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Abstract. There are 6 types of 2-dimensional representations in
general. For any groups and any monoids, we can construct the
moduli of 2-dimensional representations for each type: the moduli
of absolutely irreducible representations, representations with Borel
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unipotent mold, representations with unipotent mold over F3, and
representations with scalar mold. We can also construct them for
any associative algebras.
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1. INTRODUCTION

In this paper we deal with the moduli of representations of degree 2.
We can classify 2-dimensional representations into 6 types in general.
For any groups and any monoids, we can construct the moduli of 2-
dimensional representations for each type. For any associative algebras,
we can also construct them for each type.

In [I2] we have introduced the notion of mold. A mold is, so to
say, a subalgebra of the full matrix ring. More precisely, a subsheaf
of Ox-algebras A C M,,(Ox) on a scheme X is called a mold if A is
a subbundle of M,,(Ox). Let I' be a group or a monoid. By a homo-
morphism p : I' = M, (I'(X, Ox)), we understand an n-dimensional
representation of I' on a scheme X. We say that a representation
p has a mold A if the subsheaf of Ox-algebras Ox[p(I")] of M,,(Ox)
generated by p(I") coincides with A. It is effective to classify represen-
tations with respect to molds for constructing the moduli of equivalence
classes of representations. If we try to construct the moduli of equiv-
alence classes of all representations without classifying representations
with respect to molds, then two representations which have the same
composition factors coincide as points of the moduli even if they are
not equivalent. For separating such representations in the moduli, we
need to collect only representations which have the same mold. For
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example, we have constructed the moduli of equivalence classes of ab-
solutely irreducible representations denoted by Ch,, ("), in [10], where
p: ' = M,(I'(X,Ox)) is absolutely irreducible if Ox[p(I")] coincides
with the full matrix ring M,,(Ox). We also have constructed the mod-
uli of equivalence classes of representations with Borel mold denoted
by Ch,(T)p in [12], where p : I' — M, (I'(X, Ox)) is a representation
with Borel mold if for each x € X there exists P € GL,(Ox(U)) on a
neighbourhood U of x such that P - Oy[p(T)] - P~! coincides with the
subsheaf of Op-algebras of M,,(Op) consisting of upper triangular ma-
trices. The author calls the plan to construct the moduli of equivalence
classes of representations for any suitable molds “mold program”. In
this article, we will complete the mold program of degree 2.

For k-subalgebras A and B of the full matrix ring My (k) over an alge-
braically closed field k, we say that A and B are equivalent if there exists
P € GLy(k) such that P"'AP = B. There are 5 equivalence classes

of k-subalgebras A of Ma(k): (1) A = Ma(k), (2) A = {( X

0« ) [
(3)A:{<S 2)} (4),4:{(8 2) a,bek}, (5) A =
L)

resentations of a group or a monoid I'. By equivalence classes of the
subalgebra k[p(I')] of Ma(k), we classify 2-dimensional representations
into 6-types (not 5-types!). For each cases (1)—(5), we say that p is
(1) an absolutely irreducible representation, (2) a representation with
Borel mold, (3) a representation with semi-simple mold, (4) a repre-
sentation with unipotent mold, (5) a representation with scalar mold,
respectively. In the case (4), we need to divide representations with
unipotent mold into 2 types: (4-a) when chk # 2, we say p is a repre-
sentation with unipotent mold, and (4-b) when chk = 2, we say p is a
representation with unipotent mold over Fy. It is natural to divide the
case (4) into 2 types for constructing the “good” moduli of representa-
tions with unipotent mold. Here, by constructing the “good” moduli of
representations, we understand constructing smooth moduli schemes of
representations at least for free monoids (more precisely, see the begin-
ning of §5). Hence there are 6 types of 2-dimensional representations
in general.

In §3, we introduce the notions of (1), (2), (3), (4-a), (4-b), (5) on
2-dimensional representations on arbitrary schemes X (Definitions 2.7,
B4 B.5 B.6, and B.8). For 2-dimensional representations py, p2 on X,

a€k p. Let p: I' — My(k) be a 2-dimensional rep-
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we say that pi, py are equivalent (or p; ~ po) if there exists a ['( X, O )-
algebra isomorphism o : My(I'(X,Ox)) — Ma(I'(X, Ox)) such that
a(p1(7)) = pa(7) for any v € T'. If p; ~ po, then for each z € X
there exists P € GL2(Ox(U)) on a neighbourhood U of x such that
P7pi(7)P = po(7y) on U for any v € I'. We have constructed the mod-
uli of equivalence classes of representations in the cases (1) absolutely
irreducible representations and (2) representations with Borel mold in
[10] and [12], respectively. In the case (5) representations with scalar
mold, we can easily construct the moduli (Theorem 3.12)). In the cases
(3) representations with semi-simple mold, (4-a) representations with
unipotent mold, and (4-b) representations with unipotent mold over
Fy, we have the following theorems:

Theorem 1.1 (Theorem E29). There exists a fine moduli scheme
Chy(I)ss. associated to the sheafification £qSSo(I') of the functor
(Sch)”? — (Sets)
D% o 2-dimensional representations /
with semi-simple mold of I' on X

with respect to Zariski topology for arbitrary group or monoid I'. The
moduli Chy(T)ss. is separated over Z; if T' is a finitely generated group
or monoid, then Chy(I')ss is of finite type over Z.

Theorem 1.2 (Theorem [B.23)). There ezists a fine moduli scheme
Chy(I"), associated to the sheafification EqUs(I") of the functor
(Sch/Z[1/2])* — (Sets)
D% s 2-dimensional representations /
with unipotent mold of I on X

with respect to Zariski topology for arbitrary group or monoid I'. The
moduli Chy(T'), is separated over Z[1/2]; if T' is a finitely generated
group or monoid, then Chy(I'), is of finite type over Z[1/2].

Theorem 1.3 (Theorem [6.20). There exists a fine moduli scheme
Chy(I')u/r, associated to the sheafification EqUs(T)r, of the functor

(Sch/Fy)? — (Sets)
D% . 2-dimensional representations with /
unipotent mold over Fy of I' on X

with respect to Zariski topology for arbitrary group or monoid I'. The
moduli Chy (), /r, is separated over Fy; if I' is a finitely generated group
or monoid, then Chy(I'),/r, is of finite type over Fy.

