ(X,OX) be the character associated to ψ : X → Rep1(Γ)[1/2]. Re-
garding ψ∗(dα) as 1 of OX , we have the following:

Hom Rep1(Γ)[1/2] (X,Ch2(Γ)u,α) ∼={
d

d : Γ → Γ(X,OX) is a derivation with respect to r
such that d(α) = 1

}
.

Remark that πΓ,u : Rep2(Γ)u → Ch2(Γ)u and πα : Rep2(Γ)u,α →
Ch2(Γ)u,α are PGL2[1/2]-equivariant morphisms, where the actions of
PGL2[1/2] on Ch2(Γ)u and Ch2(Γ)u,α are trivial.
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Definition 5.15. For the free monoid Υ1 = 〈α0〉 of rank 1, we say
that the morphism πΥ1,u : Rep2(Υ1)u → Ch2(Υ1)u is the prototype in
the unipotent mold case. Remark that Rep2(Υ1)u = Rep2(Υ1)u,α0 and
that Ch2(Υ1)u = Ch2(Υ1)u,α0.

By Theorem 4.17, π : Rep2(Υ1)rk2 → Ch2(Υ1) is a universal geomet-
ric quotient by PGL2. Taking the base change of π by Spec Z[1/2] →
Spec Z, we have Rep2(Υ1)rk2[1/2] → Ch2(Υ1)[1/2]. Here we denote
X ⊗Z Z[1/2] by X [1/2] for a Z-scheme X . Let Z be the closed sub-
scheme of Ch2(Υ1)[1/2] defined by m(σΥ(α0)) = 0. Since Ch2(Υ1) =
SpecZ[T,D], the affine ring of Z is isomorphic to Z[1/2, T ]. Note that
r(·) = tr(σΥ1(·))/2 gives a character of Υ1 on Z and that r(α0) = T/2.
Hence Z is isomorphic to Ch2(Υ1)u ∼= Rep1(Υ1)[1/2]. Taking the base
change of Rep2(Υ1)rk2[1/2] → Ch2(Υ1)[1/2] by Z →֒ Ch2(Υ1)[1/2], we
have πΥ1,u : Rep2(Υ1)u → Ch2(Υ1)u.
Here we introduce the following lemma without proof:

Lemma 5.16. Let X → Y be a (universal) geometric quotient by G
over S. For S ′ → S, put XS′ := X ×S S

′, YS′ := Y ×S S
′, and

GS′ := G ×S S
′. Then XS′ → YS′ is a (resp. universal) geometric

quotient by GS′ over S ′.

By the lemma above, we have:

Theorem 5.17. The prototype πΥ1,u : Rep2(Υ1)u → Ch2(Υ1)u is a
universal geometric quotient by PGL2[1/2].

Let Γ be a group or a monoid. For α ∈ Γ, we define the monoid
homomorphism φ : Υ1 = 〈α0〉 → Γ by α0 7→ α. By restricting repre-
sentations and derivations of Γ to those of Υ1 through φ, we can obtain
the following commutative diagram:

Rep2(Γ)u,α → Ch2(Γ)u,α
↓ ↓

Rep2(Υ1)u → Ch2(Υ1)u.

Under this situation, we have the following lemma.

Lemma 5.18. The above diagram gives a fibre product. In particular,
the morphism Rep2(Γ)u,α → Ch2(Γ)u,α is obtained by base change of
the prototype.

Proof. We claim that Rep2(Γ)u,α → Rep2(Υ1)u×Ch2(Υ1)uCh2(Γ)u,α is
an isomorphism. Let X be a Z[1/2]-scheme. Assume that an X-valued
point ρ ∈ Rep2(Γ)u,α is sent to (ρ′, σ) ∈ Rep2(Υ1)u×Ch2(Υ1)u Ch2(Γ)u,α.
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We can regard the X-valued point σ ∈ Ch2(Γ)u,α as a pair (r, d) such
that d : Γ → Γ(X,OX) is a derivation with respect to a character
r : Γ → Γ(X,OX) and d(α) = 1. Since η(γ) = d(γ)η(α),

ρ(γ) = r(γ)I2 + d(γ)η(ρ′(α0))(6)

for each γ ∈ Γ. Hence ρ is uniquely determined by (ρ′, σ).
For an X-valued point (ρ′, σ) ∈ Rep2(Υ1)u ×Ch2(Υ1)u Ch2(Γ)u,α, we

define the map ρ : Γ → M2(Γ(X,OX)) by (6). From Lemma 5.8, we see
that ρ is an X-valued point of Rep2(Γ)u,α. Then the X-valued point ρ
is sent to (ρ′, σ) ∈ Rep2(Υ1)u×Ch2(Υ1)u Ch2(Γ)u,α. By these discussion,
the diagram gives a fibre product. �

Theorem 5.19. The morphism πΓ,u : Rep2(Γ)u → Ch2(Γ)u is a uni-
versal geometric quotient by PGL2[1/2] for a group or a monoid Γ.

Proof. For each α ∈ Γ, πα : Rep2(Γ)u,α → Ch2(Γ)u,α is a universal
geometric quotient by PGL2[1/2] because πα is obtained by base change
of the prototype. Hence this implies the statement. �

Remark 5.20. The morphism πΓ,u : Rep2(Γ)u → Ch2(Γ)u is smooth
and surjective. Indeed, the prototype πΥ1,u : Rep2(Υ1)u → Ch2(Υ1)u
is smooth and surjective because it is obtained by base change of
π : Rep2(Υ1)rk2 → Ch2(Υ1) and π is smooth and surjective by Propo-
sition 4.9.

Remark 5.21. For each point x ∈ Ch2(Γ)u, there exists a local sec-
tion sx : Vx → Rep2(Γ)u on a neighbourhood Vx of x such that
πΓ,u ◦ sx = idVx . Indeed, take α ∈ Γ such that x ∈ Ch2(Γ)u,α.
The prototype Rep2(Υ1)u → Ch2(Υ1)u has a section s since it is ob-
tained by base change of Rep2(Υ1)rk2 → Ch2(Υ1), which has a section
(it has been defined just before Proposition 4.12). By Lemma 5.18,
πα : Rep2(Γ)u,α → Ch2(Γ)u,α has a section sΓ,α. Hence we can take
Ch2(Γ)u,α as a neighbourhood Vx of x.

Lemma 5.22. Let ρ1, ρ2 be representations with unipotent mold for a
group (or a monoid) Γ on a scheme X over Z[1/2]. Let fi : X →
Rep2(Γ)u be the morphism associated to ρi for i = 1, 2. If πΓ,u ◦ f1 =
πΓ,u ◦ f2 : X → Ch2(Γ)u, then for each x ∈ X there exists Px ∈
GL2(Γ(Vx,OX)) on a neighbourhood Vx of x such that P−1

x ρ1Px = ρ2
on Vx.

Proof. For x ∈ X , take α ∈ Γ such that (πΓ,u ◦ f1)(x) = (πΓ,u ◦
f2)(x) ∈ Ch2(Γ)u,α. We may assume that fi : X → Rep2(Γ)u,α for i =
1, 2 from the beginning. By Remark 5.21, πα : Rep2(Γ)u,α → Ch2(Γ)u,α
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has a section sΓ,α. Let ρ3 be the representations with unipotent mold
on X associated to sΓ,α ◦ πΓ,u ◦ f1 = sΓ,α ◦ πΓ,u ◦ f2. Then ρi(γ) =
r(γ)I2 + d(γ)η(ρi(α)) for each γ ∈ Γ and i = 1, 2, 3, where d is the
derivation with respect to the character r associated to πΓ,u◦f1 = πΓ,u◦
f2 such that d(α) = 1. Note that ρ3(α) =

(
0 −D
1 T

)
and that T =

tr(ρ1(α)) = tr(ρ2(α)) = tr(ρ3(α)) and D = T 2/4. There exist Q1, Q2 ∈
GL2(Γ(Vx,OX)) on a neighbourhood Vx of x such that Q−1

1 ρ1(α)Q1 =
ρ3(α) and Q−1

2 ρ2(α)Q2 = ρ3(α) by Lemma 4.8. Since Q−1
1 ρ1(γ)Q1 =

ρ3(γ) and Q
−1
2 ρ2(γ)Q2 = ρ3(γ) for each γ ∈ Γ, (Q1Q

−1
2 )−1ρ1(Q1Q

−1
2 ) =

ρ2 on Vx. This completes the proof. �

Let us define EqU2(Γ) as the sheafification of the following contravari-
ant functor with respect to Zariski topology:

(Sch/Z[1/2])op → (Sets)
X 7→ {ρ | rep. with unipotent mold for Γ on X}/ ∼ .

By a generalized representation with unipotent mold for Γ on a scheme
X , we understand pairs {(Ui, ρi)}i∈I of an open set Ui and a represen-
tation with unipotent mold ρi : Γ → M2(Γ(Ui,OX)) satisfying the
following two conditions:

(i) ∪i∈IUi = X ,
(ii) for each x ∈ Ui ∩ Uj , there exists Px ∈ GL2(Γ(Vx,OX)) on a

neighbourhood Vx ⊆ Ui ∩ Uj of x such that P−1
x ρiPx = ρj on

Vx.

Generalized representations with unipotent mold {(Ui, ρi)}i∈I and
{(Vj, σj)}j∈J are called equivalent if {(Ui, ρi)}i∈I ∪ {(Vj, σj)}j∈J is a
generalized representation with unipotent mold again. We easily see
that Eq U2(Γ)(X) is the set of equivalence classes of generalized repre-
sentations with unipotent mold for Γ on a scheme X .

Theorem 5.23. The scheme Ch2(Γ)u is a fine moduli scheme associ-
ated to the functor Eq U2(Γ) for a group or a monoid Γ:

Eq U2(Γ) : (Sch/Z[1/2])op → (Sets)

X 7→
{

gen. rep. with unipotent
mold for Γ on X

}/
∼ .

In other words, Ch2(Γ)u represents the functor Eq U2(Γ). The moduli
Ch2(Γ)u is separated over Z[1/2]; if Γ is a finitely generated group or
monoid, then Ch2(Γ)u is of finite type over Z[1/2].

Proof. Since πΓ,u : Rep2(Γ)u → Ch2(Γ)u is a PGL2[1/2]-equivariant
morphism, we can define a canonical morphism EqU2(Γ) → hCh2(Γ)u :=
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Hom(−,Ch2(Γ)u). Let us define a morphism hCh2(Γ)u → Eq U2(Γ).
Let g ∈ hCh2(Γ)u(X) with a Z[1/2]-scheme X . For each x ∈ X ,
take αx ∈ Γ such that g(x) ∈ Ch2(Γ)u,αx . By using the section
sΓ,αx : Ch2(Γ)u,αx → Rep2(Γ)u,αx in Remark 5.21, we can define a
representation with unipotent mold ρx on a neighbourhood Ux of x.
By Lemma 5.22, we see that {(Ux, ρx)}x∈X ∈ Eq U2(Γ)(X) and that
the morphism hCh2(Γ)u → EqU2(Γ) is well-defined. It is easy to see that
Ch2(Γ)u represents the functor Eq U2(Γ).
Since Ch2(Γ)u is defined as ProjS(ΩΓ), it is separated over Z[1/2].

If Γ is finitely generated, then Ch2(Γ)u is of finite type over Z[1/2] by
Remark 5.12. �

Remark 5.24. Let A be an associative algebra over a commutative
ring R over Z[1/2]. For a 2-dimensional representation ρ of A on an
R-scheme X , ρ is called a representation with unipotent mold if the
subalgebra ρ(A) of M2(OX) generates a unipotent mold on X . In
a similar way as group or monoid cases, we can define generalized
representations with unipotent mold for A on an R-scheme X . The
contravariant functor Eq U2(A) from the category of R-schemes to the
category of sets is defined as

Eq U2(A) : (Sch/R)op → (Sets)

X 7→
{

gen. rep. with unipotent
mold for A on X

}/
∼ .

Then we can construct the fine moduli Ch2(A)u associated to Eq U2(A)
in the same way as Theorem 5.23 (for details, see Remark 5.25). The
moduli Ch2(A)u is separated over R. If A is a finitely generated algebra
over R, then Ch2(A)u is of finite type over R.

Remark 5.25. For an associative algebra A over a commutative ring R
over Z[1/2], we can construct Ch2(A)u in the following way. We define
the contravariant functor Rep1(A) from the category of R-schemes to
the category of sets by X 7→ {ϕ : A → Γ(X,OX) | R-algebra hom. }.
The functor Rep1(A) is representable by an affine scheme, and let us
denote its coordinate ring by A1(A). Let d : A → A1(A) be the uni-
versal R-algebra homomorphism. For an A1(A)-module M , put

Der(A,M) :=

{
δ : A→M

δ : R-linear and for a, b ∈ A,
δ(ab) = d(a)δ(b) + δ(a)d(b)

}
.

The functor Der(A,−) : (A1(A)-Mod) → (A1(A)-Mod) defined by
M 7→ Der(A,M) is representable by some A1(A)-module ΩA/R. Let
Rep2(A) be the representation variety of degree 2 for A over R, that
is, the affine scheme representing the contravariant functor from the
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category of R-schemes to the category of sets which is defined by
X 7→ {2-dim. rep. of A on X}. Let Rep2(A)u be the subscheme of
Rep2(A) consisting of representations with unipotent mold, and σ :
A → M2(Γ(Rep2(A)u,ORep2(A)u)) the universal representation with
unipotent mold. Then tr(σ(·))/2 : A → Γ(Rep2(A)u,ORep2(A)u) is
an R-algebra homomorphism, and it defines a morphism Rep2(A)u →
Rep1(A). In a similar way as group or monoid cases, we can define a
Rep1(A)-morphism π : Rep2(A)u → Ch2(A)u := ProjS(ΩA/R), where
S(ΩA/R) is the symmetric algebra of ΩA/R over A1(A). We can ver-
ify that π is a universal geometric quotient by PGL2 ⊗Z R and that
Ch2(A)u represents Eq U2(A).

Remark 5.26. We have introduced the notion of generalized represen-
tations with unipotent mold for describing the moduli functors EqU2(Γ)
and EqU2(A). However, the moduli functors can also be described as
EqU ′

2(Γ) and EqU ′
2(A) by using the notion of representations generating

sheaves of algebras which define unipotent molds. More precisely, see
§8.

6. Unipotent mold over F2

In this section, all schemes are over Spec F2 and all commutative
rings are over F2. Recall that a rank 2 mold A ⊆ M2(OX) over an
F2-scheme X is called unipotent over F2 if tr(s) = 0 for each open
subset U ⊆ X and for each s ∈ A(U). We construct the moduli of
representations with unipotent mold over F2.

Definition 6.1. Let X be an F2-scheme. Let A ⊆ M2(OX) be a
unipotent mold over F2 on X . Let U ⊆ X be an open subset of X .
Suppose that Z ∈ A(U) satisfies A|U = OU · I2⊕OU ·Z. For each Y ∈
A(U), we set Y = aZ(Y )I2 + bZ(Y )Z. We call aZ(Y ), bZ(Y ) ∈ OX(U)
the (a, b)-coefficients of Y with respect to Z.

Lemma 6.2. Let U and Z be as in Definition 6.1. Assume that ρ :
Γ → M2(Γ(X,OX)) is a representation with unipotent mold A on X
for a group or a monoid Γ. For each γ ∈ Γ, let us denote aZ(ρ(γ)) and
bZ(ρ(γ)) by a(γ) and b(γ), respectively. Then for γ, δ ∈ Γ, we have

a(e) = 1,

b(e) = 0,

a(γδ) = a(γ)a(δ) + b(γ)b(δ) detZ,

b(γδ) = a(γ)b(δ) + b(γ)a(δ).



36

Proof. Since ρ(e) = I2 = 1 · I2 + 0 · Z, a(e) = 1 and b(e) = 0. By
the Cayley-Hamilton theorem, Z2 − tr(Z)Z + det(Z)I2 = 0. Hence we
have Z2 = − det(Z)I2 = det(Z)I2 by tr(Z) = 0. We see that

ρ(γδ) = ρ(γ)ρ(δ)

= (a(γ)I2 + b(γ)Z)(a(δ)I2 + b(δ)Z)

= {a(γ)a(δ) + b(γ)b(δ) det(Z)}I2 + {a(γ)b(δ) + b(γ)a(δ)}Z.
Comparing the coefficients of ρ(γδ) = a(γδ)I2 + b(γδ)Z, we obtain
a(γδ) = a(γ)a(δ) + b(γ)b(δ) detZ and b(γδ) = a(γ)b(δ) + b(γ)a(δ). �

Let R be an algebra over F2. Let ρ : Γ → M2(R) be a representation
with unipotent mold A over F2 such that A = R ·I2⊕R ·ρ(α). For each
γ ∈ Γ, we denote aρ(α)(γ), bρ(α)(γ) by a(γ), b(γ), respectively. Then
a(·) and b(·) satisfy the formulas in Lemma 6.2, where Z = ρ(α).
Furthermore, a(α) = 0 and b(α) = 1. Conversely, a character and
(a, b)-coefficients give a representation with unipotent mold over F2:

Lemma 6.3. Let d : Γ → R be a character. Let A = R · I2 ⊕ R ·
Z ⊆ M2(R) be a unipotent mold over F2 such that tr(Z) = 0 and
det(Z) = d(α) for some α ∈ Γ. Assume that a : Γ → R, b : Γ → R,
and α ∈ Γ satisfy the equalities

a(γδ) = a(γ)a(δ) + b(γ)b(δ)d(α),

b(γδ) = a(γ)b(δ) + b(γ)a(δ),

d(γ) = a(γ)2 + b(γ)2d(α)

for each γ, δ ∈ Γ. Furthermore, assume that a(α) = 0 and that b(α) =
1. Then the map

ρ : Γ → M2(R)
γ 7→ a(γ)I2 + b(γ)Z

is a representation with unipotent mold A over F2 such that det(ρ(γ)) =
d(γ) for each γ ∈ Γ.