For any associative algebra A over any commutative ring R, we also
obtain the same theorems on 2-dimensional representations of A over R:
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There exist fine moduli schemes Chy(A)ss., Chy(A),, and Chy(A),/r,
separated over R. If A is finitely generated associative algebra over R,
then the fine moduli schemes Chy(A)ss., Cha(A),, and Chy(A),/r, are
of finite type over R (Remarks 30 (.24 525 622 and 623). These

theorems are main results of this article.

As a continuation of this article, we can deal with the absolutely
irreducible representations parts of the representation variety and the
character variety: Repy(I')ay and Chy(I').;, in [I0]. For a group or a
monoid I, the representation variety Rep,(I') is the affine scheme rep-
resenting the contravariant functor which maps each scheme X to the
set of 2-dimensional representations of I' on X. For x = air, B, s.s.,
u, u/Fq, or scalar, Repy(I'), denotes the subscheme of Rep,(I') con-
sisting of 2-dimensional representations with the mold corresponding
to *. For a field k, the set of k-rational points of the representation
variety Rep,(I') is the disjoint union of the sets of k-rational points
of Rep2(r)aira Rep2(F)Ba Rep2(r)s.s.> Rep2(r)u (OI‘ Rep2(r)u/ﬁ72)’ and
Reps(IM)scalar- Hence for a finitely generated group or monoid I" and for
the finite field F,, the number of F -rational points of Repy(I)a;; can
be calculated from those of Rep,(I') and the others Rep,y(I').. Since
Repy(T)air — Chy(I)air is a PGLy-principal fibre bundle, the number
of F-rational points of Chy(I"),;, can be also calculated from the result
of Repy(I')asy. Similarly, the virtual Hodge polynomials of Repy(I')ai
and Chy(T"),;; over C can be calculated from those of Rep,(I') and the
others Rep,(I'). over C. The existence of such geometric objects as the
moduli of representations with several molds helps us to understand
relations between the numbers of equivalence classes of representations
of I" over [F, and virtual Hodge polynomials of the moduli (¢f. [13]).

In [13], the authors deal with the case that I is the free monoid 1,,
of rank m. Since Rep,(Y,,) is isomorphic to Mg X - - - x My (m times),
the numbers of the F,-rational points of Repy(Yy,)air and Cha(Y,)air
have been calculated explicitly. (The author needs to mention that our
strategy to calculate the numbers of the I -rational points is essentially
same as [I] and [7]. Moreover, the method of [14] is much easier than
our strategy.) We have also calculated the virtual Hodge polynomials of
Reps(Tin)air and Chy (Y, )air- We see that the Hasse-Weil zeta functions
of Repy(Tn)air and Chy (Y, )air satisfy functional equations.

The organization of this article is as follows: in §2, we review rep-
resentations and molds on schemes. We also review the moduli of ab-
solutely irreducible representations and the moduli of representations
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with Borel mold. In §3, we introduce several molds of degree 2: semi-
simple mold, unipotent mold, unipotent mold over 5, and scalar mold.
We also introduce the moduli of representations with scalar mold. In
84, we construct the moduli of equivalence classes of representations
with semi-simple mold. In §5, we construct the moduli of equiva-
lence classes of representations with unipotent mold over Z[1/2]. In §6,
we construct the moduli of equivalence classes of representations with
unipotent mold over Fy. In §7, we deal with different approach from
§6. The approach in §7 gives us another construction of the moduli of
equivalence classes of representations with unipotent mold over Fy by
using derivations as in §5. In §8, we reformulate the moduli functors by
using the notion of representations generating sheaves of Ox-algebras
which define molds of rank 2. In §9, we deal with discriminants which
describe the absolutely irreducible representation part Repy(I')as;, in the
representation variety Rep,(I') as an appendix.

The author would like to thank Takeshi Torii for his essential ideas
and important suggestions on the moduli of representations. Although
his name does not appear in the list of the authors, his contribution to
this paper is not ignorable. This article has been inspired by his descrip-
tions of the moduli of representations and approaches from viewpoints
of algebraic topology, and so on, which will be written in [13].

The author would like to express his gratitude to the referee for sug-
gesting several important points. Example [6.2T], §7, and §8 have been
inspired by the referee. The author also wants to thank Michiaki Inaba.
He suggested the proof of Lemma [.20, which states the “descent” of
universal geometric quotients.

2. PRELIMINARIES

In this section, we review representations and molds on schemes.
(For details, see [10] and [12].)

Definition 2.1 ([10]). Let I' be a group or a monoid. By a rep-
resentation of I' on a scheme X, we understand a group homomor-
phism (or a monoid homomorphism) p : I' — M, (I'(X,Ox)). For
two representations p and p’, we say that p and p’ are equivalent to
each other (or p ~ p) if there exists an Ox-algebra isomorphism
o M,(I'(X,0x)) = M,(I'(X,Ox)) such that o(p(v)) = p'(vy) for
each vy e I'.

Remark 2.2 ([I0]). Let p and p’ be n-dimensional representations of
['on X. If p ~ p/, then for each z € X there exists P € GL,(Ox(U))
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on a neighbourhood U of x such that P~!p(y)P = p/(v) on U for any
~v € I'. Indeed, the group scheme PGL,, over Z represents the functor

(Sch)”? — (Sets)
X — AUtoX—alg(Mn(OX))'

For details, see [10, Definition 6.1 and Theorem 6.2].

Definition 2.3 ([10]). Let I" be a group or a monoid. The following
contravariant functor is representable by an affine scheme:

Rep,(I') : (Sch)®” — (Sets)
X — {p: rep. of deg n for I' on X }.

We call the affine scheme Rep,, (I') the representation variety of degree n
for I'. The group scheme PGL,, over Z acts on Rep,,(I') by p — P~!pP.
Each PGL,-orbit forms an equivalence class of representations. If I" is
a finitely generated group (or monoid), then Rep, (I') is of finite type
over Z.

Definition 2.4 ([12]). Let A be a subsheaf of M,,(Ox) of Ox-algebras
on a scheme X. We say that A is a mold on X if M, (Ox)/A is
locally free. Let rank.4A denote the rank of a mold A as a locally free
sheaf. For two molds A,B C M, (Ox) on X, we say that A and B
are locally equivalent if there exist an open covering X = U;c;U; and
P; € GL,(Ox (Uy)) such that P;(A |y,)P. ' = B |y, for each i € I.

Here let us introduce an example of molds.
Example 2.5 ([12]). We define the mold B,, on Spec Z by
B, = {(ai;) € M(Z) | a;; =0 for each i > j }.

For a mold A C M, (Ox) on a scheme X, we say that A is a Borel
mold if A and B,, ®7 Ox are locally equivalent to each other.

Definition 2.6 ([12]). Let A be a mold on a scheme X. For a repre-
sentation p of I' on X, we say that p has mold type A if the image p(T")
generates A as an Ox-algebra.

Definition 2.7 ([12]). Let p be an n-dimensional representation of T'
on a scheme X. We say that p is an absolutely irreducible represen-
tation (or air) if p has mold type M, (Ox). We also say that p is a
representation with Borel mold if p has a Borel mold type.

Proposition 2.8 ([10], [12]). The contravariant functor

Rep,(INar @ (Sch)®” — (Sets)
X — { air of degree n for I' on X }
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is representable by an open subscheme Rep,, (). of Rep,(I'). The
contravariant functor

Rep,(I')g : (Sch)” — (Sets)
rep. with Borel mold of degree n
X ~ { forT"on X

is representable by a subscheme Rep,(I')p of Rep, (I'). The action
of PGL,, on Rep, (I') induces the ones of PGL, on Rep, (') and
Rep,,(I') 5.

For absolutely irreducible representations, there exists a coarse mod-
uli scheme.

Theorem 2.9 ([10]). There exists a coarse moduli scheme Chy,(I") i
separated over Z associated to the following functor:

EGAIR,(I') : (Sch)®” — (Sets)
X — {p: air of degree n forI' on X}/ ~ .

Furthermore, the canonical morphism Rep,,(I")ar — Chy,(D)air gives a
universal geometric quotient of Rep, (Iair by PGL,. If T is a finitely
generated group (or monoid), then the moduli Ch,,(T')a, is of finite type
over 7.

For representations with Borel mold, there exists a fine moduli scheme.

Theorem 2.10 ([12]). There exists a fine moduli scheme Ch,,(I') 5 sep-
arated over 7 associated to the sheafification EqB,(T") of the following
functor with respect to Zariski topology:

(Sch)? — (Sets)

rep. with Borel mold
X ~ { of degree n for I’ / ’

Furthermore, the canonical morphism Rep, (I')g — Ch,(I")p gives a
universal geometric quotient of Rep,(I')p by PGL,. IfT is a finitely
generated group (or monoid), then the moduli is of finite type over Z.

3. THE DEGREE 2 CASE
From now on, we deal mainly with the degree 2 case.
Let A2(T") be the coordinate ring of the representation variety of

degree 2 for a group or a monoid I'. Let or : I' — My(As(T")) be the
universal representation of degree 2 for I'.
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Definition 3.1. Let Ay(I")“" be the subalgebra of Ay(I") generated by
{tr(or (7)), det(or(y)) | v € T} over Z. We denote SpecAy(I')“® by
Chy(T).

In [12) Example 1.3] we investigated the moduli of molds:

Moldy; = SpecZ,

M01d272 = P%,

M01d273 = ]P)z,

Molds4 = SpecZ.
Let k£ be an algebraically closed field, for simplicity. Let us classify
k-subalgebras A of My(k) up to inner automorphisms of My(k) for
explaining molds of degree 2. In the case dim A = 4, A is equal to
Ma(k). For any subalgebra A of dimension 3, there exists P € GLy(k)
such that P'AP = By(k) := {(a;j) € Ma(k) | a1 = 0}. In the case
dim A = 2, there exists X € A such that A = kI, + kX. For [X] €
Ma(k)/kl2, we can define a mold A = kI + kX, which is independent
from choosing a representative X € My(k) of [X]. This is the reason
why Moldy »(k) = P.(Mz(k)/kI5) = P2. There exist two types of molds
of rank 2. The one is a semi-simple algebra, and the other is a non-semi-

simple algebra. In other words, the former is { ( 8 2 ) a,be k:},

b a,b e k‘} up to inner automorphisms. Of

and the latter is { < g

course, a subalgebra A of dimension 1 is equal to k5.

By using the classification of k-subalgebras of My(k), we introduce
several molds of degree 2. For the case of rank 4, we consider the full
matrix ring mold My (Ox). For the case of rank 3, we introduced Borel
molds.

Here we introduce several types of molds of rank 2. There are two
types of molds of rank 2: the semi-simple subalgebra case and the
non-semi-simple subalgebra case. Moreover we can divide the non-
semi-simple 2-dimensional subalgebra case into two types: the ch # 2
type and the ch = 2 type.

Notation 3.2. Let R be a commutative ring. For X € My(R), we
denote tr(X)? — 4det(X) by m(X). Remark that m(X) = 2tr(X?) —
(tr(X)).

Remark 3.3. For X € My(R), m(X) is the discriminant of the char-
acteristic polynomial of X. If R is a field, then m(X) # 0 if and only
if X is semi-simple and not scalar.
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Definition 3.4. Let X be a scheme. Let A C My(Ox) be a rank 2
mold on X. We say that A is semi-simple if there exists P, € A, such
that m(P,) # 0 in the residue field k(z) for each x € X.

Definition 3.5. Let X be a scheme over Z[1/2]. Let A C My(Oyx) be
a rank 2 mold on X. We say that A is unipotent if m(A) = 0 for each
A € A(U) and for each open set U C X.

Definition 3.6. Let X be a scheme over Fy. Let A C My(Ox) be a
rank 2 mold on X. We say that A is unipotent over Fy if tr(A) = 0 for
each A € A(U) and for each open set U C X.

Remark 3.7. The name "unipotent” seems to be strange. However,
the author calls non-semi-simple molds of rank 2 unipotent molds be-
cause each unipotent mold over an algebraically closed field & is gener-
ated by a unipotent matrix of My (k).