Proof. First we show that a(e) = 1 and b(e) = 0. By the assumption,

b(e) = b(e · e) = a(e)b(e) + b(e)a(e)

= 2a(e)b(e) = 0

and

a(e) = a(e · e) = a(e)a(e) + b(e)b(e)d(α)

= d(e) = 1.

Hence ρ(e) = a(e)I2 + b(e)Z = I2.
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Next we show that ρ(γδ) = ρ(γ)ρ(δ) for each γ, δ ∈ Γ. Since Z2 =
det(Z)I2 = d(α)I2,

ρ(γ)ρ(δ) = (a(γ)I2 + b(γ)Z)(a(δ)I2 + b(δ)Z)

= {a(γ)a(δ) + b(γ)b(δ)d(α)}I2 + {a(γ)b(δ) + b(γ)a(δ)}Z
= a(γδ)I2 + b(γδ)Z

= ρ(γδ).

By Lemma 4.10, det ρ(γ) = det(a(γ)I2 + b(γ)Z) = a(γ)2 det I2 +
b(γ)2 detZ = a(γ)2 + b(γ)2d(α) = d(γ).
Finally, ρ(α) = 0 · I2 + 1 · Z = Z implies that ρ(Γ) generates A.

Hence ρ is a representation with unipotent mold A over F2. �

Definition 6.4. Let d : Γ → R be a character in an F2-algebra R.
For a : Γ → R, b : Γ → R and α ∈ Γ, we say that a and b are
(a, b)-coefficients with respect to (d, α) if

a(e) = 1, b(e) = 0, a(α) = 0, b(α) = 1,

a(γδ) = a(γ)a(δ) + b(γ)b(δ)d(α),

b(γδ) = a(γ)b(δ) + b(γ)a(δ), and

d(γ) = a(γ)2 + b(γ)2d(α)

hold for each γ, δ ∈ Γ.

Definition 6.5. Set Rep2(Γ)F2 := Rep2(Γ)⊗Z F2 and Rep2(Γ)rk2/F2 :=
Rep2(Γ)rk2 ⊗Z F2. Let us define Rep2(Γ)u/F2 as a closed subscheme of
Rep2(Γ)rk2/F2

by

Rep2(Γ)u/F2
:= {ρ ∈ Rep2(Γ)rk2/F2

| tr(ρ(γ)) = 0 for each γ ∈ Γ }.

For γ ∈ Γ, we define Rep2(Γ)u/F2,γ as an open subscheme of Rep2(Γ)u/F2

by

Rep2(Γ)u/F2,γ :=

{
ρ ∈ Rep2(Γ)u/F2

I2 and ρ(γ) generate
a unipotent mold over F2

}
.

Note that

Rep2(Γ)u/F2
=

⋃

γ∈Γ

Rep2(Γ)u/F2,γ.

Definition 6.6. Set Rep1(Γ)F2 := Rep1(Γ)⊗Z F2. Let A1(Γ)F2 be the
coordinate ring of Rep1(Γ)F2, and let d : Γ → A1(Γ)F2 be the universal
character of Γ. For α ∈ Γ, we define the A1(Γ)F2-algebra A2(Γ)

Ch
u/F2,α

by A1(Γ)F2[a(γ), b(γ) | γ ∈ Γ]/I, where a(γ), b(γ) are indeterminates
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for each γ ∈ Γ and I is generated by

a(e)− 1, b(e), a(α), b(α)− 1

a(γδ)− a(γ)a(δ)− b(γ)b(δ)d(α)

b(γδ)− a(γ)b(δ)− b(γ)a(δ)

a(γ)2 − b(γ)2d(α)− d(γ)

for all γ, δ ∈ Γ. We set Ch2(Γ)u/F2,α := SpecA2(Γ)
Ch
u/F2,α

.

For α ∈ Γ, Ch2(Γ)u/F2,α is a Rep1(Γ)F2-scheme. For a Rep1(Γ)F2-
scheme X , denote by χ : Γ → Γ(X,OX) the character of Γ associated
to X → Rep1(Γ)F2 . There exists a 1-1 correspondence

HomRep1(Γ)F2
(X,Ch2(Γ)u/F2,α)

∼=



(a, b)

a, b : Γ → Γ(X,OX)
are (a, b)-coefficients
with respect to (χ, α)



 .

Let σΓ,u/F2
and σΓ,u/F2,α be the universal representation with unipo-

tent mold over F2 on Rep2(Γ)u/F2
and Rep2(Γ)u/F2,α, respectively. Put

d(γ) := det(σΓ,u/F2,α(γ)) for γ ∈ Γ. By Lemma 6.2, aσΓ,u/F2,α
(α)(·) and

bσΓ,u/F2,α
(α)(·) are (a, b)-coefficients with respect to (d, α) on Rep2(Γ)u/F2,α.

Hence we have the morphism πΓ,u/F2,α : Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α

associated to aσΓ,u/F2,α
(α)(·) and bσΓ,u/F2,α

(α)(·). Note that Rep2(Γ)u/F2,α →
Rep1(Γ)F2 is given by ρ 7→ det(ρ). The group scheme PGL2 ⊗Z F2

over F2 acts on Rep2(Γ)u/F2 by ρ 7→ P−1ρP . The open subscheme
Rep2(Γ)u/F2,α of Rep2(Γ)u/F2

is PGL2 ⊗Z F2-invariant for each α ∈ Γ.
Let PGL2 ⊗Z F2 act on Ch2(Γ)u/F2,α trivially. Then we have:

Proposition 6.7. πΓ,u/F2,α : Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α is PGL2⊗Z

F2-equivariant.

Proof. Let (ρ, P ) be an X-valued point of Rep2(Γ)u/F2,α× (PGL2⊗Z

F2) for an F2-scheme X . The representations ρ and P−1ρP on X have
the same determinants. For proving that ρ and P−1ρP induce the
same X-valued point of Ch2(Γ)u/F2,α, it only suffices to show that ρ
and P−1ρP have the same (a, b)-coefficients. We may assume that X
is an affine scheme SpecR and that P ∈ GL2(R). Note that R[ρ(Γ)] =
R · I2 +R · ρ(α) ⊂ M2(R) is a unipotent mold over F2. For each γ ∈ Γ,
ρ(γ) = a(γ)I2 + b(γ)ρ(α), where a(·) and b(·) are the (a, b)-coefficients
of ρ. Multiplying the both sides by P−1 from the left and by P from
the right, we have P−1ρ(γ)P = a(γ)I2 + b(γ)P−1ρ(α)P . Hence the
(a, b)-coefficients of PρP−1 with respect to P−1ρ(α)P coincide with
the (a, b)-coefficients of ρ with respect to ρ(α). This implies that (a, b)-
coefficients are PGL2 ⊗Z F2-invariant, which completes the proof. �
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Example 6.8. Let Υ2 = 〈α1, α2〉 be the free monoid of rank 2. Let σ :=
σΥ2,u/F2,α1

denote the universal representation of Υ2 on Rep2(Υ2)u/F2,α1
.

Then we can write σ(α1) =

(
a b
c a

)
, σ(α2) =

(
d e
f d

)
, and

Rep2(Υ2)u/F2,α1
= D(b) ∪D(c) ⊂ Spec F2[a, b, c, d, e, f ]/(bf − ce).

The (a, b)-coefficients of σ(α2) with respect to σ(α1) are given by a(α2) =
bd− ae

b
, b(α2) =

e

b
on D(b), and a(α2) =

cd− af

c
, b(α2) =

f

c
on D(c).

For the universal matrix P =

(
p q
r s

)
∈ PGL2 ⊗Z F2,

P−1σ(α1)P =
1

∆

(
a∆+ brs− cpq bs2 − cq2

−br2 + cp2 a∆− brs+ cpq

)

and

P−1σ(α2)P =
1

∆

(
d∆+ ers− fpq es2 − fq2

−er2 + fp2 d∆− ers+ fpq

)
,

where ∆ = ps−qr. By direct calculation, we can verify that a(α2) and
b(α2) are PGL2 ⊗Z F2-invariant functions on Rep2(Υ2)u/F2,α1

. Hence
πΥ2,u/F2,α1 : Rep2(Υ2)u/F2,α1 → Ch2(Υ2)u/F2,α1 is PGL2⊗ZF2-equivariant.

Remark 6.9. For any group Γ and for any α, γ ∈ Γ, let us de-
fine the group homomorphism φ : Υ2 = 〈α1, α2〉 → Γ by α1 7→ α
and α2 7→ γ. Then φ induces a morphism φ∗ : Rep2(Γ)u/F2,α →
Rep2(Υ2)u/F2,α1

by ρ 7→ ρ ◦ φ. By Example 6.8, the (a, b)-coefficients
a(α2) and b(α2) are PGL2⊗ZF2-invariant functions on Rep2(Υ2)u/F2,α1

.
Let σΓ be the universal representation of Γ on Rep2(Γ)u/F2,α. Let aα(γ)
and bα(γ) denote the (a, b)-coefficients of σΓ(γ) with respect to σΓ(α).
Note that φ∗(a(α2)) = aα(γ) and φ∗(b(α2)) = bα(γ), where φ∗ de-
notes the ring homomorphism Γ(Rep2(Υ2)u/F2,α1

,ORep2(Υ2)u/F2,α1
) →

Γ(Rep2(Γ)u/F2,α,ORep2(Γ)u/F2,α
) associated with φ∗ : Rep2(Γ)u/F2,α →

Rep2(Υ2)u/F2,α1
. Since φ∗ is PGL2 ⊗Z F2-equivariant, aα(γ) and bα(γ)

are PGL2⊗Z F2-invariant functions on Rep2(Γ)u/F2,α. Hence any (a, b)-
coefficients are PGL2 ⊗Z F2-invariant and πΓ,u/F2,α : Rep2(Γ)u/F2,α →
Ch2(Γ)u/F2,α is PGL2⊗ZF2-equivariant. This is another proof of Propo-
sition 6.7.

Definition 6.10. For the free monoid Υ1 = 〈α0〉 of rank 1, we say that
the morphism πΥ1,u/F2,α0

: Rep2(Υ1)u/F2,α0
→ Ch2(Υ1)u/F2,α0

is the pro-
totype in the unipotent mold over F2 case. Remark that Rep2(Υ1)u/F2

=
Rep2(Υ1)u/F2,α0 and that Ch2(Υ1)u/F2 = Ch2(Υ1)u/F2,α0.
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The coordinate ring A2(Υ1)
Ch
u/F2,α0

of Ch2(Υ1)u/F2,α0
is isomorphic to

A1(Υ1)F2 . Indeed, a(α0) = 0 and b(α0) = 1. By induction on n, we can
verify that a(αn0 ) = 0, b(αn0 ) = d(α0)

(n−1)/2 for each positive odd integer
n and that a(αn0 ) = d(α0)

n/2, b(αn0 ) = 0 for each positive even integer
n. Hence A2(Υ1)

Ch
u/F2,α0

∼= A1(Υ1)F2 and Ch2(Υ1)u/F2,α0
∼= Rep1(Υ1)F2.

By Theorem 4.17, π : Rep2(Υ1)rk2 → Ch2(Υ1) is a universal geo-
metric quotient by PGL2. Taking the base change of π by Spec F2 →
SpecZ, we have Rep2(Υ1)rk2/F2 → Ch2(Υ1)F2, where Rep2(Υ1)rk2/F2 :=
Rep2(Υ1)rk2 ⊗Z F2 and Ch2(Υ1)F2 := Ch2(Υ1) ⊗Z F2. Let Z be the
closed subscheme of Ch2(Υ1)F2 defined by tr(σΥ1(α0)) = 0. Since
Ch2(Υ1) = Spec Z[T,D], the affine ring of Z is isomorphic to F2[D].
Hence Z is isomorphic to Ch2(Υ1)u/F2,α0

∼= Rep1(Υ1)F2. Taking the
base change of Rep2(Υ1)rk2/F2 → Ch2(Υ1)F2 by Z →֒ Ch2(Υ1)F2, we
have the prototype πΥ1,u/F2,α0 : Rep2(Υ1)u/F2,α0 → Ch2(Υ1)u/F2,α0 .
By Lemma 5.16, we have:

Theorem 6.11. The prototype πΥ1,u/F2,α0 : Rep2(Υ1)u/F2,α0 → Ch2(Υ1)u/F2,α0

is a universal geometric quotient by PGL2 ⊗Z F2.

Let Γ be a group or a monoid. For α ∈ Γ, we define the monoid
homomorphism φ : Υ1 = 〈α0〉 → Γ by α0 7→ α. By restricting repre-
sentations and (a, b)-coefficients of Γ to those of Υ1 through φ, we can
obtain the following commutative diagram:

Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α

↓ ↓
Rep2(Υ1)u/F2,α0

→ Ch2(Υ1)u/F2,α0
.

Under this situation, we have the following lemma.

Lemma 6.12. The above diagram gives a fibre product. In particular,
the morphism Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α is obtained by base change
of the prototype.

Proof. Set Z := Rep2(Υ1)u/F2,α0
×Ch2(Υ1)u/F2,α0

Ch2(Γ)u/F2,α. We

claim that Rep2(Γ)u/F2,α → Z is an isomorphism. Let X be an F2-
scheme. Assume that an X-valued point ρ ∈ Rep2(Γ)u/F2,α is sent to
(ρ′, σ) ∈ Z. We can regard the X-valued point σ ∈ Ch2(Γ)u/F2,α as a
pair (d, (a, b)) such that a, b : Γ → Γ(X,OX) are (a, b)-coefficients with
respect to (d, α), where d(·) := det(ρ(·)) : Γ → Γ(X,OX). Since

ρ(γ) = a(γ)I2 + b(γ)ρ′(α0)(7)

for each γ ∈ Γ, ρ is uniquely determined by (ρ′, σ).
For an X-valued point (ρ′, σ) ∈ Z, we define the map ρ : Γ →

M2(Γ(X,OX)) by (7). From Lemma 6.3, we see that ρ is an X-valued
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point of Rep2(Γ)u/F2,α. Then theX-valued point ρ is sent to (ρ′, σ) ∈ Z.
By these discussion, we see that Rep2(Γ)u/F2,α → Z is an isomorphism,
and hence that the diagram gives a fibre product. �

Theorem 6.13. The morphism πΓ,u/F2,α : Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α

is a universal geometric quotient by PGL2 ⊗Z F2 for each α ∈ Γ.

Proof. The statement follows from that πΓ,u/F2,α is obtained by base
change of the prototype. �

Let α, β ∈ Γ. Let Uα,β ⊆ Ch2(Γ)u/F2,α be the open subscheme de-
fined by {b(β) 6= 0}. The inverse image π−1

Γ,u/F2,α
(Uα,β) by πΓ,u/F2,α :

Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α coincides with Rep2(Γ)u/F2,α∩Rep2(Γ)u/F2,β.

Then π−1
Γ,u/F2,α

(Uα,β) = Rep2(Γ)u/F2,α ∩ Rep2(Γ)u/F2,β → Uα,β is a uni-

versal geometric quotient by PGL2 ⊗Z F2. Hence Uα,β ∼= Uβ,α, and
let us denote the canonical isomorphism by ϕα,β : Uα,β → Uβ,α. Note
that ϕβ,α = ϕ−1

α,β. For α, β, γ ∈ Γ, ϕα,β(Uα,β ∩ Uα,γ) = Uβ,α ∩ Uβ,γ and
ϕα,γ = ϕβ,γ◦ϕα,β on Uα,β∩Uα,γ . Gluing the schemes {Ch2(Γ)u/F2,α}α∈Γ,
we obtain a scheme, which we call Ch2(Γ)u/F2 (for example, see [6,
Chap. II, Ex. 2.12]). Gluing {πΓ,u/F2,α}α∈Γ, we also obtain πΓ,u/F2

:
Rep2(Γ)u/F2

→ Ch2(Γ)u/F2
.

Corollary 6.14. The morphism πΓ,u/F2 : Rep2(Γ)u/F2 → Ch2(Γ)u/F2 is
a universal geometric quotient by PGL2 ⊗Z F2.