For each type of molds of rank 2, we introduce representations with
a given mold.

Definition 3.8. For a 2-dimensional representation p for a group or a
monoid I" on a scheme X, we say that p is a representation with semi-
simple mold if Ox[p(I')] is a semi-simple mold on X. When X is a
scheme over Z[1/2] (or over Fy), we say that p is a representation with
unipotent mold (or unipotent mold over Fy) if Ox[p(I')] is a unipotent
mold (or a unipotent mold over Fy, respectively) on X.

For each case of molds of rank 2, we construct the moduli of repre-
sentations in §4-§6.

Finally, we consider molds of rank 1. This case is trivial. Indeed,
any mold of rank 1 is the mold consisting of scalar matrices. Let us
introduce the following definition for any degree.

Definition 3.9. Let X be a scheme. We say that A C M, (Ox) is a
scalar mold if A is a rank 1 mold on X. In other words, A is a scalar
mold if and only if A = Ox - I,,.

Definition 3.10. For an n-dimensional representation p for a group
or a monoid I" on a scheme X, we say that p is a representation with
scalar mold if Ox[p(I")] is a scalar mold on X.

Proposition 3.11. The contravariant functor
Rep,, (IMscalar @ (Sch)?” —  (Sets)

D% N rep. with scalar mold
of degree n for I' on X
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is representable by a closed subscheme Rep,, (I')scalar 0f Rep,,(I'). The
induced action of PGL, on Rep,,(I)scalar 5 trivial.

Proof. Let A, (T") be the coordinate ring of the representation variety
Rep,(I"). Let or : I' — M, (A,(I")) be the universal representation
of degree n for I'." We denote by I the ideal of A, (I") generated by
{or(Mi |1 <i#j<n~yel}U{or(v)u—or(y); [1<i<j<
n,y € I'}. Then it is easy to check that Rep,,(I")scalar 1S representable
by the affine scheme SpecA,,(I')/I. Since I is PGL,-invariant and the
action of PGL,, on A, (I")/I is trivial, the induced action of PGL,, on
Rep,,(I')scalar 18 trivial. d

Theorem 3.12. There exists a fine moduli scheme Ch,,(T')scatar Sepa-
rated over 7 associated to the following contravariant functor:

EqS,(I') : (Sch)”® — (Sets)

rep. with scalar mold
X ~ { of degree n for I' on X / ’

The moduli Chy,(T")scatar 5 isomorphic to Rep,,(I)scatar- Moreover, they
are isomorphic to Rep,(I') = Chy(I") := Rep,(I')/PGLy. In particular,
if T' is a finitely generated group (or monoid), then the moduli is of
finite type over Z.

Proof. Since the action of PGL,, on Rep,, (I")scalar 18 trivial, the affine
scheme Rep,, (I")scalar also represents the functor £¢S,,(I"). We easily see
that A, (I")/I = A;(T"), where I is defined in the proof of Proposition
B.I1l The action of PGL; = SpecZ on Rep, (I') is trivial. Hence we see
that Rep,,(I')scatar = Rep;(I') = Chy(T). If I is finitely generated, then
Rep,,(I") is of finite type over Z, and therefore so is Rep,, (I')scatar- U

4. SEMI-SIMPLE MOLD

In §4-86, we only deal with rank 2 molds of degree 2. In this section,
we investigate the semi-simple mold case.

Definition 4.1. Let o : I' — My(A2(T")) be the universal representa-
tion of degree 2 for a group or a monoid I'. For «, 8,7 € I', we define
the matrix M(a, f,7) by

Urga;n Urgggn UFE”Y;n
L orl&)i2 or(P)iz2 or(v)i2
M(a,ﬁ,y) o UF(Oé)zl UF(5)21 UF(’Y)zl

UF(Oé)22 Ur(ﬁ)m UF(”Y)22
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We define the closed subscheme Rep,(I'),k<a of Repy(I') by

o all (3 x 3) minor determinants of
Repy(Ire<a = {p € Rep,(I') M (a, 3,7) are 0 for each o, 8,7 € T' }

We also define the open subscheme Repy(I')e of the affine scheme
Repy(IM<a by
Repy(Dxka := {p € Repy(T") | Ox[p(T")] is a rank 2 mold }.

Definition 4.2. We define the representation variety with semi-simple
mold of degree 2 for a group or a monoid I' by

Rep,y(I)ss. @ (Sch)? — (Sets)
X —  {p € Repy(I) | p has a semi-simple mold }.

We easily see that Rep,(I')ss. is an open subscheme of Repy (') 2.

Remark 4.3. The scheme Rep,(I')ss. is an open subscheme of the
affine scheme Repy(I'),k<a where m(or(y)) does not vanish for some
v € T' by Remark B3l Here recall that m(or(y)) = tr(or(y))? —
4det(op(7)).

Let us denote by Ay(I'),k<2 the coordinate ring of the affine scheme
Rep, (k<o We define Ay(T)5l, as the subring of Ay(T')k<o gener-
ated by {tr(or(v)),det(or(y)) | v € I'} over Z. We also denote by
Cha(I)k<2 the spectrum of Ay(T’ )rk<2 We define the open subscheme
Chg( )s.s. of Chg( )rk<2 by

Chy(I)ss. : USPGC (Ax(T )rk<2)m( r(v)

~yer
Then we have the canonical morphism
Trss @ Repy(Iss. = Cha(D)gs.-
For v € T we define
Repy(Iss.y = {z € Repy(D)ss. | mor(y)) # 0 in k(z)}
= Spec (A2(D) k<) m(or(v)
and

Chy(D)ss.y = {z € Chy(D)ss. [ m(or(v)) # 0 in k(z)}
= Spec (Ay(T )rk<2)m( r(7)-

Then we have the canonical morphism

Trss.y - Repa(I)ss.y = Cha(Iss 4.
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For a group or a monoid I', we have the following diagram for each
vyel:
Rep2(r)rk§2 2 Rep2 (F>s.s. 2 Rep2 (F>s.s.,~/

l l 1
Ch2(r)rk§2 2 Ch2(r)s.s. 2 Ch2(1—‘)s.s.,'y~

Proposition 4.4. If ' is a finitely generated group or monoid, then
Repy(I) k<2 and Cho(T) k<o are of finite type over Z.

Proof. Let S = {aq,...,a,} be a set of generators of I'. We may
assume that a; 1is also an element of S for each 1 < i < n if T is
a group. The coordinate ring As(I')k<2 is generated by all entries of
or(a;) for 1 < i < n over Z. Hence Rep,(I'),k<2 is of finite type over
Z. Let A; := or(oy) for 1 <i < n. Then the coordinate ring A, (I")S,
is generated by {det(4;) | 1 < i < n} and {tr(A;,A4;, - 4;) | 1<
ip < iy < --- <1 <n}over Z. Indeed, we can verify it by using the
following equalities:

tr(X?Y) = tr(X)tr(XY) — det(X)tr(Y)
tr(XYZ) = —tr(XZY)+tr(X)tr(YZ) + tr(Y)tr(ZX)
+tr(Z2)tr(YX) — tr(X)tr(Y)tr(2)

for 2 x 2 matrices X, Y, Z. These equalities have been well known (For
proofs see [15] or [11, Appendix]). Therefore Chy(I")k<2 is of finite
type over Z. 0

Definition 4.5. Let T; = (a) be the free monoid of rank 1. We call
the morphism 7y, ss.a @ Repa(T1)ss.a — Cha(Y1)ss.a the prototype
with semi-simple mold of degree 2.

Let F; = («) be the free group of rank 1. We call the morphism
TF, ss.a @ Re€Py(F1)ss.a = Cha(F1)ss o the prototype for group repre-
sentations with semi-simple mold of degree 2.

Let oy, be the universal representation of degree 2 for T;. Put
oy, (@) = CCL Z ) Then we see that the coordinate ring Ay(Y;) of
Repy(Yy) is isomorphic to the polynomial ring Zla, b, ¢, d]. Note that
Repy (Y1) = Repy(Ty) k<o and that Repy(Yi)e = D(a — d) U D(b) U
D(c) € Repy(Y1) = Spec Za, b, ¢, d].

Put D :=ad—bc and T := a+d. Let Ay(Y1)" be the subalgebra of
Ay(Ty) generated by {tr(or, (7)), det(or,(v)) | v € Y1} over Z. Then
Ay (1) is isomorphic to the polynomial ring Z[T, D]. Set Chy(Y;) :=
SpecAg(Tl)Ch. Then Chg(Tl) = Ch2(T1)rk§2'
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Proposition 4.6. Let R be a commutative ring. Let A € My(R).
For each n € N, there exists f(x,y) € Z[x,y| such that m(A™) =
m(A)f(trA,det A).

Proof. Let us claim that

m(A") =

( [(n-3)/2 ?

m(A)- | Y det(A)tr(A"*) 4 det(A)" V2 (n: odd )
k=0

[(n-2)/2 ?

m(A)- | Y det(A)ftr(Am ) (n: even ).

L k=0

Since tr(A*) can be expressed by a polynomial in Z[tr(A),det(A)] for
each k£ € N, the statement follows from this claim. It only suffices to
prove that this claim holds for A = oy, (a) € My (A2(Y11)).

For A € My(k) with an algebraically closed field k, let A\, i be eigen-
values of A. Note that m(A) = (A — p)? and m(A") = (A" — u™)2
Then

m(A™) = (A=) NN T2 AT )2
= m(A){tr(A"") + det(A)tr(A" %) + det(A)*tr(A" ") + - -}

Hence the claim holds for A € My(k) with k = k. Because the claim
holds for an algebraic closure k of the quotient field Q(A2(Y;)) of
Ay(Yy), it also holds for Q(A2(Y1)) and for As(Y;). This completes
the proof. O

Remark 4.7. Using Proposition [4.0], we easily see that Repy(Y1)ss =
Repy (Y1 )ss.o and that Chy(Yy)ss = Cha(T1)ss.a- Note that m(A™1) =
m(A)(det(A))™2 for A € GLy(R) with a commutative ring R. Hence
we also see that Rep,(F1)ss. = Repy(F1)ss. o and that Chy(Fq)ss =
Ch2(Fl)s.s.,a~

We have the following diagram for the free monoid T = («):

Repg(T1)
I
Rep2(T1)rk§2 ) RepQ(Tl)rld ) Rep2<T1)s.s. = Rep2<T1)s.s.,a

1 l 1 l
Chy(Yy) = Chy(Ti)xk<2 DO Cha(T1)ss. = Cha(T1)ss a-

Put m := T? — 4D. The morphism 7 : Repy(Y1)ue — Chy(Ty)
is given by D(a — d) U D(b) U D(¢) — SpecZ|T, D]. The prototype
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Tr,ss © Repy(T1)ss. = Cha(Yy)ss is induced by the ring homomor-
phism Z[T, D|,, — Zla,b, ¢, d),.

Lemma 4.8. Let (R, m) be a local ring. Let A € My(R). Suppose that
(A mod m) is not a scalar matriz of Ma(R/m). Then there exists
P € GLy(R) such that

ror- (8 0)

If @ € Ms(R) satisfies AQ = QA, then Q@ = Ny + pA for some
A\ p € R.
a b

Proof. Put A = d
a —d, b, cis contained in R*. Assume that b € R*. Then the vectors
ez == %(0,1) and Aey € R? form a basis of R?2. With respect to the
basis {ey, Aes}, the linear map A : R?* — R? can be expressed as

0 —det(A)

1 tr(A)
a basis of R? where e; := (1,0). Then we can change A into the
form which we want. If a —d € R* and b,c ¢ R, then the vectors
e1 + e = (1,1) and A(e; + ep) form a basis of R% Similarly we can
change A into the desired form.

To prove the latter part of the statement, we may assume that A =

( (1) _sz%)fl ) ) By direct calculation, we see that AQ = QA implies

Q = Ay + pA for some \, ;1 € R. 0

. From the assumption, at least one of

). In the case ¢ € R*, we can choose {e;, Ae;} as

Proposition 4.9. The morphism Repy(T1)ke — Cha(T1) is smooth
and surjective. In particular, it is faithfully flat.