Remark 6.15. By Definition 6.6, Ch2(Γ)u/F2,α is a Rep1(Γ)F2-scheme
for each α ∈ Γ. Let dα : Ch2(Γ)u/F2,α → Rep1(Γ)F2 be the canonical
morphism for each α ∈ Γ. We can obtain a morphism d : Ch2(Γ)u/F2

→
Rep1(Γ)F2 by gluing the canonical morphisms {dα}α∈Γ. Hence Ch2(Γ)u/F2

is also a Rep1(Γ)F2-scheme. Let us denote by det : Rep2(Γ)u/F2 →
Rep1(Γ)F2 the morphism corresponding to the character det(σΓ,u/F2

(·))).
Then d ◦ πΓ,u/F2

= det.

The open subscheme Uα,β ⊆ Ch2(Γ)u/F2,α is affine and its coordi-
nate ring is isomorphic to the localization A2(Γ)

Ch
u/F2,α

[bα(β)
−1] of the

coordinate ring A2(Γ)
Ch
u/F2,α

of Ch2(Γ)u/F2,α by bα(β)
−1. Here we denote

by aα, bα the (a, b)-coefficients of the universal representations σΓ,u/F2,α

with respect to (det(σΓ,u/F2,α), α). Let ϕ∗
α,β : A2(Γ)

Ch
u/F2,β

[bβ(α)
−1] →

A2(Γ)
Ch
u/F2,α

[bα(β)
−1] denote by the ring isomorphism associated to ϕα,β :

Uα,β → Uβ,α. Then ϕ
∗
α,β(aβ(γ)) = aα(γ)+aβ(α)bα(γ) and ϕ

∗
α,β(bβ(γ)) =

bα(γ)bβ(α) for each γ ∈ Γ. Note that bβ(α) = bα(β)
−1 and aβ(α) =

−aα(β)bα(β)−1 on Uα,β ∼= Uβ,α. Since A2(Γ)
Ch
u/F2,α

⊗F2 A2(Γ)
Ch
u/F2,β

→
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A2(Γ)
Ch
u/F2,α

[bα(β)
−1] is a surjective ring homomorphism, the diagonal

morphism Uα,β
∆→ Ch2(Γ)u/F2,α ×F2 Ch2(Γ)u/F2,β is a closed immersion.

Hence we have:

Proposition 6.16. For a group or a monoid Γ, Ch2(Γ)u/F2
is separated

over F2.

Remark 6.17. The morphism πΓ,u/F2
: Rep2(Γ)u/F2

→ Ch2(Γ)u/F2

is smooth and surjective for each group or monoid Γ. Indeed, the
prototype πΥ1,u/F2,α0 : Rep2(Υ1)u/F2,α0 → Ch2(Υ1)u/F2,α0 is smooth and
surjective because it is obtained by base change of π : Rep2(Υ1)rk2 →
Ch2(Υ1) and π is smooth and surjective by Proposition 4.9. Hence
Rep2(Γ)u/F2,α = π−1

Γ,u/F2
(Ch2(Γ)u/F2,α) → Ch2(Γ)u/F2,α is smooth and

surjective for each α ∈ Γ. Therefore, so is πΓ,u/F2 .

Remark 6.18. For each point x ∈ Ch2(Γ)u/F2
, there exists a local

section sx : Vx → Rep2(Γ)u/F2 on a neighbourhood Vx of x such that
πΓ,u/F2 ◦sx = idVx . Indeed, take α ∈ Γ such that x ∈ Ch2(Γ)u/F2,α. The
prototype Rep2(Υ1)u/F2,α0

→ Ch2(Υ1)u/F2,α0
has a section s since it is

obtained by base change of Rep2(Υ1)rk2 → Ch2(Υ1), which has a sec-
tion (it has been defined just before Proposition 4.12). By Lemma 6.12,
we see that Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α has a section sΓ,α. Hence we
can take Ch2(Γ)u/F2,α as a neighbourhood Vx of x.

Lemma 6.19. Let ρ1, ρ2 be representations with unipotent mold over
F2 for a group (or a monoid) Γ on a scheme X over F2. Let fi :
X → Rep2(Γ)u/F2

be the morphism associated to ρi for i = 1, 2. If
πΓ,u/F2

◦ f1 = πΓ,u/F2
◦ f2 : X → Ch2(Γ)u/F2

, then for each x ∈ X
there exists Px ∈ GL2(Γ(Vx,OX)) on a neighbourhood Vx of x such that
P−1
x ρ1Px = ρ2 on Vx.

Proof. For x ∈ X , take α ∈ Γ such that (πΓ,u/F2
◦ f1)(x) = (πΓ,u/F2

◦
f2)(x) ∈ Ch2(Γ)u/F2,α. We may assume that fi : X → Rep2(Γ)u/F2,α for
i = 1, 2 from the beginning. By Remark 6.18, πΓ,u/F2,α : Rep2(Γ)u/F2,α →
Ch2(Γ)u/F2,α has a section sΓ,α. Let ρ3 be the representations with
unipotent mold over F2 on X associated to sΓ,α ◦ πΓ,u/F2

◦ f1 = sΓ,α ◦
πΓ,u/F2 ◦ f2. Then ρi(γ) = a(γ)I2 + b(γ)ρi(α) for each γ ∈ Γ and
i = 1, 2, 3, where (a, b) is the (a, b)-coefficients with respect to (d, α)
and d(·) := det(ρ1(·)) = det(ρ2(·)) = det(ρ3(·)).
Note that ρ3(α) =

(
0 −D
1 0

)
and that D = d(α). There ex-

ist Q1, Q2 ∈ GL2(Γ(Vx,OX)) on a neighbourhood Vx of x such that
Q−1

1 ρ1(α)Q1 = ρ3(α) and Q−1
2 ρ2(α)Q2 = ρ3(α) by Lemma 4.8. Then



43

Q−1
1 ρ1(γ)Q1 = ρ3(γ) and Q−1

2 ρ2(γ)Q2 = ρ3(γ) for each γ ∈ Γ, and
hence (Q1Q

−1
2 )−1ρ1(Q1Q

−1
2 ) = ρ2 on Vx. This completes the proof. �

Let us define Eq U2(Γ)F2 as the sheafification of the following con-
travariant functor with respect to Zariski topology:

(Sch/F2)
op → (Sets)

X 7→
{
ρ

rep. with unip. mold
over F2 for Γ on X

}/
∼ .

By a generalized representation with unipotent mold over F2 for Γ
on an F2-scheme X , we understand pairs {(Ui, ρi)}i∈I of an open set
Ui and a representation ρi : Γ → M2(Γ(Ui,OX)) with unipotent mold
over F2 satisfying the following two conditions:

(i) ∪i∈IUi = X ,
(ii) for each x ∈ Ui ∩ Uj , there exists Px ∈ GL2(Γ(Vx,OX)) on a

neighbourhood Vx ⊆ Ui ∩ Uj of x such that P−1
x ρiPx = ρj on

Vx.

Generalized representations {(Ui, ρi)}i∈I and {(Vj, σj)}j∈J with unipo-
tent mold over F2 are called equivalent if {(Ui, ρi)}i∈I∪{(Vj, σj)}j∈J is a
generalized representation with unipotent mold over F2 again. We eas-
ily see that EqU2(Γ)F2(X) is the set of equivalence classes of generalized
representations with unipotent mold over F2 for Γ on an F2-scheme X .

Theorem 6.20. The scheme Ch2(Γ)u/F2
is a fine moduli scheme asso-

ciated to the functor Eq U2(Γ)F2 for a group or a monoid Γ:

Eq U2(Γ)F2 : (Sch/F2)
op → (Sets)

X 7→
{

gen. rep. with unipotent
mold over F2 for Γ on X

}/
∼ .

In other words, Ch2(Γ)u/F2 represents the functor Eq U2(Γ)F2. The
moduli Ch2(Γ)u/F2

is separated over F2; if Γ is a finitely generated group
or monoid, then Ch2(Γ)u/F2

is of finite type over F2.

Proof. Since πΓ,u/F2 : Rep2(Γ)u/F2 → Ch2(Γ)u/F2 is a PGL2 ⊗Z F2-
equivariant morphism, we can define a canonical morphism EqU2(Γ)F2 →
hCh2(Γ)u/F2

:= Hom(−,Ch2(Γ)u/F2
). We define a morphism hCh2(Γ)u/F2

→
Eq U2(Γ)F2 as follows. Let g ∈ hCh2(Γ)u/F2

(X) with an F2-scheme X .

For each x ∈ X , take αx ∈ Γ such that g(x) ∈ Ch2(Γ)u/F2,αx . By us-
ing the section sΓ,αx : Ch2(Γ)u/F2,αx → Rep2(Γ)u/F2,αx in Remark 6.18,
we can define a representation ρx with unipotent mold over F2 on a
neighbourhood Ux of x. By Lemma 6.19, we see that {(Ux, ρx)}x∈X ∈
Eq U2(Γ)F2(X) and that the morphism hCh2(Γ)u/F2

→ Eq U2(Γ)F2 is
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well-defined. It is easy to see that Ch2(Γ)u/F2
represents the functor

Eq U2(Γ)F2.
By Proposition 6.16, Ch2(Γ)u/F2 is separated over F2. If Γ is finitely

generated, then we can verify that A2(Γ)
Ch
u/F2,α

is a finitely generated

algebra over F2 in a similar way as Remark 5.12. Let S = {α1, . . . , αn}
be a set of generators of Γ. Then Ch2(Γ)u/F2 is covered by finitely many
affine open subschemes Ch2(Γ)u/F2,αi

(1 ≤ i ≤ n). Hence Ch2(Γ)u/F2 is
of finite type over F2. �

In the following Example 6.21, we describe Ch2(Υm)u/F2
for the free

monoid Υm = 〈α1, . . . , αm〉 of rank m. This description has been in-
spired by the referee.

Example 6.21. Let us describe Ch2(Υm)u/F2
for the free monoid Υm =

〈α1, . . . , αm〉 of rank m. Put C(m) := Ch2(Υm)u/F2 and C(m)i :=
Ch2(Υm)u/F2,αi

for 1 ≤ i ≤ m. Let us denote by A(m)i the A1(Υm)F2-
algebra A2(Υm)

Ch
u/F2,αi

for 1 ≤ i ≤ m in Definition 6.6. We can write

A1(Υm)F2 = F2[d(α1), . . . , d(αm)] and

A(m)i = F2[d(αj), ai(αj), bi(αj) | 1 ≤ j ≤ m]/I(m)i,

where I(m)i is the ideal of F2[d(αj), ai(αj), bi(αj) | 1 ≤ j ≤ m] gen-
erated by ai(αi), bi(αi) − 1, and d(αj) − ai(αj)

2 − bi(αj)
2d(αi) for

1 ≤ j ≤ m. Note that

C(m)i ∼= A2m−1
F2

= {(ai(α1), . . . , ai(αi−1), ai(αi+1), . . . , ai(αm),

bi(α1), . . . , bi(αi−1), bi(αi+1), . . . , bi(αm), d(αi)) ∈ A2m−1
F2

}.
We set Uij := {bi(αj) 6= 0} ⊂ C(m)i = SpecA(m)i. For 1 ≤ i 6= j ≤ m,
the isomorphism ϕij : Uij → Uji is given by the F2-algebra isomor-
phism ϕ∗

ij : A(m)j [bj(αi)
−1] → A(m)i[bi(αj)

−1] which is defined by
ϕ∗
ij(aj(αk)) = ai(αk) + bi(αk)ai(αj)/bi(αj), ϕ

∗
ij(bj(αk)) = bi(αk)/bi(αj),

and ϕ∗
ij(d(αk)) = d(αk) for 1 ≤ k ≤ m.

On the other hand, let us define the closed subvariety D(m) of

Pm
2+m−1

F2
× Am

F2
over F2 in the following way:

D(m) := {([aij : b1 : · · · : bm]1≤i,j≤m, (d1, . . . , dm)) ∈ Pm
2+m−1

F2
× Am

F2
|

aji = aij, aii = 0 (1 ≤ i, j ≤ m),

a2ij + b2i dj + b2jdi = 0 (1 ≤ i, j ≤ m),

aijbk + ajkbi + akibj = 0 (1 ≤ i, j, k ≤ m)}.

(Note thatD(m) can also be defined as a closed subvariety of P
m(m+1)

2
−1

F2
×

Am
F2

by using homogeneous coordinates {aij}1≤i<j≤m and {bi}1≤i≤m.)
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Put D(m)i := {bi 6= 0} ⊂ D(m) for 1 ≤ i ≤ m. By using inhomo-
geneous coordinates ajk = ajk/bi and bj = bj/bi for 1 ≤ j, k ≤ m, we
easily see that

D(m)i ∼= A2m−1
F2

= {(ai1, . . . , ai,i−1, ai,i+1, . . . , aim, b1, . . . , bi−1, bi+1, . . . , bm, di) ∈ A2m−1
F2

}.
Note that D(m) = ∪mi=1D(m)i.
Let us define the F2-isomorphism ψi : C(m)i → D(m)i ⊂ D(m)

by the F2-algebra isomorphism ψ∗
i : A(D(m)i) → A(m)i which is de-

fined by ψ∗
i (aij) = ai(αj), ψ

∗
i (bj) = bi(αj) for j 6= i, and ψ∗

i (di) =
d(αi), where A(D(m)i) is the coordinate ring of D(m)i. We can glue
{ψi : C(m)i → D(m)i}1≤i≤m (remark that −1 equals to 1 in char-
acteristic 2 for the verification), and hence we have an isomorphism
ψ : C(m) → D(m). Note that Ch2(Υm)u/F2 = C(m) ∼= D(m) is a
(2m− 1)-dimensional smooth irreducible variety over F2.
Let ρi be the representation of Υm on D(m)i ∼= C(m)i defined by

ρi(αj) =

(
aij bjdi
bj aij

)

for 1 ≤ j ≤ m. Then {(C(m)i, ρi)}1≤i≤m is the universal equivalence
class of generalized representations with unipotent mold over F2 of Υm

on Ch2(Υm)u/F2
.

Remark 6.22. Let A be an associative algebra over a commutative
ring R over F2. For a 2-dimensional representation ρ of A on an R-
scheme X , ρ is called a representation with unipotent mold over F2 if
the subalgebra ρ(A) of M2(OX) generates a unipotent mold over F2 on
X . In a similar way as group or monoid cases, we can define generalized
representations with unipotent mold over F2 for A on an R-scheme X .
The contravariant functor Eq U2(A)F2 from the category of R-schemes
to the category of sets is defined as

Eq U2(A)F2 : (Sch/R)op → (Sets)

X 7→
{

gen. rep. with unipotent
mold over F2 for A on X

}/
∼ .

We can construct the fine moduli Ch2(A)u/F2 associated to Eq U2(A)F2

in the same way as Theorem 6.20 (for details, see Remark 6.23). The
moduli Ch2(A)u/F2

is separated over R. If A is a finitely generated
algebra over R, then Ch2(A)u/F2

is of finite type over R.

Remark 6.23. For an associative algebra A over a commutative ring
R over F2, we can construct Ch2(A)u/F2 in the following way. We define
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the contravariant functor Rep′
1(A) from the category of R-schemes to

the category of sets by

Rep′
1(A)(X) :=

{
d : A→ Γ(X,OX)

d is a ring homomorphism and
d(αa) = α2d(a) for a ∈ A, α ∈ R

}

for each R-scheme X . The functor Rep′
1(A) is representable by an

affine scheme, and let us denote its coordinate ring by A′
1(A). Let

d : A → A′
1(A) be the universal ring homomorphism. Let Rep2(A)

be the representation variety of degree 2 for A over R introduced in
Remark 5.25. Let Rep2(A)u/F2

be the subscheme of Rep2(A) consist-
ing of representations with unipotent mold over F2, and σA,u/F2 : A →
M2(Γ(Rep2(A)u/F2 ,ORep2(A)u/F2

)) the universal representation with unipo-

tent mold over F2. Note that det σA,u/F2 : A→ Γ(Rep2(A)u/F2 ,ORep2(A)u/F2
)

gives a morphism Rep2(A)u/F2 → Rep′
1(A). For c ∈ A, define the open

subscheme Rep2(A)u/F2,c := {〈I2, σA,u/F2(c)〉 is a unipotent mold over F2 }
of Rep2(A)u/F2

. For a scheme X over A′
1(A) and for c ∈ A, we say that

a, b : A → Γ(X,OX) are (a, b)-coefficients with respect to (d, c) on X
if a, b are R-linear maps satisfying

a(1) = 1, a(c) = 0, b(1) = 0, b(c) = 1,

a(c1c2) = a(c1)a(c2) + b(c1)b(c2)d(c),

b(c1c2) = a(c1)b(c2) + b(c1)a(c2),

a(c1)
2 + b(c1)

2d(c) = d(c1),

for all c1, c2 ∈ A. Here d : A → Γ(X,OX) denotes the ring homo-
morphism associated to X → Rep′

1(A). There exists a commutative
ring A2(A)

Ch
u/F2,c

over A′
1(A) such that Ch2(A)u/F2,c := SpecA2(A)

Ch
u/F2,c

represents the functor corresponding X to the set of (a, b)-coefficients
with respect to (d, c) on X for each scheme X over A′

1(A). In a simi-
lar way as group or monoid cases, we can define a Rep′

1(A)-morphism
πc : Rep2(A)u/F2,c → Ch2(A)u/F2,c. We see that πc is a universal geo-
metric quotient by PGL2 ⊗Z R. Gluing schemes {Ch2(A)u/F2,c}c∈A, we
have a scheme Ch2(A)u/F2 over Rep′

1(A). Gluing {πc}c∈A, we also have
a morphism π : Rep2(A)u/F2

→ Ch2(A)u/F2
over Rep′

1(A). Hence π is a
universal geometric quotient by PGL2 ⊗ZR and Ch2(A)u/F2

represents
Eq U2(A)F2 .

Remark 6.24. We have introduced the notion of generalized represen-
tations with unipotent mold over F2 for describing the moduli functors
EqU2(Γ)F2 and EqU2(A)F2 . However, the moduli functors can also be
described as EqU ′

2(Γ)F2 and EqU ′
2(A)F2 by using the notion of repre-

sentations generating sheaves of algebras which define unipotent molds
over F2. More precisely, see §8.
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7. Another approach for unipotent molds over F2

In this section, we construct the moduli scheme Ch2(Γ)u/F2
in a dif-

ferent way from §6. When we take the quotient of Rep2(Γ)u/F2 by
PGL2 ⊗Z F2, we need to introduce the notion of (a, b)-coefficients be-
cause there exist no eigenvalue of σΓ,u/F2

(γ) on Rep2(Γ)u/F2
in general,

where σΓ,u/F2
is the universal representation on Rep2(Γ)u/F2

. However,
we can obtain eigenvalues of σΓ,u/F2(γ) by taking the pull-back of σΓ,u/F2

by a faithfully flat finite morphism p : R̃ep2(Γ)u/F2
→ Rep2(Γ)u/F2

.
Then by discussing derivations we can construct a universal geomet-

ric quotient π̃Γ,u/F2
: R̃ep2(Γ)u/F2

→ C̃h2(Γ)u/F2
by PGL2 ⊗Z F2 in the

same way as the unipotent mold (ch 6= 2) case in §5. Considering the

“descent” of π̃Γ,u/F2 : R̃ep2(Γ)u/F2
→ C̃h2(Γ)u/F2

, we have a universal

geometric quotient πΓ,u/F2
: Rep2(Γ)u/F2

→ Ch2(Γ)u/F2
. In this section,

we will use the same notation as §6. Without Lemma 6.12, we will
prove Theorem 6.13. It should be pointed out that this section was
inspired by the referee.

Let Γ be a group or a monoid. For α ∈ Γ, let us consider the scheme
Rep2(Γ)u/F2,α over F2. Recall that

Rep2(Γ)u/F2,α =

{
ρ ∈ Rep2(Γ)u/F2

I2 and ρ(α) generate
a unipotent mold over F2

}
.

Denote by σΓ,u/F2,α the universal representation with unipotent mold
over F2 on Rep2(Γ)u/F2,α. There exists no eigenvalue of σΓ,u/F2,α(α) on
Rep2(Γ)u/F2,α in general, and hence we will construct a faithfully flat

finite morphism pα : R̃ep2(Γ)u/F2,α
→ Rep2(Γ)u/F2,α such that there

exist eigenvalues of p∗α(σΓ,u/F2,α(α)) on R̃ep2(Γ)u/F2,α
.

Definition 7.1. Let us define a quasi-coherent sheafAα ofORep2(Γ)u/F2,α
-

algebras on Rep2(Γ)u/F2,α by

Aα := ORep2(Γ)u/F2,α
[Xα]/(X

2
α − det σΓ,u/F2,α(α)).

Then set R̃ep2(Γ)u/F2,α
:= SpecAα.

Remark 7.2. The canonical morphism pα : R̃ep2(Γ)u/F2,α
→ Rep2(Γ)u/F2,α

is faithfully flat and finite. Since tr(σΓ,u/F2,α(α)) = 0, Xα is an eigen-

value of p∗α(σΓ,u/F2,α(α)) on R̃ep2(Γ)u/F2,α
. We see that

R̃ep2(Γ)u/F2,α
=

{
(ρ,X) ρ ∈ Rep2(Γ)u/F2,α and X2 = det ρ(α)

}
.
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For simplicity, we put R̃α := R̃ep2(Γ)u/F2,α
and Rα := Rep2(Γ)u/F2,α.

Remark that ORα [σΓ,u/F2,α(Γ)] = ORα ·I2+ORα ·σΓ,u/F2,α(α) is a unipo-
tent mold over F2 on Rα. For each γ ∈ Γ, we can write σΓ,u/F2,α(γ) =
aα(γ)I2 + bα(γ)σΓ,u/F2,α(α). Note that aα(e) = 1, bα(e) = 0 and that
aα(α) = 0, bα(α) = 1.

Definition 7.3. For each γ, we define rα(γ) ∈ OR̃α
(R̃α) by rα(γ) =

aα(γ) + bα(γ)Xα. (In the sequel, we will omit p∗α.)

Proposition 7.4. For each γ ∈ Γ, rα(γ) is an eigenvalue of σΓ,u/F2,α(γ)

on R̃α. In other words, rα(γ) is a root of the characteristic polynomial
of σΓ,u/F2,α(γ).

Proof. By using X2
α = det σΓ,u/F2,α(α) and Lemma 4.10, we have

rα(γ)
2 = (aα(γ) + bα(γ)Xα)

2

= aα(γ)
2 + bα(γ)

2X2
α

= aα(γ)
2 + bα(γ)

2 det σΓ,u/F2,α(α) = det σΓ,u/F2,α(γ).

Since tr(σΓ,u/F2,α(γ)) = 0, the characteristic polynomial of σΓ,u/F2,α(γ)
is x2−det σΓ,u/F2,α(γ). Hence rα(γ) is an eigenvalue of σΓ,u/F2,α(γ). �

Proposition 7.5. For each α ∈ Γ, rα : Γ → OR̃α
(R̃α) is a character.

Proof. Note that aα(γ) and bα(γ) are the (a, b)-coefficients of σΓ,u/F2,α(γ)
with respect to σΓ,u/F2,α(α). By Lemma 6.2, rα(e) = aα(e)+bα(e)Xα =
1 and

rα(γ)rα(δ) = (aα(γ) + bα(γ)Xα)(aα(δ) + bα(δ)Xα)

= (aα(γ)aα(δ) + bα(γ)bα(δ)X
2
α) + (aα(γ)bα(δ) + bα(γ)aα(δ))Xα

= aα(γδ) + bα(γδ)Xα = rα(γδ)

for γ, δ ∈ Γ. Here we used X2
α = det σΓ,u/F2,α(α). Hence rα is a

character of Γ. �

For α, β ∈ Γ, let us consider the pull-backs of the intersection Rα ∩
Rβ ⊆ Rep2(Γ)u/F2

by pα : R̃α → Rα and pβ : R̃β → Rβ. Set R̃αβ =

p−1
α (Rα ∩ Rβ) and R̃βα = p−1

β (Rβ ∩ Rα). We define the morphism

φβα : R̃αβ → R̃βα over Rα ∩ Rβ by Xβ 7→ aα(β) + bα(β)Xα. Since
(aα(β) + bα(β)Xα)

2 = aα(β)
2 + bα(β)

2X2
α = det σΓ,u/F2,α(β) (see the

proof of Proposition 7.4), we can define the morphism φβα.
It is easy to check that φαα = 1, φαβ ◦ φβα = 1 and φγβ ◦ φβα =

φγα over Rα ∩ Rβ ∩ Rγ for α, β, γ ∈ Γ. Gluing {R̃α}α∈Γ, we have a

scheme R̃ep2(Γ)u/F2
over Rep2(Γ)u/F2

by [6, Chap. II, Ex. 2.12]. The



49

canonical morphism p : R̃ep2(Γ)u/F2
→ Rep2(Γ)u/F2

is a faithfully flat
finite morphism.

Let us define a PGL2 ⊗Z F2-action on R̃ep2(Γ)u/F2
. First, we de-

fine the action σα of PGL2 ⊗Z F2 on R̃α as follows: For a Z-valued
point ((ρ,X), P ) of R̃α × PGL2 ⊗Z F2 with an F2-scheme Z, we set

σα((ρ,X), P ) := (P−1ρP,X) as a Z-valued point of R̃α. Since X2 =

det(ρ(α)) = det(P−1ρ(α)P ), the morphism σα : R̃α×PGL2⊗ZF2 → R̃α

can be defined. It is easy to see that σα gives a group action.
Next, let us glue the actions {σα}α∈Γ of PGL2 ⊗Z F2. Recall that

φβα : R̃αβ → R̃βα over Rα∩Rβ is given by Xβ 7→ aα(β)+bα(β)Xα. The
proof of Proposition 6.7 shows that aα(β) and bα(β) are PGL2 ⊗Z F2-
invariant on Rα. Thereby, the actions σα and σβ are compatible over

Rα∩Rβ , and hence we obtain the action σ of PGL2⊗ZF2 on R̃ep2(Γ)u/F2

by gluing {σα}α∈Γ. Finally, remark that the canonical morphism p :

R̃ep2(Γ)u/F2
→ Rep2(Γ)u/F2

is PGL2 ⊗Z F2-equivariant.

Let A1(Γ) be the coordinate ring of the affine scheme Rep1(Γ). Set
A1(Γ)F2 = A1(Γ) ⊗Z F2 and Rep1(Γ)F2 = SpecA1(Γ)F2. Let χΓ : Γ →
A1(Γ)F2 be the universal character of Γ over F2.

Definition 7.6. For a A1(Γ)F2-module M , we define

Der(Γ,M) =

{
δ : Γ →M

δ(αβ) = χΓ(α)δ(β) + δ(α)χΓ(β)
for α, β ∈ Γ

}
.

We can prove the following lemma in the same way as Lemma 5.11.

Lemma 7.7. There exists a universal A1(Γ)F2-module ΩΓ/F2 represent-
ing the covariant functor

Der(Γ,−) : (A1(Γ)F2-Mod) → (A1(Γ)F2-Mod)
M 7→ Der(Γ,M).

In particular,

Der(Γ,M)
∼→ HomA1(Γ)F2

(ΩΓ/F2 ,M)

is an isomorphism for each A1(Γ)F2-module M .

Remark 7.8. Let d : Γ → ΩΓ/F2 be the universal derivation of Γ. We
see that ΩΓ/F2

is generated by {dγ | γ ∈ Γ} as an A1(Γ)F2-module. As
in Remark 5.12, we see that if Γ is finitely generated, then ΩΓ/F2

is a
finitely generated A1(Γ)F2-module.
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Definition 7.9. We define the scheme C̃h2(Γ)u/F2
over Rep1(Γ)F2 by

C̃h2(Γ)u/F2
= Proj S(ΩΓ/F2),

where S(ΩΓ/F2) is the symmetric algebra of ΩΓ/F2 over A1(Γ)F2.

Example 7.10 (cf. Example 5.14). Let Υ1 = 〈α0〉 be the free monoid
of rank 1. The A1(Υ1)F2-module ΩΥ1/F2

is isomorphic to A1(Υ1)F2 by

A1(Υ1)F2 → ΩΥ1/F2

1 7→ dα0.

In particular, ˜Ch2(Υ1)u/F2

∼= Rep1(Υ1)F2.

Let ψ : X → Rep1(Γ)F2 be an F2-morphism. Let us regard ΩΓ/F2
as

a quasi-coherent sheaf on Rep1(Γ)F2. There exists a one-to-one corre-
spondence

Hom Rep1(Γ)F2
(X, C̃h2(Γ)u/F2

) ∼=
{ψ∗(ΩΓ/F2

) ։ L → 0 | L is a line bundle on X}/ ∼ .

Here we say that ψ∗(ΩΓ/F2
)
f1
։ L1 and ψ∗(ΩΓ/F2

)
f2
։ L2 are equivalent

if there exists an isomorphism g : L1

∼=→ L2 such that g ◦ f1 = f2.

For α ∈ Γ, we define the open subscheme C̃h2(Γ)u/F2,α
of C̃h2(Γ)u/F2

by C̃h2(Γ)u/F2,α
:= D(dα) = {dα 6= 0}. For an F2-morphism ψ : X →

Rep1(Γ)F2 , there exists a one-to-one correspondence

Hom Rep1(Γ)F2
(X, C̃h2(Γ)u/F2,α

) ∼=
{
ψ∗(ΩΓ/F2) ։ L → 0

L is a line bundle on X and ψ∗(dα) is
nowhere vanishing as a section of L

}/
∼ .

When L is generated by ψ∗(dα), L is isomorphic to OX . Let r : Γ →
Γ(X,OX) be the character associated to ψ : X → Rep1(Γ)F2. Regard-
ing ψ∗(dα) as 1 of OX , we have the following:

Hom Rep1(Γ)F2
(X, C̃h2(Γ)u/F2,α

) ∼=
{
d

d : Γ → Γ(X,OX) is a derivation with respect to r
such that d(α) = 1

}
,

where we say that d : Γ → Γ(X,OX) is a derivation with respect to r
if d(γδ) = r(γ)d(δ) + d(γ)r(δ) holds for each γ, δ ∈ Γ.
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We construct a morphism λ : R̃ep2(Γ)u/F2
→ Rep1(Γ)F2. By Propo-

sition 7.5, rα : Γ → OR̃α
(R̃α) is a character for each α ∈ Γ. It

gives us a morphism λα : R̃α → Rep1(Γ)F2 . Through the isomorphism

φβα : R̃αβ → R̃βα, λα and λβ coincide on R̃α ∩ R̃β for each α, β ∈ Γ.
Indeed, φβα is given by Xβ 7→ aα(β) + bα(β)Xα. By comparing

σΓ,u/F2,β(γ) = aβ(γ)I2 + bβ(γ)σΓ,u/F2,β(β)

= aβ(γ)I2 + bβ(γ)(aα(β)I2 + bα(β)σΓ,u/F2,α(α))

= (aβ(γ) + bβ(γ)aα(β))I2 + bβ(γ)bα(β)σΓ,u/F2,α(α)

with
σΓ,u/F2,α(γ) = aα(γ)I2 + bα(γ)σΓ,u/F2,α(α),

we have aα(γ) = aβ(γ) + bβ(γ)aα(β) and bα(γ) = bβ(γ)bα(β) on Rα ∩
Rβ for each γ ∈ Γ. The isomorphism φβα induces λβ(γ) = aβ(γ) +
bβ(γ)Xβ 7→ aβ(γ)+bβ(γ)(aα(β)+bα(β)Xα) = aα(γ)+bα(γ)Xα = λα(γ).

Hence λα and λβ coincide on R̃α ∩ R̃β . By gluing {λα}α∈Γ, we obtain

a morphism λ : R̃ep2(Γ)u/F2
→ Rep1(Γ)F2. We regard R̃ep2(Γ)u/F2

as a

Rep1(Γ)F2-scheme by λ.

We construct a Rep1(Γ)F2-morphism π̃Γ,u/F2 : R̃ep2(Γ)u/F2
→ C̃h2(Γ)u/F2

.

First, let us define π̃Γ,u/F2,α : R̃α = R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

for

each α ∈ Γ. Put C̃α = C̃h2(Γ)u/F2,α
and π̃α := π̃Γ,u/F2,α for simplic-

ity. Set ηα(γ) := σΓ,u/F2,α(γ) − rα(γ)I2 ∈ M2(OR̃α
(OR̃α

)) for γ ∈ Γ.

By Proposition 7.4, ηα(γ)
2 = σΓ,u/F2,α(γ)

2 + rα(γ)
2I2 = σΓ,u/F2,α(γ)

2 +
det(σΓ,u/F2,α(γ))I2 = 0. Note that OR̃α

[σΓ,u/F2,α(Γ)] = OR̃α
· I2 +OR̃α

·
σΓ,u/F2,α(α) = OR̃α

· I2 +OR̃α
· ηα(α). For each γ ∈ Γ,

ηα(γ) = (aα(γ)− rα(γ))I2 + bα(γ)σΓ,u/F2,α(α)

= −bα(γ)XαI2 + bα(γ)σΓ,u/F2,α(α)

= bα(γ)ηα(α),

since rα(α) = Xα.

Proposition 7.11. For each α ∈ Γ, bα(·) : Γ → OR̃α
(R̃α) is a deriva-

tion with respect to rα.

Proof. By calculating σΓ,u/F2,α(γδ) and σΓ,u/F2,α(γ)σΓ,u/F2,α(δ), we
have bα(γδ) = aα(γ)bα(δ)+bα(γ)aα(δ) for each γ, δ ∈ Γ. It follows that
bα(γδ) = rα(γ)bα(δ) + bα(γ)rα(δ). �

Hence we have a morphism π̃α : R̃α → C̃α by the derivation bα(·) :
Γ → OR̃α

(R̃α) with bα(α) = 1.
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Next, let us glue the morphisms {π̃α : R̃α → C̃α}α∈Γ. Because
bα(γ) = bβ(γ)bα(β) on Rα ∩Rβ for each γ ∈ Γ and bα(β) ∈ (ORα∩Rβ

)×,
we have the following commutative diagram:

λ∗α(Ωu/F2
) |R̃α∩R̃β

։ OR̃α∩R̃β
→ 0

|| ↑bα(β)·
λ∗β(Ωu/F2

) |R̃α∩R̃β
։ OR̃α∩R̃β

→ 0,

where the morphism bα(β)· : OR̃α∩R̃β
→ OR̃α∩R̃β

defined by ϕ 7→
bα(β)ϕ is an isomorphism. It follows that π̃α |R̃α∩R̃β

= π̃β |R̃α∩R̃β
for

each α, β ∈ Γ. Therefore we have a Rep1(Γ)F2-morphism π̃Γ,u/F2
:

R̃ep2(Γ)u/F2
→ C̃h2(Γ)u/F2

.