Proof. Let I be an ideal of a local ring R with I? = 0. For a given
commutative diagram

Rep2(T1)rk2 — Chg(Tl)

) T
SpecR/I ~ — SpecR,

we obtain (T, D) € R? and A € Repy(Y1)ue(R/I) C My(R/I) such

that tr(A) = T and det(A) = D (mod I). By Lemma [L.§] there exists

P € GLy(R/I) such that
=-1—= 0 —D
P AP B::(1 T ) (mod I).
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Let us take P € GLy(R) such that P = P (mod I). Put A= PBP~!.
Then A € Rep,y(T1)mke2(R) such that tr(A) = T and det(A) = D. Hence
we obtain a morphism SpecR — Rep,(T1).xo satisfying the commuta-
tivity. This implies that the morphism Repy(Yi)xke — Chy(Yy) is
smooth. Surjectivity follows from that we can take such matrix as B
above for a given k-valued point (T, D) € Chy(Y;)(k) with a field k.
Since smoothness implies flatness, it is faithfully flat. U

Lemma 4.10. Let R be a commutative ring. For X,Y € Ma(R) and
a,b € R, we have

det(aX +bY) = a*det(X) + b* det(Y) + ab(tr(X)tr(Y) — tr(XY)).
Proof. By direct calculation, we can check the formula above. U

Lemma 4.11. Let (R,m,k) be an artinian local ring, and I be an
ideal of R with mI = 0. For A € Ma(R), let us define the k-linear map
[A, =] : Ma(I) = Ma(I) by X — AX — XA. If (A mod m) is not a
scalar matriz of My(k), then

Im[A, -] = {Y € My(I) | tr(Y) = tr(AY) = 0}.

Proof. Since mI = 0, we can regard I as a vector space over R/m =
k. Put d := dim; [ < co. Set N :={Y € My(I) | tr(Y) = tr(AY) =
0}, IfY = [A X] € Im[A, —], then tr(Y) = tr(AX) — tr(XA) =0
and tr(AY) = tr(AAX) — tr(AXA) = 0. Hence Im[A, -] C N. For
showing that Im[A, —] = N, we prove that the dimensions of the both
sides coincide. In order to calculate the dimensions, we may change A

into
1 (0 =D
P AP = ( . T

for suitable P € GLy(R) by considering the automorphism Ad(P) :
My(I) — My(I) by X > P-1X P,

If X € Ker[A,—], then X = A, + pA for some A\, € R by
Lemma [£.8 Since X € My(I), we get \,u € I. Hence we see that
dimg Ker[A, =] = dimg(] - [y + I - A) = 2d and that dimg Im[A, —] =
dimg My(1) — dimy Ker[A, —] = 2d. On the other hand, if X € N, then
tr(X) = tr(AX) = 0. By direct calculation, we have dim; N = 2d.
Thus we have proved that dimyIm[A, —] = dimy N = 2d and that
Im[A,—] = N. O

Let s : Cha(T1) = Repy(T1)mke by (T, D) — < (1) _79 ) Then

mos = lcp,y(r,).- We have the following proposition:
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Proposition 4.12. The composition of the morphisms

(S,id) lod

Chy(T1) x PGLy =" Repy(T1)me X PGLy = Repy(T1)me
E (O T
is smooth and surjective. In particular, it is faithfully flat.

Proof. Let (R, m, k) be an artinian local ring, and let I be an ideal
of R with mI = 0. For a given commutative diagram

oo(s,id)

ChQ(Tl) X PGL2 = RQPQ(T1>rk2
T T
Spec R/1 — Spec R,

we obtain A € Repy(Y1)ue(R), (T, D) € Chy(Y1)(R/I), and P €

GLy(R/I) such that P ( (1) b )? = Ain My(R/I). Take P €

GLy(R) such that (P mod I) = P. Put D :=det A and T := tr(A).
Note that (D mod I) = D and (T mod I) =T.

Set Y := P! ((1] _]P ) P — A € My(I). Let us show that

tr(AY) = 0. Remark that detY = 0 by I? = 0 and that tr(Y") = 0.
Using Lemma [4.10, we have

D = det(P—l(O _D)P)

1 T
= det(A+Y)
= det A+detY + tr(A)tr(Y) — tr(AY)
= D —tr(AY).

Hence we have proved tr(AY") = 0.

By Lemma [L.11] we have Y € Im[A, —]. There exists X € My(I)
such that [A,X] = Y. Put P’ := P(I — X) € GLy(R). Then
p! (1) _IP ) P =(L+X)(A+Y)(L,-X)=A+Y —[A4, X] = A.

Now let us define the morphism SpecR — Chy(T;) x PGLy cor-
responding to ((7, D), P"). Verifying the commutativity, we see that
the morphism is smooth. By Lemma [4.8 we see that the morphism is
surjective. Hence it is faithfully flat. O

Proposition 4.13. The morphism

Repy(T1)me X PGLa = Repy(T1)me Xchy(ry) Repa(T1)ne
(p, P) — (p, P~'pP)
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1s smooth and surjective. In particular, it is faithfully flat.

Proof. Let (R, m, k) be an artinian local ring, and let I be an ideal
of R with mI = 0. For a given commutative diagram

Rep,y(T1)me X PGLy  — Repy (Y1) Xcny(r:) Repy (Y1)
/]\

/]\
Spec R/I — Spec R,

we obtain (A, B) € Repy(T1)w2(R) X cny(ry)(r) Reps (Y1) me(R) and P €

GLy(R/I) such that P AP = B in My(R/I). For proving that the
morphism is smooth, we define a morphism SpecR — Repy (Y1) X
PGL; satisfying the commutativity. Put 7' = tr(A) = tr(B) and D =
det A = det B. Let us take P € GLy(R) such that (P mod I) = P.
Then set C':= P~'AP — B € My(I).

Let us show that tr(C') = tr(BC) = 0. Indeed, tr(C) = tr(P~'AP)—
tr(B) =T — T = 0. Note that detC = 0 by I? = 0. Using Lemma
[4.10, we have

D =det(P7'AP) = det(B+ O)
= det B+ det C + tr(B)tr(C) — tr(BC)
= D —tr(BC).

Hence we have verified tr(BC) = 0.