Let PGL2 ⊗Z F2 act on C̃h2(Γ)u/F2
trivially. Then we have the fol-

lowing proposition:

Proposition 7.12. The morphism π̃Γ,u/F2 : R̃ep2(Γ)u/F2
→ C̃h2(Γ)u/F2

is PGL2 ⊗Z F2-equivariant.

Proof. It suffices to show that π̃α : R̃α → C̃α is PGL2 ⊗Z F2-

equivariant for each α ∈ Γ. The character rα on R̃α is given by
rα(γ) = aα(γ) + bα(γ)Xα for γ ∈ Γ. The proof of Proposition 6.7
shows that aα(γ) and bα(γ) are PGL2⊗Z F2-invariant on Rα. From the

definition of the action σα on R̃α, Xα is PGL2 ⊗Z F2-invariant. Hence
rα(γ) is also PGL2 ⊗Z F2-invariant for each γ ∈ Γ. The morphism
π̃α is given by the derivation bα(·) with respect to rα. Since bα(γ) is
PGL2 ⊗Z F2-invariant, the morphism π̃α is PGL2 ⊗Z F2-equivariant.
This completes the proof. �

Let us define a morphism qα : C̃h2(Γ)u/F2,α
→ Ch2(Γ)u/F2,α for each

α ∈ Γ. By the definitions, C̃h2(Γ)u/F2,α
and Ch2(Γ)u/F2,α are Rep1(Γ)F2-

schemes. Let r and d be the universal characters on C̃h2(Γ)u/F2,α
and

Ch2(Γ)u/F2,α, respectively. Consider the character r2 on C̃h2(Γ)u/F2,α

instead of r. For constructing qα, it suffices to define (a, b)-coefficients

with respect to (r2, α) on C̃h2(Γ)u/F2,α
. Denote by δ the universal

derivation with respect to r on C̃h2(Γ)u/F2,α
such that δ(α) = 1. Then

we define a(γ) = r(γ)− r(α)δ(γ) and b(γ) = δ(γ) for γ ∈ Γ.

Proposition 7.13. Let a and b be as above. Then a and b are (a, b)-

coefficients with respect to (r2, α) on C̃h2(Γ)u/F2,α
.
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Proof. It is easy to check that a(e) = 1, b(e) = 0 and that a(α) =
0, b(α) = 1. By direct calculations, we have

a(γ1γ2) = r(γ1γ2)− r(α)δ(γ1γ2)

= r(γ1)r(γ2)− r(α)r(γ1)δ(γ2)− r(α)δ(γ1)r(γ2)

= (r(γ1)− r(α)δ(γ1))(r(γ2)− r(α)δ(γ2)) + r(α)2δ(γ1)δ(γ2)

= a(γ1)a(γ2) + r2(α)b(γ1)b(γ2),

b(γ1γ2) = δ(γ1γ2)

= r(γ1)δ(γ2) + δ(γ1)r(γ2)

= (r(γ1)− r(α)δ(γ1))δ(γ2) + δ(γ1)(r(γ2)− r(α)δ(γ2))

= a(γ1)b(γ2) + b(γ1)a(γ2),

and

a(γ)2 + b(γ)2r2(α) = (a(γ) + b(γ)r(α))2

= (r(γ)− r(α)δ(γ) + δ(γ)r(α))2

= r2(γ).

Hence we have proved the statement. �

By the (a, b)-coefficients on C̃h2(Γ)u/F2,α
, we obtain a morphism qα :

C̃h2(Γ)u/F2,α
→ Ch2(Γ)u/F2,α. Denote by r2 : C̃h2(Γ)u/F2,α

→ Rep1(Γ)F2

and d : Ch2(Γ)u/F2,α → Rep1(Γ)F2 the morphisms induced by the char-
acters r2 and d, respectively. Then d ◦ qα = r2.
Thus, we have the following commutative diagram for each α ∈ Γ:

R̃ep2(Γ)u/F2,α

pα→ Rep2(Γ)u/F2,α

π̃α ↓ ↓ πα
C̃h2(Γ)u/F2,α

qα→ Ch2(Γ)u/F2,α,

where we denote by πα the morphism πΓ,u/F2,α : Rep2(Γ)u/F2,α →
Ch2(Γ)u/F2,α which was defined in §6. These morphisms are PGL2⊗ZF2-

equivariant. Let λ2α : R̃ep2(Γ)u/F2,α
→ Rep1(Γ)F2 and det : Rep2(Γ)u/F2,α →

Rep1(Γ)F2 be the morphisms corresponding to the characters r2α and
det(σΓ,u/F2,α(·)), respectively. Then det ◦ pα = λ2α.

Proposition 7.14. The commutative diagram

R̃ep2(Γ)u/F2,α

pα→ Rep2(Γ)u/F2,α

π̃α ↓ ↓ πα
C̃h2(Γ)u/F2,α

qα→ Ch2(Γ)u/F2,α.



54

gives a fibre product for each α ∈ Γ.

Proof. Put Rα := Rep2(Γ)u/F2,α and Cα := Ch2(Γ)u/F2,α. We show

that (pα, π̃α) : R̃α → Rα×Cα C̃α is an isomorphism. It suffices to prove
that (pα, π̃α) induces a bijective map between the sets of Z-valued
points for any F2-scheme Z. Let (ρ1, X1) and (ρ2, X2) be Z-valued

points of R̃α such that the images by (pα, π̃α) coincide. Obviously,
ρ1 = ρ2. By the assumption, (ρ1, X1) and (ρ2, X2) induce the same

character r on R̃α. Since X1 = r(α) = X2 on Z, (ρ1, X1) = (ρ2, X2).
Hence we have proved the injectivity.

Let (ρ, (r, δ)) be a Z-valued point ofRα×Cα C̃α, where r : Γ → OZ(Z)
is a character and δ : Γ → OZ(Z) is a derivation with respect to r such
that δ(α) = 1. The Z-valued point (a, b) of Cα induced by (r, δ) is given
by a(γ) = r(γ)− r(α)δ(γ) and b(γ) = δ(γ) for each γ ∈ Γ. Note that a
and b are (a, b)-coefficients with respect to (r2, α) by Proposition 7.13.
Because ρ and (r, δ) induce the same Z-valued point of Cα, r

2(γ) =
det ρ(γ) and ρ(γ) = a(γ)I2+b(γ)ρ(α) = (r(γ)−r(α)δ(γ))I2+δ(γ)ρ(α)
for each γ ∈ Γ. Set X := r(α). Then (ρ,X) is a Z-valued point of R̃α

by X2 = r2(α) = det ρ(α). It is obvious that pα(ρ,X) = ρ. Denote by
(r′, δ′) the image of (ρ,X) by π̃α. For each γ ∈ Γ, δ′(γ) = b(γ) = δ(γ)
and

r′(γ) = a(γ) + b(γ)X

= (r(γ)− r(α)δ(γ)) + δ(γ)X

= r(γ).

Thus π̃α(ρ,X) = (r, δ). Hence (pα, π̃α)(ρ,X) = (ρ, (r, δ)), which im-
plies the surjectivity. Therefore we have proved the statement. �

Definition 7.15. Let Υ1 = 〈α0〉 be the free monoid of rank 1. As in

Definition 6.10, we call the morphism π̃Υ1,u/F2,α0 : ˜Rep2(Υ1)u/F2,α0
→

˜Ch2(Υ1)u/F2,α0
the prototype in the unipotent mold over F2 case. Re-

mark that ˜Rep2(Υ1)u/F2
= ˜Rep2(Υ1)u/F2,α0

and that ˜Ch2(Υ1)u/F2
=

˜Ch2(Υ1)u/F2,α0
.

Remark 7.16. Recall that πΥ1,u/F2,α0 : Rep2(Υ1)u/F2,α0 → Ch2(Υ1)u/F2,α0

is a universal geometric quotient by PGL2 ⊗Z F2 (Theorem 6.11). The
prototype πΥ1,u/F2,α0 is described by Spec(F2[a, b, c, d]/(a+d)) ⊃ D(b)∪
D(c) → SpecF2[D], whereD is mapped to ad−bc. Then ˜Rep2(Υ1)u/F2,α0

is isomorphic to D(b) ∪D(c) ⊂ Spec(F2[a, b, c, d][X ]/(a+ d,X2 − ad+
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bc)). Since ΩΥ1,u/F2
is isomorphic to A1(Υ1)F2 ,

˜Ch2(Υ1)u/F2,α0
is iso-

morphic to Rep1(Υ1)F2
∼= SpecF2[χ]. Here the indeterminate χ cor-

responds to the value at α0 of the universal character on Rep1(Υ1)F2.

Therefore π̃Υ1,u/F2,α0 :
˜Rep2(Υ1)u/F2,α0

→ ˜Ch2(Υ1)u/F2,α0
is described by

Spec(F2[a, b, c, d][X ]/(a+d,X2−ad+bc)) ⊃ D(b)∪D(c) → SpecF2[χ],
where χ is mapped to X .

By Proposition 7.14, the prototype π̃Υ1,u/F2,α0 : ˜Rep2(Υ1)u/F2,α0
→

˜Ch2(Υ1)u/F2,α0
is obtained by base change of πΥ1,u/F2,α0 : Rep2(Υ1)u/F2,α0 →

Ch2(Υ1)u/F2,α0 . Theorem 6.11 implies the following:

Theorem 7.17. The prototype

π̃Υ1,u/F2,α0
: ˜Rep2(Υ1)u/F2,α0

→ ˜Ch2(Υ1)u/F2,α0

is a universal geometric quotient by PGL2 ⊗Z F2.

Let Γ be a group or a monoid. For α ∈ Γ, we define the monoid
homomorphism φ : Υ1 = 〈α0〉 → Γ by α0 7→ α. By restricting repre-
sentations, characters, and derivations of Γ to those of Υ1 through φ,
we can obtain the following commutative diagram:

R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

↓ ↓
˜Rep2(Υ1)u/F2,α0

→ ˜Ch2(Υ1)u/F2,α0
.

Under this situation, we have the following lemma.

Lemma 7.18. The above diagram gives a fibre product. In particular,

the morphism R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

is obtained by base change
of the prototype.

Proof. Here we prove the statement without using Lemma 6.12.

Put R̃α0 := ˜Rep2(Υ1)u/F2,α0
and C̃α0 := ˜Ch2(Υ1)u/F2,α0

. It suffices to

prove that R̃α → R̃α0 ×C̃α0
C̃α induces a bijective map between the

sets of Z-valued points for any F2-scheme Z. Let (ρ1, X1) and (ρ2, X2)

be Z-valued points of R̃α whose images coincide. By the assumption,
X1 = X2 and ρ1(α) = ρ1(φ(α0)) = ρ2(φ(α0)) = ρ2(α). Since (ρ1, X1)

and (ρ2, X2) induce the same Z-valued point (r, δ) of C̃α, a(γ) = r(γ)−
r(α)δ(γ) and b(γ) = δ(γ) have the same values for (ρ1, X1) and (ρ2, X2).
It follows that ρ1(γ) = a(γ)I2+b(γ)ρ1(α) = a(γ)I2+b(γ)ρ2(α) = ρ2(γ)
for each γ ∈ Γ. Hence (ρ1, X1) = (ρ2, X2), which implies the injectivity.
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Let ((ρ0, X0), (r, δ)) be a Z-valued point of R̃α0 ×C̃α0
C̃α, where r :

Γ → OZ(Z) is a character and δ : Γ → OZ(Z) is a derivation with
respect to r such that δ(α) = 1. Put a(γ) = r(γ)−r(α)δ(γ) and b(γ) =
δ(γ) for each γ ∈ Γ. By Proposition 7.13, a and b are (a, b)-coefficients
with respect to (r2, α). Set X := X0 and ρ(γ) := a(γ)I2 + b(γ)ρ0(α0)
for γ ∈ Γ. Since a(α) = 0 and b(α) = 1, ρ(α) = ρ0(α0). Note
that r2(α) = r2(φ(α0)) = X2

0 = det ρ0(α0). It follows from Lemma
6.3 that ρ is a representation with unipotent mold over F2 such that
det ρ(γ) = r2(γ) for each γ ∈ Γ. Then (ρ,X) is a Z-valued point of

R̃α. It is easy to check that (ρ,X) is mapped to ((ρ0, X0), (r, δ)). This
implies the surjectivity. Hence we have proved the statement. �

Theorem 7.19. The morphism π̃Γ,u/F2,α : R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

is a universal geometric quotient by PGL2 ⊗Z F2 for each α ∈ Γ. Fur-

thermore, π̃Γ,u/F2
: R̃ep2(Γ)u/F2

→ C̃h2(Γ)u/F2
is a universal geometric

quotient by PGL2 ⊗Z F2.

Proof. The statement follows from Theorem 7.17 and Lemma 7.18.
�

The following Lemma states the “descent” of universal geometric
quotients. The proof was suggested by Michiaki Inaba.

Lemma 7.20. Let G be a group scheme separated of finite type over
a scheme S. Let φ : X → Y be a G-equivariant separated morphism
of finite type over S, where G acts on Y trivially. For a faithfully flat
and quasi-compact morphism f : Y ′ → Y , put X ′ := X ×Y Y

′ and
φ′ : X ′ → Y ′. If φ′ is a (universal) geometric quotient by G, then φ is
also a (resp. universal) geometric quotient by G.

Proof. It suffices to prove that if φ′ is a geometric quotient, so
is φ. It is easy to see that φ is surjective and that the image of
G × X → X ×S X is equal to X ×Y X . If φ′ is (universally) sub-
mersive, then so is φ by [5, Lemma 15.7.11.1]. Let σ : G ×S X → X
and σ′ : G ×S X

′ → X ′ be the groups actions of G on X and X ′,
respectively. Denote the second projections by p2 : G×S X → X and
p′2 : G ×S X

′ → X ′. Put τ := φ ◦ σ = φ ◦ p2, τ ′ := φ′ ◦ σ′ = φ′ ◦ p′2,
and f ′ : X ′ → X . For proving that φ∗(OX)

G = OY , we show that

0 → OY → φ∗(OX)
σ∗−p2∗→ τ∗(OG×SX) is exact. Taking the pull-

back by f , we have 0 → f ∗OY → f ∗φ∗(OX)
f∗(σ∗−p2∗)→ f ∗τ∗(OG×SX).

By [3, Proposition 1.4.15], f ∗φ∗(OX) ∼= φ′
∗f

′∗(OX) ∼= φ′
∗(OX′) and

f ∗τ∗(OG×SX)
∼= τ ′∗(1G × f ′)∗(OG×SX)

∼= τ ′∗(OG×SX′). Then we obtain
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the following commutative diagram:

0 → f ∗(OY ) → f ∗φ∗(OX)
f∗(σ∗−p2∗)→ f ∗τ∗(OG×SX)

|| ↓∼= ↓∼=
0 → OY ′ → φ′

∗(O′
X)

σ′
∗
−p′2∗→ τ ′∗(OG×SX′).

Since φ′ is a geometric quotient, the complex 0 → OY ′ → φ′
∗(O′

X)
σ′
∗
−p′2∗→

τ ′∗(OG×SX′) is exact, and hence so is 0 → f ∗OY → f ∗φ∗(OX)
f∗(σ∗−p2∗)→

f ∗τ∗(OG×SX). Because f is faithfully flat, 0 → OY → φ∗(OX)
σ∗−p2∗→

τ∗(OG×SX) is also exact. Thus we have proved the statement. �

Now we can prove Theorem 6.13 by another approach.

Theorem 7.21 (Theorem 6.13). The morphism πΓ,u/F2,α : Rep2(Γ)u/F2,α →
Ch2(Γ)u/F2,α is a universal geometric quotient by PGL2 ⊗Z F2 for each
α ∈ Γ.

Proof. The statement follows from Proposition 7.14, Theorem 7.19,
and Lemma 7.20. �

By the same discussion in §6, we can construct Ch2(Γ)u/F2
by gluing

{Ch2(Γ)u/F2,α}α∈Γ. Then we have Corollary 6.14, which states that
πΓ,u/F2 : Rep2(Γ)u/F2 → Ch2(Γ)u/F2 is a universal geometric quotient

by PGL2 ⊗Z F2. Similarly, we have a morphism q : C̃h2(Γ)u/F2
→

Ch2(Γ)u/F2
by gluing {qα : C̃h2(Γ)u/F2,α

→ Ch2(Γ)u/F2,α}α∈Γ.

Remark 7.22. By Remark 7.16, we see that q : ˜Ch2(Υ1)u/F2,α0
→

Ch2(Υ1)u/F2,α0
is described as SpecF2[χ] → SpecF2[D], where D is

mapped to χ2. We also see that p : ˜Rep2(Υ1)u/F2,α0
→ Rep2(Υ1)u/F2,α0

is described as Spec F2[a, b, c, X ]/(X2 + a2 + bc) ⊃ D(b) ∪ D(c) →
D(b) ∪ D(c) ⊂ SpecF2[a, b, c]. Hence p and q are faithfully flat finite
morphisms of finite presentation, but not smooth morphisms.

For α ∈ Γ, the monoid homomorphism φ : Υ1 → Γ by α0 7→ α
induces the following commutative diagrams:

R̃ep2(Γ)u/F2,α
→ Rep2(Γ)u/F2,α

↓ ↓
˜Rep2(Υ1)u/F2,α0

→ Rep2(Υ1)u/F2,α0
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and

C̃h2(Γ)u/F2,α
→ Ch2(Γ)u/F2,α

↓ ↓
˜Ch2(Υ1)u/F2,α0

→ Ch2(Υ1)u/F2,α0
.

We can show that the diagrams above give fibre products in the same
way as Lemma 7.18.
From the discussions above, we obtain the following commutative

diagram which gives a fibre product:

R̃ep2(Γ)u/F2

p→ Rep2(Γ)u/F2

π̃Γ,u/F2
↓ ↓ πΓ,u/F2

C̃h2(Γ)u/F2

q→ Ch2(Γ)u/F2 .

All morphisms are PGL2 ⊗Z F2-equivariant, and p and q are faithfully
flat finite morphisms of finite presentation. Note that p and q are not
smooth in general.

Recall that R̃ep2(Γ)u/F2
can be regarded as a Rep1(Γ)F2-scheme by

λ : R̃ep2(Γ)u/F2
→ Rep1(Γ)F2. Let r be the corresponding character

on R̃ep2(Γ)u/F2
to λ, and let λ2 : R̃ep2(Γ)u/F2

→ Rep1(Γ)F2 be the

morphism induced by the character r2. Denote by det : Rep2(Γ)u/F2 →
Rep1(Γ)F2 the morphism corresponding to the character det(σΓ,u/F2

(·))).
Then det ◦ p = λ2.

By Definition 7.9, C̃h2(Γ)u/F2
is a Rep1(Γ)F2-scheme. Let us denote

by r : C̃h2(Γ)u/F2
→ Rep1(Γ)F2 the canonical morphism. We also

denote by the same symbol r the corresponding character on C̃h2(Γ)u/F2

to r. We define r2 : C̃h2(Γ)u/F2
→ Rep1(Γ)F2 as the morphism induced

by the character r2 on C̃h2(Γ)u/F2
. By Remark 6.15, Ch2(Γ)u/F2

is also

a Rep1(Γ)F2-scheme by d : Ch2(Γ)u/F2
→ Rep1(Γ)F2. Then d ◦ q = r2.

Remark 7.23. The morphism π̃Γ,u/F2
: R̃ep2(Γ)u/F2

→ C̃h2(Γ)u/F2
is

smooth and surjective for each group or monoid Γ. Indeed, π̃Γ,u/F2,α :

R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

is obtained by base change of the pro-

totype by Lemma 7.18. The prototype π̃Υ1,u/F2,α0
: ˜Rep2(Υ1)u/F2,α0

→
˜Ch2(Υ1)u/F2,α0

is smooth and surjective because it is obtained by base

change of π : Rep2(Υ1)rk2 → Ch2(Υ1) and π is smooth and surjective
by Proposition 4.9.
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Example 7.24. Let us describe ˜Ch2(Υm)u/F2
for the free monoid Υm =

〈α1, . . . , αm〉 of rank m. Put C̃(m) := ˜Ch2(Υm)u/F2
. Let A1(m)F2

denote the coordinate ring A1(Υm)F2 of Rep1(Υm)F2. We can write
A1(m)F2 = F2[χ(α1), . . . , χ(αm)], where χ(α1), . . . , χ(αm) are indeter-
minates. It is easy to see that theA1(m)F2-module ΩΥm/F2 is isomorphic

to the free module ⊕m
i=1A1(m)F2 ·dαi. Hence C̃(m) = ProjS(ΩΥm/F2

) is

isomorphic to Am
F2
×Pm−1

F2
. The projection C̃(m) → Rep1(Υm)F2 can be

described by the first projection p1 : A
m
F2
×Pm−1

F2
→ Am

F2
= Rep1(Υm)F2.

Put C̃(m)i := {dαi 6= 0} ⊂ C̃(m) for 1 ≤ i ≤ m. Note that

C̃(m)i
∼= Am

F2
×Am−1

F2
⊂ Am

F2
×Pm−1

F2
. In Example 6.21, we have described

C(m) = Ch2(Υm)u/F2
and C(m)i = Ch2(Υm)u/F2,αi

for 1 ≤ i ≤ m.

The morphism q : C̃(m) → C(m) can be described as follows: Let

qi : C̃(m)i → C(m)i be the restriction of q to C̃(m)i for 1 ≤ i ≤ m.

For (r, δ) ∈ C̃(m)i, qi(r, δ) = (a, b) ∈ C(m)i is given by a(γ) = r(γ)−
r(αi)δ(γ) and b(γ) = δ(γ) for γ ∈ Υm. Recall that the isomorphisms

C̃(m)i
∼= A2m−1

F2
and C(m)i ∼= A2m−1

F2
are given by

(r, δ) 7→ (r(α1), . . . , r(αm), δ(α1)/δ(αi), . . . , δ(αi−1)/δ(αi),

δ(αi+1)/δ(αi), . . . , δ(αm)/δ(αi))

and

(ai, bi, d) 7→ (ai(α1), . . . , ai(αi−1), ai(αi+1), . . . , ai(αm), bi(α1), . . . ,

bi(αi−1), bi(αi+1), . . . , bi(αm), d(αi)),

respectively. By these isomorphisms, qi : A
2m−1
F2

→ A2m−1
F2

is described
by

qi(r1, · · · , rm, δ1, . . . , δi−1, δi+1, . . . , δm) =

(r1 − riδ1, . . . , ri−1 − riδi−1, ri+1 − riδi+1, . . . , rm − riδm,

δ1, . . . , δi−1, δi+1, . . . , δm, r
2
i ).

Set R̃(m) := ˜Rep2(Υm)F2
and R(m) := Rep2(Υm)F2 . For 1 ≤ i ≤

m, put R̃(m)i := ˜Rep2(Υm)F2,αi
and R(m)i := Rep2(Υm)F2,αi

. Let

pi : R̃(m)i → R(m)i be the restriction of p : R̃(m) → R(m) to R̃(m)i

for 1 ≤ i ≤ m. We can describe pi : R̃(m)i = {(A1, . . . , Am, Xi) |
(A1, . . . , Am) ∈ R(m)i and X

2
i = detAi} → R(m)i = {(A1, . . . , Am) |

〈A1, . . . , Am〉 = 〈Ai〉 is a unipotent mold over F2} by (A1, . . . , Am, Xi)
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7→ (A1, . . . , Am), where Aj := ρ(αj) for 1 ≤ j ≤ m and for each repre-

sentation ρ. Let π̃i and πi denote the restrictions of π̃Υm,u/F2 : R̃(m) →
C̃(m) and πΥm,u/F2

: R(m) → C(m) to R̃(m)i and R(m)i, respectively.

For (A1, . . . , Am) ∈ R(m)i, we can write Aj = aijI2 + bjAi for 1 ≤ j ≤
m. Then π̃i : R̃(m)i → C̃(m)i is described by (A1, . . . , Am, Xi) 7→ (ai1+

b1Xi, . . . , aim+bmXi, b1, . . . , bi−1, bi+1, . . . , bm) and πi : R(m)i → C(m)i
is described by (A1, . . . , Am) 7→ (ai1, . . . , ai,i−1, ai,i+1, . . . , aim, b1, . . . , bi−1,

bi+1, . . . , bm, detAi). Remark that

R̃(m)i
pi→ R(m)i

π̃i ↓ ↓ πi
C̃(m)i

qi→ C(m)i.

gives a fibre product.

Definition 7.25. Let X be an F2-scheme. By a tilde representation
with unipotent mold over F2 for Γ on X , we understand a pair (ρ, λ)
of a representation ρ of with unipotent mold over F2 for Γ on X and a
character λ : Γ → OX(X) satisfying the following conditions:

(i) det(ρ(γ)) = λ(γ)2 for each γ ∈ Γ.
(ii) {ρ(γ)− λ(γ)I2 | γ ∈ Γ} spans a sub-line bundle of OX [ρ(Γ)].

Remark 7.26. Let (ρ, λ) be a tilde representation with unipotent mold
over F2 for Γ on an F2-scheme X . For each point x ∈ X , choose αx ∈ Γ
and a neighbourhood Ux of x such thatOUx [ρ(Γ)] = OUx ·I2⊕OUx ·ρ(αx).
The condition (ii) in Definition 7.25 means that for each γ ∈ Γ there
exists c ∈ OUx(Ux) such that ρ(γ)−λ(γ)I2 = c(ρ(αx)−λ(αx)I2). Since
ρ(γ) = (λ(γ) − cλ(αx))I2 + cρ(αx), the (a, b)-coefficients of ρ(γ) with
respect to ρ(αx) are given by aαx(γ) = λ(γ) − cλ(αx) and bαx(γ) = c.
Then λ(γ) = aαx(γ) + bαx(γ)λ(αx) for each γ ∈ Γ. Note that (ρ |Ux

, λ(αx)) gives a Ux-valued point of R̃ep2(Γ)u/F2,αx
. Considering the

definition of R̃ep2(Γ)u/F2
, we see that we can obtain an X-valued point

of R̃ep2(Γ)u/F2
by gluing {(ρ|Ux , λ(αx))}x∈X .

By Remark 7.26, we have:
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Proposition 7.27. The following functor is representable by R̃ep2(Γ)u/F2
:

R̃ep2(Γ)u/F2
: (Sch/F2)

op → (Sets)

X 7→
{

tilde rep. with unipotent
mold over F2 for Γ on X

}
.

Remark 7.28. The condition (ii) in Definition 7.25 is necessary for
Proposition 7.27. Indeed, in the case of the free monoid Υ2 = 〈α, β〉 of
rank 2, let ρ : Υ2 → M2(k[ǫ]/(ǫ

2)) be the representation defined by

ρ(α) =

(
0 0
1 0

)
, ρ(β) =

(
1 0
1 1

)
,

where k is a field. Let λ : Υ2 → k[ǫ]/(ǫ2) be the character defined
by λ(α) = ǫ and λ(β) = 1. Then ρ is a representation with unipo-
tent mold over F2 for Υ2. For each γ ∈ Υ2, det ρ(γ) = λ(γ)2. How-
ever, the condition (ii) in Definition 7.25 fails. The (a, b)-coefficients
of ρ(β) with respect to ρ(α) is given by aα(β) = 1 and bα(β) = 1. The
equality λ(β) = aα(β) + bα(β)λ(α) does not hold. Hence (ρ, λ(α)) ∈
R̃ep2(Γ)u/F2,α

(k[ǫ]/(ǫ2)) and (ρ, λ(β)) ∈ R̃ep2(Γ)u/F2,β
(k[ǫ]/(ǫ2)) induce

different morphisms from k[ǫ]/(ǫ2) to R̃ep2(Γ)u/F2
. This means that

(ρ, λ) does not canonically induce a morphism to R̃ep2(Γ)u/F2
without

the condition (ii).

Remark 7.29. For each point x ∈ C̃h2(Γ)u/F2
, there exists a local

section s̃x : Vx → R̃ep2(Γ)u/F2
on a neighbourhood Vx of x such that

π̃Γ,u/F2
◦ s̃x = idVx . Indeed, take α ∈ Γ such that x ∈ C̃h2(Γ)u/F2,α

. By

Proposition 7.14, ˜πΓ,u/F2,α : R̃ep2(Γ)u/F2,α
→ C̃h2(Γ)u/F2,α

is obtained

by base change of πΓ,u/F2,α : Rep2(Γ)u/F2,α → Ch2(Γ)u/F2,α. Remark
6.18 follows that πΓ,u/F2,α has a section sΓ,α. Hence π̃Γ,u/F2,α has a

section s̃Γ,α. We can take C̃h2(Γ)u/F2,α
as a neighbourhood Vx of x. It

is easy to see that (ρ, λ) = s̃Γ,α(r, δ) is described by ρ(γ) = a(γ)I2 +

b(γ)

(
0 −r(α)2
1 0

)
and λ(γ) = r(γ) for γ ∈ Γ, where a(γ) = r(γ) −

r(α)δ(γ) and b(γ) = δ(γ).

Lemma 7.30. Let (ρ1, λ1), (ρ2, λ2) be tilde representations with unipo-
tent mold over F2 for a group (or a monoid) Γ on a scheme X over

F2. Let fi : X → R̃ep2(Γ)u/F2
be the morphism associated to (ρi, λi)

for i = 1, 2. If π̃Γ,u/F2
◦ f1 = π̃Γ,u/F2

◦ f2 : X → C̃h2(Γ)u/F2
, then for
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each x ∈ X there exists Px ∈ GL2(Γ(Vx,OX)) on a neighbourhood Vx
of x such that P−1

x ρ1Px = ρ2 and λ1 = λ2 on Vx.

Proof. In the same way as Lemma 6.19, we can prove the statement.
�

By a generalized tilde representation with unipotent mold over F2 for
Γ on X , we understand triples {(Ui, ρi, λi)}i∈I of an open set Ui and
a tilde representation (ρi, λi) with unipotent mold over F2 for Γ on Ui
satisfying the following three conditions:

(i) ∪i∈IUi = X ,
(ii) for each x ∈ Ui ∩ Uj , there exists Px ∈ GL2(Γ(Vx,OX)) on a

neighbourhood Vx ⊆ Ui ∩ Uj of x such that P−1
x ρiPx = ρj on

Vx.
(iii) λi = λj on Ui ∩ Uj for each i, j.

Generalized tilde representations {(Ui, ρi, λi)}i∈I and {(Vj, σj , µj)}j∈J
with unipotent mold over F2 are called equivalent if {(Ui, ρi, λi)}i∈I ∪
{(Vj, σj, µj)}j∈J is a generalized tilde representation with unipotent

mold over F2 again. Let us define the contravariant functor ˜Eq U2(Γ)F2
:

˜Eq U2(Γ)F2
: (Sch/F2)

op → (Sets)

X 7→
{

gen. tilde rep. with unip.
mold over F2 for Γ on X

}/
∼ .

Theorem 7.31. The scheme C̃h2(Γ)u/F2
is a fine moduli scheme as-

sociated to the functor ˜Eq U2(Γ)F2
for a group or a monoid Γ. In

other words, C̃h2(Γ)u/F2
represents the functor ˜Eq U2(Γ)F2

. The moduli

C̃h2(Γ)u/F2
is separated over F2; if Γ is a finitely generated group or

monoid, then C̃h2(Γ)u/F2
is of finite type over F2.

Proof. In the same way as Theorem 6.20, we can prove that C̃h2(Γ)u/F2

represents the functor ˜Eq U2(Γ)F2
by using Lemma 7.30. It follows from

Definition 7.9 that C̃h2(Γ)u/F2
is separated over F2. If Γ is finitely gener-

ated, then ΩΓ/F2
is a finitely generated module over A1(Γ)F2 by Remark

7.8. Hence C̃h2(Γ)u/F2
is of finite type over F2. �

Remark 7.32. For an associative algebra A over a commutative ring

R over F2, we can construct π̃A,u/F2 :
˜Rep2(A)u/F2

→ C̃h2(A)u/F2
in the

same way as group or monoid cases. Indeed, for c ∈ A, ˜Rep2(A)u/F2,c
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is defined as in Definition 7.1. By gluing { ˜Rep2(A)u/F2,c
}c∈A, we have

an R-scheme ˜Rep2(A)u/F2
such that p : ˜Rep2(A)u/F2

→ Rep2(A)u/F2 is

a faithfully flat finite morphism. Let A1(A) be the coordinate ring of
Rep1(A). As in Remark 5.25, we can construct A1(A)-module ΩA/R
such that Der(A,M) ∼= HomA1(A)(ΩA/R,M) for any A1(A)-module M .

Set C̃h2(A)u/F2
:= ProjS(ΩA/R). Then we can construct a Rep1(A)-

morphism π̃A,u/F2 : ˜Rep2(A)u/F2
→ C̃h2(A)u/F2

, which is a universal
geometric quotient by PGL2⊗ZR. By a tilde representation with unipo-
tent mold over F2 for A on an R-scheme X , we understand a pair (ρ, λ)
of a representation ρ of with unipotent mold over F2 for A on X and an
R-homomorphism λ : A→ OX(X) satisfying the following conditions:

(i) det(ρ(c)) = λ(c)2 for each c ∈ A.
(ii) {ρ(c)− λ(c)I2 | c ∈ A} spans a sub-line bundle of OX [ρ(A)].

As in Proposition 7.27, we see that ˜Rep2(A)u/F2
represents the following

contravariant functor:

(Sch/R)op → (Sets)

X 7→
{

tilde rep. with unipotent
mold over F2 for A on X

}
.