By Lemma .11, we have C' € Im[B, —]. There exists X € My(I)
such that [B,X] = C. Put P’ := P(ly — X) € GLy(R). Then
P7IAP' = (I, + X)(B+ C)(I — X) = B+ C - [B,X] = B. Now
let us define the morphism SpecR — Repy(Y1)e X PGLy correspond-
ing to (A, P'). Since P'""'AP’ = B, we can verify the commutativity.
Therefore the morphism is smooth.

By Lemma [4.8 we see that the morphism is surjective. Hence it is
faithfully flat. l

Let us introduce the following two lemmas on sufficient conditions
for a given morphism to be a universal geometric quotient (For the
definition of universal geometric quotient, see [9]).

Lemma 4.14. Let G be an affine group scheme over an affine scheme
S. Assume that the S-morphism o : Gxs X — X is a group action of G
on an S-scheme X and that the action of G on an S-schemeY is trivial.
Letm: X =Y be an affine G-equivariant faithfully flat locally of finite
presentation S-morphism. If the morphism (o,ps) : G xg X — X xy X
is faithfully flat, then m : X — Y is a universal geometric quotient by
G.
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Proof. From the assumption, we have tog =mopy : G xg X = Y.
We also see that 7 is surjective and that the image of the morphism
(0,p2) : GXxgX — X xgX is X Xy X. Since 7 is faithfully flat locally of
finite presentation, it is universally open (cf. [4, Theorem 2.4.6]). For
verifying 7, (Ox)¢ = Oy, we only need to check that Ox (7= 1(U))¢ =
Oy (U) for each affine open subscheme U of Y. Set U = SpecA and

7Y (U) = SpecB. Because A — B is faithfully flat, 0 — A — B *5
B ®4 B is exact, where ¢1(b) =b® 1 and ¢o(b) = 1 ® b for b € B (for
example, see [8, Proposition 2.18]). Put S = Spec C' and G = SpecR.
The ring homomorphism B ®4 B — R ®¢ B induced by (o,ps) :
GxsX — X xy X is faithfully flat. Since B&4 B — R®¢ B is injective,

0+A—-B°3*R ®c B is also exact. This implies that B¢ = A
and that m,(Ox)% = Oy. Hence we see that 7 : X — Y is a geometric
quotient by GG. For all morphisms Y/ =Y, 7’ : X' := X xy Y/ = Y'is
also a geometric quotient by G because 1" and G xg X' — X' xy+ X’
are faithfully flat. This completes the proof. O

Lemma 4.15. Let X and Y be schemes over a scheme S. Let G be a
group scheme over S. Assume that an S-morphism o : G Xxg X — X
is a group action of G on X and that the action of G on Y is trivial.
Let m: X =Y be a G-equivariant S-morphism and s : Y — X be an
S-morphism such that o s = 1y. Suppose that

(i) m is faithfully flat and locally of finite presentation, and
(i) GxsY 9% G xg X 5 X is faithfully flat.
Then w: X — Y s a universal geometric quotient by G.

Proof. From the assumption ({), 7 : X — Y is surjective and uni-
versally open. Let us show that the image of the morphism (o, ps) :
GxgX = X xgXis X xy X. Assume that (f1, fo) € X () Xy () X ()
is a (2-valued point with a field 2. Set h := 7o f; =mo fy : SpecQ - Y
and f := soh : Spec @ — X. By the condition (), there exist
(gi, f) : Spec Q — G xg X such that oo (g;, f) = f; for each 1 = 1,2
(if necessary, take an extension field of Q). Then (o, ps) o (g195 ", f2) :
Spec Q — G xg X — X xg X is (f1, fo). Hence the image of (o, ps) is
X Xy X.

Let us show that m.(Ox)Y = Oy. Since 7 is faithfully flat, Oy —
7.(Ox)% is injective. For an open set U of Y, put V := 7~ 1(U).
Assume that ¢ : V' — A} satisfies ¢ o (0|gxsv) = @ 0 (palaxsv). Set

Y = ¢o(s|ly) : U — Ag. By the assumption (), G xs U (1e.5lo)

0‘GXsV

G xgV =V is faithfully flat. Put ® := (0 |gxev) © (1g, s ). It
is easy to verify that ¢ o ® = o (w|y) o ®. Since Oy — D, (Ogxyv) is
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injective, ¢ = 1o (m|y). This implies that Oy — 7,(Ox)Y is surjective,
and hence 7,(Ox)¢ = Oy.

The assumptions () and (@) are stable under any base change Y’ —
Y. Therefore 7 : X — Y is a universal geometric quotient by G.  [J

Remark 4.16. We can extend Lemma [4.15 in the following way: Let
S,G,X,Y,and 7 : X — Y be as above. Let Y = U,;<;Y; be an open
covering of Y. Set X; := 7~ }(Y;). Let s; : Y; — X; be an S-morphism
with 7 |x, os; = 1y, for each i € I. Suppose that () and the following
(i)’ hold:

(i) G x5 Y; (IG—>’Si) G x5 X; > X, is faithfully flat for each i € I.
Then 7 : X — Y is a universal geometric quotient by G.

Theorem 4.17. The morphism m : Repy(T1)e — Cho(Y1) is a uni-
versal geometric quotient by PGL,.

Proof. Obviously, 7 is locally of finite presentation. By Propositions

and 12 7 and Chy(T;) x PGL, oologd) Repy(T1) ke are faithfully
flat. Hence Lemma implies that 7 : Repy(T1)me — Cha(T1) is a
universal geometric quotient by PGLy. (Of course, Lemma also
holds for right group actions.) O

Corollary 4.18. The prototype mry, ss. : Repy(T1)ss. — Cha(T1)ss. is
a universal geometric quotient by PGL,.

Proof. The morphism 7y, 55 : Repy(T1)ss. = Cha(T1)ss is a base
change of 7 : Repy(Y1)k2 — Chy(T1) by Chy(T1)ss. — Chy(Y1). The
statement follows from Theorem .17 O

Corollary 4.19. The prototype g, ss. : Repy(F1)ss. = Cha(Fy)ss. for
group representations is a universal geometric quotient by PGLs.