In a similar way as group or monoid cases, we can define general-
ized tilde representations with unipotent mold over F2 for A on an

R-scheme X . The contravariant functor ˜Eq U2(A)F2
from the category

of R-schemes to the category of sets is defined as

˜Eq U2(A)F2
: (Sch/R)op → (Sets)

X 7→
{

gen. tilde rep. with unip.
mold over F2 for A on X

}/
∼ .

We can prove that C̃h2(A)u/F2
is the fine moduli associated to ˜Eq U2(A)F2

in the same way as Theorem 7.31. The moduli C̃h2(A)u/F2
is separated

over R; if A is a finitely generated algebra over R, then C̃h2(A)u/F2
is

of finite type over R.

Example 7.33. Let k be a field of characteristic 2. Let K = k(α)
be a purely inseparable extension of k of degree 2 with β = α2 ∈ k.
Regarding K as a k-vector space of dimension 2, we have a k-algebra
homomorphism ρ : K → Endk(K) ∼= M2(k) by c 7→ (c′ 7→ cc′), which
is a representation with unipotent mold over F2. The matrix ρ(α) ∈
M2(k) has no eigenvalue in k, but has an eigenvalue after base change
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k → K. This example is an interesting case of representations with
unipotent mold over F2.
The universal representation σK,u/F2 with unipotent mold over F2 on

Rep2(K)u/F2 is characterized by σK,u/F2(α) because it is a k-algebra ho-
momorphism andK = k(α). Since tr(σK,u/F2

(α)) = 0 and σK,u/F2
(α)2 =

βI2, we can write Rep2(K)u/F2 = D(b)∪D(c) ⊂ Speck[a, b, c]/(a2+bc+

β) and σK,u/F2
(α) =

(
a b
c a

)
. Then ˜Rep2(K)u/F2

= D(b) ∪ D(c) ⊂
Speck[a, b, c, X ]/(a2+bc+β,X2−β). Identifying K with k[X ]/(X2−β),
we have ˜Rep2(K)u/F2

= D(b) ∪ D(c) ⊂ Spec K[a, b, c]/(a2 + bc +

β). In particular, ˜Rep2(K)u/F2
= Rep2(K)u/F2 ⊗k K. Remark that

Rep2(K)u/F2
= Rep2(K)u/F2,α and that ˜Rep2(K)u/F2

= ˜Rep2(K)u/F2,α
.

Let us use the same notation in Remark 6.23. The universal charac-
ter d′K on Rep′

1(K) is characterized by d′K(α), and it satisfies d′K(α)
2 =

β2. Hence we can write Rep′
1(K) = Speck[x]/(x2−β2) and d′K(α) = x.

The universal (a, b)-coefficients with respect to (α, d′K) on Ch2(K)u/F2,α

satisfies a(1) = 1, b(1) = 0, a(α) = 0, and b(α) = 1. By the condition
β = a(β) = a(α2) = a(α)2 + b(α)2d′K(α), we have x = β. Thus, we see
that Ch2(K)u/F2,α = Spec k[x]/(x − β) = Spec k. On the other hand,
Rep1(K) = Speck[x]/(x2−β) = SpecK because the universal character
dK on Rep1(K) satisfies dK(α)

2 = β. The A1(K)-module ΩK/k intro-
duced in Remark 7.32 is isomorphic to the free module A1(K)dα =

Kdα. Hence C̃h2(K)u/F2
= Proj S(A1(K)dα) = Rep1(K) = Spec K.

Therefore, the commutative diagram

˜Rep2(K)u/F2

p→ Rep2(K)u/F2

π̃K,u/F2 ↓ ↓ πK,u/F2

C̃h2(K)u/F2

q→ Ch2(K)u/F2

is identified with

Rep2(K)u/F2
⊗k K → Rep2(K)u/F2

↓ ↓
SpecK → Spec k,

which gives a fibre product. The representation ρ : K → Endk(K)
gives the only equivalence class of 2-dimensional representations of K
over k which have unipotent molds over F2.

Remark 7.34. For understanding the difference between the mod-

uli schemes C̃h2(Γ)u/F2
and Ch2(Γ)u/F2

, let us pay attention to the
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morphism q : C̃h2(Γ)u/F2
→ Ch2(Γ)u/F2

. Assume that a point x̃

of C̃h2(Γ)u/F2
is mapped to a point x of Ch2(Γ)u/F2. We can write

x̃ = [(ρ, λ)] and x = [ρ], where ρ : Γ → M2(k(x)) is a representa-
tion with unipotent mold over F2 on the residue field k(x) of x and
λ : Γ → k(x̃) is a character on the residue field k(x̃) of x̃ such that
(ρ, λ) is a tilde representation with unipotent mold over F2. It is easy to

see that C̃h2(Γ)u/F2
(K) → Ch2(Γ)u/F2

(K) is injective for any field K.

Hence q is universally injective (or radical) (see [2, Definition 3.5.4]).
Then k(x̃) is a purely inseparable extension of k(x). In that meaning,
q is a generalization of purely inseparable extension of fields and it is
globally defined.

Although q : C̃h2(Γ)u/F2
→ Ch2(Γ)u/F2 is surjective, C̃h2(Γ)u/F2

(K) →
Ch2(Γ)u/F2

(K) is not surjective in general. In the free monoid case,

q : C̃(m) → C(m) is described in Example 7.24. When m = 1,
q : A1

F2
→ A1

F2
is given by r1 7→ r21, where r1 = r(α1) and α1 is the

generator of the free monoid Υ1 = 〈α1〉. Let β be an element of a field
k of characteristic 2 such that α =

√
β /∈ k. Let x be the k-rational

point of C(1) ∼= A1
F2

given by r21 = r(α1)
2 = β ∈ k, and let x̃ be the

k(α)-rational point of C̃(1) ∼= A1
F2

given by r1 = r(α1) = α ∈ k(α).
Then x̃ corresponds to x and k(α) is a purely inseparable extension of

degree 2 over k (cf. Example 7.33). In particular, C̃(1)(k) → C(1)(k)
is not surjective, since x is not contained in the image. Remark that if
Γ is finitely generated, then the residue field k(x) of a closed point x
of Ch2(Γ)u/F2

is a finite field. In this case, k(x̃) = k(x) for the unique

point x̃ lying over x. Note that q : C̃(m) → C(m) induces a bijection

of sets C̃(m)(K) ∼= C(m)(K) if K is an algebraically closed field of
characteristic 2 and that q induces a purely inseparable extension of
the function fields of degree 2 (see also [13, Remark 3.3]).

Remark 7.35. We have introduced the notion of generalized tilde
representations with unipotent mold over F2 for describing the moduli

functors ˜EqU2(Γ)F2
and ˜EqU2(A)F2

. However, the moduli functors can

also be described as ˜EqU ′
2(Γ)F2

and ˜EqU ′
2(A)F2

by using the notion of
tilde representations generating sheaves of algebras which define unipo-
tent molds over F2. More precisely, see §8.
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8. Representations in sheaves of algebras

For describing the moduli functor EqSS2(Γ) (EqU2(Γ), or EqU2(Γ)F2),
we introduced the notion of generalized representations with semi-
simple mold (unipotent mold, unipotent mold over F2, respectively)
in §4-§6. However, we can also formulate these moduli functors by
using representations generating sheaves of OX -algebras which define
molds of rank 2 on a scheme X . In this section, we discuss this formula-

tion for describing the moduli schemes. We also reformulate ˜EqU2(Γ)F2

in §7 by using tilde representations generating sheaves of OX-algebras
which define unipotent molds over F2. The author needs to say that
this section was inspired by the referee.

Definition 8.1. Let Γ be a group or a monoid. Let A be a sheaf ofOX -
algebras on a scheme X . We say that a homomorphism ρ : Γ → A(X)
is a representation in A of Γ. For two representations ρ1 : Γ → A1(X)
and ρ2 : Γ → A2(X), we say that ρ1 and ρ2 are equivalent if there exists
an isomorphism φ : A1 → A2 as sheaves of OX-algebras such that
φ ◦ ρ1 = ρ2. We call a representation ρ : Γ → A(X) a representation
generating A if OX [ρ(Γ)] = A.

Let A be a sheaf of OX-algebras on a scheme X which is locally free
of rank 2. We define ΦA : A → EndOX

(A) by a 7→ (b 7→ ab) for each
open subset U of X and for each a, b ∈ A(U). Then ΦA is injective.
Remark that A(U) is a commutative ring since A is locally free of rank
2 and 1 ∈ A(X). For each x ∈ X , choose a neighbourhood Ux of x such
that A|Ux

∼= O⊕2
Ux
. By considering the inclusion A|Ux

∼= ΦA |Ux(A|Ux) ⊂
EndOUx

(A|Ux)
∼= M2(OUx), we obtain a mold of rank 2 on Ux.

Definition 8.2. If ΦA |Ux(A|Ux) is a semi-simple mold (unipotent mold,
or unipotent mold over F2) for each x ∈ X , we say that A defines a
semi-simple mold (unipotent mold, or unipotent mold over F2, respec-
tively). This definition does not depend on choices of neighbourhoods
Ux of x and isomorphisms A|Ux

∼= O⊕2
Ux
.

For a generalized representation {(Ui, ρi)}i∈I with semi-simple mold
(unipotent mold, unipotent mold over F2, respectively) of Γ on a scheme
X , we define a sheaf A of OX -algebras which is a locally free sheaf of
rank 2 as follows: Set Ai := OUi

[ρi(Γ)]. Let us define an isomorphism
ϕij : Ai |Ui∩Uj

→ Aj |Ui∩Uj
by ρi(γ) 7→ ρj(γ) for each γ ∈ Γ. It is

easy to check that ϕik = ϕjk ◦ϕij : Ai |Ui∩Uj∩Uk
→ Ak |Ui∩Uj∩Uk

and that

ϕij = ϕ−1
ji and ϕii = id. Hence by using [6, Chap. II, Ex.1.22], we obtain

a unique sheaf A of OX-algebras on X (up to isomorphism), together

with isomorphisms ψi : A |Ui

∼→ Ai such that ψj = ϕij ◦ ψi on Ui ∩ Uj
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for each i, j. Obviously, A is locally free of rank 2. If {(Ui, ρi)}i∈I is a
generalized representation with semi-simple mold (unipotent mold, or
unipotent mold over F2), then A defines a semi-simple mold (unipotent
mold, or unipotent mold over F2, respectively). By gluing {ρi : Γ →
M2(OUi

(Ui))}i∈I , we have a representation ρ : Γ → A(X) in A of

Γ such that Γ
ρ→ A(X)

res→ A(Ui)
ψi→ Ai(Ui) coincides with ρi for

each i ∈ I. Then ρ is a representation generating A. Thus each
generalized representation {(Ui, ρi)}i∈I corresponds to a representation
ρ : Γ → A(X) of Γ generating A on X .

Definition 8.3. Let us define the contravariant functor EqSS ′
2(Γ) from

the category of schemes to the category of sets as follows:

EqSS ′
2(Γ) : (Sch)op → (Sets)

X 7→





a representation of Γ generating
a sheaf of OX-algebras A which
is locally free of rank 2 and
defines a semi-simple mold on X





/
∼ .

We also define the contravariant functors EqU ′
2(Γ) : (Sch/Z[1/2])

op →
(Sets) and EqU ′

2(Γ)F2 : (Sch/F2)
op → (Sets) in the same way.

By the correspondence above, we obtain natural transformations
σs.s. : EqSS2(Γ) → EqSS ′

2(Γ), σu : EqU2(Γ) → EqU ′
2(Γ), and σu/F2

:
EqU2(Γ)F2 → EqU ′

2(Γ)F2.
Let us define natural transformations τs.s. : EqSS ′

2(Γ) → EqSS2(Γ),
τu : EqU ′

2(Γ) → EqU2(Γ), and τu/F2
: EqU ′

2(Γ)F2 → EqU2(Γ)F2 in the
following way. Let ρ be a representation of Γ generating A on a
scheme. Assume that A defines a semi-simple mold, unipotent mold,
or unipotent mold over F2 on X . For each x ∈ X , choose a neigh-
bourhood Ux such that A |Ux

∼= O⊕2
Ux
. Then by considering A |Ux

∼=
ΦA |Ux (A |Ux) ⊂ EndOUx

(A |Ux)
∼= M2(OUx), we have a representa-

tion ρx : Γ → M2(OUx) with the corresponding mold on Ux. It is easy
to check that {(Ux, ρx)}x∈X is a generalized representation with the cor-
responding mold on X and that the equivalence class of {(Ux, ρx)}x∈X
is well-defined. The equivalence class of {(Ux, ρx)}x∈X does not depend
on choosing a representative of the equivalence class of ρ : X → A(X).
This correspondence defines τs.s., τu, and τu/F2.
It is straightforward to verify that τs.s. ◦ σs.s. = 1EqSS2(Γ) and σs.s. ◦

τs.s. = 1EqSS′

2(Γ)
and so on. Hence we can obtain the following:
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Proposition 8.4. There are canonical isomorphisms:

EqSS2(Γ) ∼= EqSS ′
2(Γ),

EqU2(Γ) ∼= EqU ′
2(Γ),

EqU2(Γ)F2
∼= EqU ′

2(Γ)F2.

In particular, Ch2(Γ)s.s., Ch2(Γ)u, and Ch2(Γ)u/F2
represent EqSS ′

2(Γ),
EqU ′

2(Γ), and EqU ′
2(Γ)F2, respectively.

In the case of unipotent molds over F2, we can define another functor
EqU ′′

2 (Γ)F2:

Definition 8.5. Let A be a sheaf of OX-algebras which is locally free
of rank 2 on a scheme X over F2. We say that a ∈ A(X) is scalar if
there exists f ∈ OX(X) such that a = f · 1A. We define EqU ′′

2 (Γ)F2 by

EqU ′′
2 (Γ)F2 : (Sch/F2)

op → (Sets)

X 7→





a representation ρ of Γ
generating a sheaf of
OX -algebras A which is
locally free of rank 2 on X
such that ρ(γ)2 is scalar
for each γ ∈ Γ





/
∼ .

Proposition 8.6. There are canonical isomorphisms

EqU2(Γ)F2
∼= EqU ′

2(Γ)F2
∼= EqU ′′

2 (Γ)F2.

Proof. It suffices to prove that EqU ′
2(Γ)F2

∼= EqU ′′
2 (Γ)F2. For [ρ : Γ →

A(X)] ∈ EqU ′
2(Γ)F2(X) with a scheme X over F2, ρ(γ)

2 = det(ρ(γ))·1A
is scalar for each γ ∈ Γ. Hence [ρ : Γ → A(X)] ∈ EqU ′′

2 (Γ)F2(X).
Conversely, let [ρ : Γ → A(X)] ∈ EqU ′′

2 (Γ)F2(X). For x ∈ X , there
exist γ ∈ Γ and a neighbourhood U of x such that A |U∼= OU · 1U ⊕
OU · ρ(γ). Since ρ(γ)2 is scalar, ρ(γ)2 = c · 1A for some c ∈ OU (U). By
the Cayley-Hamilton theorem, ρ(γ)2 − tr(ρ(γ))ρ(γ) + det(ρ(γ))I2 = 0
on U . Thus we have tr(ρ(γ)) = 0 and det(ρ(γ)) = c on U . For any
γ′ ∈ Γ, ρ(γ′) = aI2 + bρ(γ) on U for some a, b ∈ OU(U). This implies
that tr(ρ(γ′)) = atr(I2) + btr(ρ(γ)) = 0. Hence A defines a unipotent
mold over F2 and that [ρ : Γ → A(X)] ∈ EqU ′

2(Γ)F2(X). Therefore we
have proved that EqU ′

2(Γ)F2
∼= EqU ′′

2 (Γ)F2. �

Let A be a sheaf of OX-algebras which is locally free of rank 2 on
a scheme X over F2. Let ρ : Γ → A(X) be a representation of Γ
generating A, and let χ : Γ → OX(X) be a character. We say that a
pair (ρ, χ) is a tilde representation with unipotent mold over F2 for Γ
generating A on X if {ρ(γ)− χ(γ) · 1A}γ∈Γ spans a sub-line bundle of
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A and (ρ(γ)− χ(γ) · 1A)2 = 0 for any γ ∈ Γ. (Then we can prove that
A defines a unipotent mold over F2 as in the proof of Proposition 8.8.)
For two tilde representations (ρ1, χ1) and (ρ2, χ2) with unipotent mold
over F2 for Γ on X , we say that they are equivalent if χ1 = χ2 and
there exists an isomorphism φ : A1 → A2 as sheaves of OX-algebras
such that φ ◦ ρ1 = ρ2, where ρi is a homomorphism ρi : Γ → Ai(X) for
i = 1, 2.

Definition 8.7.

˜EqU ′
2(Γ)F2 : (Sch/F2)

op → (Sets)

X 7→




(ρ, χ)

(ρ, χ) is a tilde representation
with unipotent mold over F2

for Γ generating a sheaf of
OX-algebras A





/
∼ .

Proposition 8.8. There is a canonical isomorphism

˜EqU2(Γ)F2

∼= ˜EqU ′
2(Γ)F2

.

Proof. Let {(Ui, ρi, λi)}i∈I ∈ ˜EqU2(Γ)F2
(X) be a generalized tilde

representation with unipotent mold over F2 for Γ on a scheme X over
F2. Since {(Ui, ρi)}i∈I ∈ EqU2(Γ)F2(X), we have [ρ : Γ → A(X)] ∈
EqU ′

2(Γ)F2(X) by EqU2(Γ)F2(X) ∼= EqU ′
2(Γ)F2(X). By gluing {(Ui, λi)}i∈I ,

we can define a character χ : Γ → OX(X) such that χ |Ui
= λi for

i ∈ I. Note that det ρi(γ) = χ(γ)2 on Ui. It is easy to see that

(ρ, χ) ∈ ˜EqU ′
2(Γ)F2

(X). This correspondence induces a natural trans-

formation σ̃u/F2 :
˜EqU2(Γ)F2

→ ˜EqU ′
2(Γ)F2

.

Conversely, let (ρ, χ) ∈ ˜EqU ′
2(Γ)F2

(X). For each point x ∈ X , there
exist αx ∈ Γ and a neighbourhood Ux of x such that A|Ux

∼= OUx · 1A ⊕
OUx · ρ(αx). Denote Γ

ρ→ A|Ux
∼= ΦA |Ux (A |Ux) ⊂ EndOUx

(A |Ux)
∼=

M2(OUx) by ρx. By the assumption, (ρx(αx) − χ(αx)I2)
2 = 0. Then

ρx(αx)
2 − χ(αx)

2I2 = tr(ρx(αx))ρx(αx) − det(ρx(αx))I2 − χ(αx)
2I2 =

0. Hence tr(ρx(αx)) = 0 and det(ρx(αx)) = χ(αx)
2. Since {ρ(γ) −

χ(γ) · 1A}γ∈Γ spans a sub-line bundle of A, for each γ ∈ Γ there exists
c ∈ OX(Ux) such that ρ(γ) − χ(γ) · 1A = c(ρ(αx) − χ(αx) · 1A) on
Ux. We have ρx(γ) = (χ(γ) − cχ(αx))I2 + cρx(αx). Putting a(γ) =
χ(γ)−cχ(αx) and b(γ) = c, we obtain ρx(γ) = a(γ)I2+b(γ)ρx(αx) and
χ(γ) = a(γ)+ b(γ)χ(αx). Thereby tr(ρx(γ)) = 0 and det ρx(γ) = χ(γ)2

for each γ ∈ Γ. It is easy to check that A defines a unipotent mold

over F2 and that {(Ux, ρx, χ|Ux)}x∈X ∈ ˜EqU2(Γ)F2
(X). Therefore this
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correspondence induces a natural transformation τ̃u/F2
: ˜EqU ′

2(Γ)F2
→

˜EqU2(Γ)F2
.

It is easy to see that τ̃u/F2 ◦ σ̃u/F2 = 1 ˜EqU2(Γ)F2
and that σ̃u/F2 ◦ τ̃u/F2 =

1 ˜EqU ′

2(Γ)F2

. This completes the proof. �

In the case of representations of an associative algebra over a com-
mutative ring, we have similar results as the group or monoid cases.

Definition 8.9. Let A be an associative algebra over a commutative
ring R. Let A be a sheaf of OX -algebras on an R-scheme X . We say
that an R-homomorphism ρ : A → A(X) is a representation in A of
A. For two representations ρ1 : A → A1(X) and ρ2 : A → A2(X),
we say that ρ1 and ρ2 are equivalent if there exists an isomorphism
φ : A1 → A2 as sheaves of OX-algebras such that φ ◦ ρ1 = ρ2. We
call a representation ρ : A → A(X) a representation generating A if
OX [ρ(A)] = A.

In the same way as group or monoid cases, we define EqSS ′
2(A),

EqU ′
2(A), and EqU ′

2(A)F2. Similarly, we have

Proposition 8.10. There are canonical isomorphisms:

EqSS2(A) ∼= EqSS ′
2(A),

EqU2(A) ∼= EqU ′
2(A),

EqU2(A)F2
∼= EqU ′

2(A)F2.

Hence we can conclude that Ch2(A)s.s., Ch2(A)u, and Ch2(A)u/F2

represent EqSS ′
2(A), EqU ′

2(A), and EqU ′
2(A)F2, respectively.

Definition 8.11. Let A be a sheaf of OX-algebras which is locally free
of rank 2 on an R-scheme X . Let ρ : A → A(X) be a representation
generating A on X , and let χ : A → OX(X) be an R-homomorphism.
We say that (ρ, χ) is a tilde representation with unipotent mold over
F2 for A generating A on X if {ρ(c) − χ(c) · 1A}c∈A spans a sub-line
bundle of A and (ρ(c)− χ(c) · 1A)2 = 0 for any c ∈ A.

We can also define ˜EqU ′
2(A)F2

. Similarly, we have

Proposition 8.12. There are a canonical isomorphism:

˜EqU2(A)F2

∼= ˜EqU ′
2(A)F2

.

In particular, C̃h2(A)u/F2
represents ˜EqU ′

2(A)F2
.
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9. Appendix: Discriminants

In this section we deal with the discriminant locus of the represen-
tation variety of degree 2. The discriminant locus is exactly the subset
consisting of representations which are not absolutely irreducible. We
describe the absolutely irreducible representation part of the represen-
tation variety of degree 2 explicitly (cf. [15] or [16]).

Definition 9.1 ([15], [16]). Let R be a commutative ring. For A,B ∈
M2(R) we define the discriminant ∆(A,B) by

∆(A,B) := tr(A)2 det(B) + tr(B)2 det(A) + tr(AB)2

−tr(A)tr(B)tr(AB)− 4 det(A) det(B).

From the definition we see that ∆(A,B) = ∆(B,A). If A,B ∈ GL2(R),
then ∆(A,B) = det(A) det(B)tr(ABA−1B−1 − I2).

Remark 9.2. The discriminant ∆(A,B) above is closely related to
the discriminant in [10]. For A1, A2, A3, A4 ∈ M2(R) we define the
discriminant of degree 2 in [10] by

∆(A1, A2, A3, A4) := det




a(1)11 a(1)12 a(1)21 a(1)22
a(2)11 a(2)12 a(2)21 a(2)22
a(3)11 a(3)12 a(3)21 a(3)22
a(4)11 a(4)12 a(4)21 a(4)22


 ,

where Ai =

(
a(i)11 a(i)12
a(i)21 a(i)22

)
for i = 1, 2, 3, 4. Then we have

∆(A,B) = −∆(I2, A, B,AB).

Note that ∆(A1, A2, A3, A4) ∈ R× if and only if {A1, A2, A3, A4} is an
R-basis of M2(R).

Lemma 9.3. Let k be a field. Assume that A ⊆ M2(k) is a subalgebra
over k. Then A 6= M2(k) if and only if A is commutative or there
exists a 1-dimensional A-invariant subspace of k2.

Proof. The “if” part is easy. We only need to prove the “only
if” part. Suppose that A 6= M2(k). If A has no nontrivial invariant
subspace, then k2 is a simple A-module. Since the Jacobson radical
JacA is equal to ∩M : simpleAnnM = 0, the algebra A is semi-simple.
From the Wedderburn Theorem we see that A is a product of the full
matrix rings over division algebras over k. Because A has a faithful 2-
dimensional simple module and dimA ≤ 3, the algebra A is isomorphic
to a quadratic extension of k. Hence A is commutative. ✷
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Proposition 9.4. Let k be a field. Suppose that A,B ∈ M2(k) and A
is the k-subalgebra of M2(k) generated by A and B. Then the following
conditions are equivalent:

(i) ∆(A,B) = 0.
(ii) A 6= M2(k).
(iii) A and B are commutative or A and B have a common invari-

ant subspace of dimension 1.

Proof. The part (ii) ⇔ (iii) follows from Lemma 9.3. The part (ii)
⇒ (i) follows from that {I2, A, B,AB} is not a basis of M2(k) and that
∆(A,B) = −∆(I2, A, B,AB) = 0 by Remark 9.2. We only have to
prove (i) ⇒ (ii).
We assume that ∆(A,B) = 0. First, we show that AB and BA

can be expressed as linear combinations of {I2, A, B}. Here let us
consider the case AB. From ∆(A,B) = 0, we see that {I2, A, B,AB}
is linearly dependent. Hence there exist ci ∈ k (1 ≤ i ≤ 4) such that
c1I2+ c2A+ c3B+ c4AB = 0 and some ci 6= 0. If c4 6= 0, then the claim
is true. If c4 = 0, then either c2 6= 0 or c3 6= 0 holds. When c2 6= 0, the
matrix A is expressed as a linear combination of I2 and B, and hence
AB can be expressed as a polynomial of B. By the Cayley-Hamilton
Theorem, AB can be expressed as a linear combination of I2 and B.
We can also prove the claim for the c3 6= 0 case. Thus we have shown
that AB can be expressed as a linear combination of {I2, A, B}. We
can also prove the BA case in the same way.
Next, we show that any monomial of A and B can be expressed as

a linear combination of {I2, A, B}. This implies that A 6= M2(k). We
prove the claim by induction on the length of monomials. The length
0, 1 and 2 cases are true. Suppose that the length n−1 case is true for
n ≥ 3. Let X be a monomial whose length is n. If X has a subsequence
AB or BA, then X can be reduced to the the length n − 1 case from
the above claim. If X has a subsequence AA or BB, then from the
Cayley-Hamilton Theorem we also see that X can be reduced to the
length n− 1 case. This completes the proof. ✷

Corollary 9.5. Let k be a field. Suppose that A is a k-subalgebra of
M2(k). Then the following conditions are equivalent:

(i) ∆(A,B) = 0 for each A,B ∈ A.
(ii) A 6= M2(k), or equivalently the A-module k2 is not absolutely

irreducible.
(iii) A is commutative or A has an invariant subspace of dimension

1.
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Proof. The part (ii) ⇔ (iii) follows from Lemma 9.3. Suppose that
(ii) holds. For any A,B ∈ A, the matrices A and B do not generate
the full matrix ring M2(k), so ∆(A,B) = 0 from the above proposition.
This shows that (ii) ⇒ (i) holds.
We now prove (i) ⇒ (ii). Assume that (i) holds. Suppose that

A = M2(k). For

A =

(
1 1
0 1

)
, B =

(
1 0
1 1

)
∈ A,

we have ∆(A,B) = 1 6= 0. This is a contradiction. Therefore we have
proved (i) ⇒ (ii). ✷

Here we introduce another invariant.

Definition 9.6. Let R be a commutative ring. For A,B,C ∈ M2(R)
we define τ(A,B,C) by

τ(A,B,C) := tr(ABC)− tr(ACB)

or equivalently,

τ(A,B,C) = 2tr(ABC)− tr(A)tr(BC)− tr(B)tr(CA)− tr(C)tr(AB)

+tr(A)tr(B)tr(C).

Remark 9.7. The above τ is closely related to the discriminant defined
in [10]. Indeed, τ(A,B,C) = ∆(A,B,C, I2) holds for A,B,C ∈ M2(R).

Definition 9.8. Let k be a field. Pick x ∈ k2 − {0}. We denote
by x the equivalence class containing x in P1

k := (k2 − {0})/k×. For
A ∈ M2(k) we say that x is an A-fixed point if x is an eigenvector
of A. In particular if A ∈ GL2(R), then A can be regarded as an
automorphism of P1

k, and so x is an A-fixed point if and only if x is
fixed by A as a point of P1

k.

Remark 9.9. If A ∈ M2(k) is not a scalar matrix, then A has at most
two fixed points in P1

k.

Proposition 9.10. Let k be a field. Suppose that A,B,C ∈ M2(k)
and that A is a k-subalgebra of M2(k) generated by A,B,C. Then the
following conditions are equivalent.

(i) ∆(A,B) = ∆(B,C) = ∆(C,A) = τ(A,B,C) = 0.
(ii) A 6= M2(k), or equivalently the A-module k2 is not absolutely

irreducible.

Furthermore, if A,B,C ∈ GL2(k), then the following condition is also
equivalent to the above two conditions.

(iii) ∆(A,B) = ∆(B,C) = ∆(C,A) = ∆(AB,C) = 0.
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Proof. Since we may replace k with an algebraic closure k of k, we
assume that k is an algebraic closed field from the beginning. Note
that A 6= M2(k) if and only if the A-module k2 is not irreducible when
k = k.
(ii) ⇒ (i) The A-module k2 is not irreducible, so there exists P ∈

GL2(k) such that

P−1AP =

(
∗ ∗
0 ∗

)
, P−1BP =

(
∗ ∗
0 ∗

)
, P−1CP =

(
∗ ∗
0 ∗

)
.

This immediately implies that tr(ABC) = tr(ACB). Hence we have
τ(A,B,C) = 0. By Corollary 9.5, ∆(A,B) = ∆(B,C) = ∆(C,A) = 0.
(i) ⇒ (ii) If one of A,B,C is a scalar matrix, then (i) ⇒ (ii) follows

from Proposition 9.4. Hence we may assume that none of A,B,C are
scalar matrices. Note that if X ∈ M2(k) is not a scalar matrix, then
X has at most two fixed points in P1

k. Suppose that one of A,B,C
has exactly one fixed point in P1

k. Then the others have the same fixed
point in P1

k since it follows from ∆(A,B) = ∆(B,C) = ∆(C,A) =
0 and Proposition 9.4 that k2 is not an irreducible module over the
subalgebras generated by any two of A,B,C. Hence the A-module k2

is not irreducible.
Now let us consider the case that each of A,B,C has exactly two

fixed points in P1
k. If A,B,C have a common fixed point, then we see

that (i) ⇒ (ii). Suppose that A,B,C have no common fixed point.
By ∆(A,B) = ∆(B,C) = ∆(C,A) = 0, we may assume that A has
eigenvectors u and v, B has v and w, and C has w and u. With respect
to the basis {u, v}, the matrices A,B,C have the following forms:

A =

(
a1 0
0 a4

)
, B =

(
b1 0
b3 b4

)
, C =

(
c1 c2
0 c4

)
.

Since A,B,C have no common eigenvector, b3 6= 0 and c2 6= 0. Hence
we have tr(ABC) = a1b1c1 + a4b3c2 + a4b4c4 and tr(ACB) = a1b1c1 +
a1b3c2 + a4b4c4. Therefore τ(A,B,C) = (a4 − a1)b3c2 6= 0, since A is
not a scalar matrix. This is a contradiction. Therefore we have shown
that (i) ⇒ (ii).
(ii) ⇒ (iii) This follows from Corollary 9.5.
(iii) ⇒ (ii) In the same way as the discussion above in the (i) ⇒

(ii) part, we only need to consider the case that A,B,C have exactly
two fixed points in P1

k. Suppose that A,B,C have no fixed point.
From the assumption that ∆(A,B) = ∆(B,C) = ∆(C,A) = 0 we may
assume that A has eigenvectors u and v, B has v and w, and C has w
and u, where u, v, and w are distinct up to scalar multiplication. The
assumption that ∆(AB,C) = 0 implies that AB and C have a common
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eigenvector. It is w or u. If w is an eigenvector of AB, then it is also
an eigenvector of A because B ∈ GL2(k). This is a contradiction. If
u is an eigenvector of AB, then it is also an eigenvector of B because
A ∈ GL2(k). This is also a contradiction. Hence the matrices A,B,C
have a common eigenvector, which implies that A 6= M2(k). �

From the above proposition we obtain the following proposition.

Proposition 9.11. Let Γ be a group with a subset G = {αi}i∈I gener-
ating Γ. Assume that the index set I is a totally ordered set. The air
part Rep2(Γ)air of the representation variety of degree 2 for Γ is equal
to ⋃

i<j

D(∆(σΓ(αi), σΓ(αj))) ∪
⋃

i<j<k

D(τ(σΓ(αi), σΓ(αj), σΓ(αk)))

or ⋃

i<j

D(∆(σΓ(αi), σΓ(αj))) ∪
⋃

i<j<k

D(∆(σΓ(αiαj), σΓ(αk))).

Here σΓ is the universal representation and D(∗) is the open subset
where ∗ does not vanish.

Proof. Let k(x) be the residue field of a point x of Rep2(Γ). Note
that x ∈ Rep2(Γ)air if and only if k(x)[σΓ(Γ)] = M2(k(x)). By the
Cayley-Hamilton theorem, we have ρ(α−1) ∈ k(x)[ρ(α)] for α ∈ Γ.
Since dimk(x)M2(k(x)) = 4, we see that x ∈ Rep2(Γ)air if and only if
there exist α1, α2, α3 ∈ G which generate M2(k(x)) as a k(x)-algebra.
Hence we can verify the statement by Proposition 9.10. �

In a similar way, we obtain the following proposition.

Proposition 9.12. Let Γ be a monoid with a subset G = {αi}i∈I
generating Γ. Assume that the index set I is a totally ordered set. The
air part Rep2(Γ)air of the representation variety of degree 2 for Γ is
equal to

⋃

i<j

D(∆(σΓ(αi), σΓ(αj))) ∪
⋃

i<j<k

D(τ(σΓ(αi), σΓ(αj), σΓ(αk))).
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