Proof. The morphism 7p, 5. : Repy(F1)ss. — Cha(F1)ss. is a base
change of 7 : Repy(T1)ss. = Cha(T1)ss. by Cha(F1)ss. — Cha(Tq)ss.-
The statement follows from the previous corollary. O

Proposition 4.20. Let A C Ma(R) be a rank 2 semi-simple mold over
a commutative ring R. Suppose that there exists A € A such that
m(A) € R*. Then the following bilinear form is perfect:
tr(«) © AxA — R
(X,)Y) — tr(XY).
In other words, the R-linear map A — Hompg(A, R) defined by X +—
(Y — tr(XY)) is an isomorphism. In particular, for each X € A, we
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have

- (G ) ()
s (58 ) (255)

Proof. Remark that {5, A} forms a basis of A over R. The deter-
minant of the matrix

(hd) wi))

is equal to m(A) € R*, and hence the inverse matrix exists.
For each X = al, + bA € A with a,b € R, we have

(i) )= (o) o) ) (5)
(3)- (5 v ) (i)

we have
= ma (0 @) (i)

= (I, A) ﬁ ( i(ﬁ)) - (A ) ( tr((AX)) )

Therefore we see that tr(--) : A x A — R is perfect. O

Since

Proposition 4.21. For each elementy of a monoid T, (Ay(T) Gy m(or ()
is generated by {tr(or(8)) |0 € T'} and m(or(y)))™! over Z.

Proof. By the definition of Ay(T)G,, (A2(T)G o) m(or (7)) is generated
by {tr(op(8)),det(op(6)) | 6 € '} and m(op(v)))~! over Z. Let S be
the subalgebra of (A3(I)S%,)m(or(y)) generated by {tr(or(d)) | § € T'}
and m(op(7)))~" over Z. It only suffices to prove that det(op(8)) € S
for each § € I'. Using Proposition .20, we have

_ tr(or(e)) tr(or(7)) \ [ tr(or(d))
e = (o) () wiorod ) (tortonh )
in My ((A2(I")rk<2)m(or(y))) for each d € I'. Since the determinant of the

matrix
_( tx(or(e)) tr(or(y))
re= ( tr(or(7) tr(or(+2) )
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is equal to m(or(y)) = 2tr(or(v?)) = (tr(or(7)))?, or(6) = alz+bor(7)
with some a,b € S for each 6 € I". By Lemma 410, the statement
follows from the claim that det(op(y)) € S. Let us prove the claim.
Putting 6 = 72, we have

)
)
B | (o () — (o ()r(or (7))
= (o) TN < —tx(or())tr(or(v2)) + 2tr(or(+)) ) '

We also obtain op(7?) = tr(op(v))or(y) — det or () Iy by the Cayley-
Hamilton Theorem. Comparing the coefficients of I, we have
tr(o tr(op(7?)) — tr(op(7?))?
det(O'p(”y)) _ ( F(’y)) ( F(7 )) ( F('}/ )) )
m(or(7))
Hence we have proved the statement. O

2

) = for(eor) T (o)
(

Let I'1, 'y be monoids. Let ¢ : I'y — I'y be a monoid homomorphism.
Then 9 induces canonical ring homomorphisms ¥, : As(I'1)k<2 —

AQ(FQ)rk<2 and Ip A2(F1)rk<2 — AQ(FQ)S{hS2 Set Yo = ¢(’71) for
v1 € I'y. We obtain the ring homomorphisms

'QD* . (A2(Fl)rk§2)m(apl (71)) — (A2(P2)rk§2)m(ap2('y2))a

e (A2(T1)ikn)meor, () = (A2(T2) 5 )m(or, (12))-
Hence we have the morphisms

Rep2(r2)rk§2 w—> Repz(rl)rk§2
1 ) 1
Chy(To)ncz = Cha(I') )i
and )
Rep2(r2>s.s.,'\/g ¢—> RepQ(Fl)s.s.,'yl
4 ) 4
Chy(Ta)ssny 5 Chy(T)ssny.

Lemma 4.22. Let v be an element of a monoid I'. Let ¢b : Ty — T
be the monoid homomorphism sending « to . Then 1 induces the
following diagram which is a fibre product:

Repy(Mssy 57 Chy(D)es.
1

1
RepZ(Tl)s.s.,a — Ch2(T1)s.s.,o¢-

In particular, the morphism wrgg ~ can be obtained by base change of
the prototype for each v € T.
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Proof. Put X := Repy(I')ss.y and Y := Repy(T1)ss.a XCho(11)es.
Chs(I')ss. 4. We shall show that the morphism f : X — Y induced by
1 is an isomorphism. Let R be a commutative ring. For two R-valued
points 01,09 of X, assume that f(o;) = f(02) as R-valued points of
Y. Considering oy and oy as representations of degree 2 for I' in R, we
have

_ tr(l)  tr(oi(7) [ tx(i(9))
oi0) = U0 ( oy i) ) (oo )

for each 9 € T" and i = 1,2. Since f(o1) = f(02), we obtain oy(y) =
flo1) (@) = f(o2)(a) = 02(7) and tr(oy(0")) = tr(oq(d)) for each ¢’ €
I'. Hence we have o7 = o5.

Let y = (p, x) be an R-valued point of Y. Here p: T — My(R) and
x are R-valued points of Rep,(Y1)ss o and Chy(I')ss 4, respectively.
Let us denote by x(9) the image of tr(op(d)) by the ring homomorphism
o : (Ag(F)er)m(UFw — R associated to x. Then ¢(m(or(v))) =

m(p(a)) and x(v™) = tr(p(a™)) for m € N. We define the map o :
' — MQ(R) by

_ tr(L)  tx(p(e)) \ (0 x(6)
o0 = ) (i) ey ) (aom )
for § € I'. Tt is easy to see that o(e) = I and o(y) = p(«).
Note that

-1
tr(l2)  tr(or(v)) tr(or(9))
0) = (1
10 = (o1 ( uionry tion (R ) (o)
in Ma((A2(I')rk<2)m(or(y))) for each 6 € I'. By a similar discussion
in the proof of [10, Theorem 5.1], we see that o is a representation,
and hence that o can be regarded as an R-valued point of X. Since

tr(o(d)) = x(6) for each 6 € I, we also see that f(o) = y by using
Proposition [4.21l Therefore f is an isomorphism. 0

Remark 4.23. We can also prove the group version of Lemma (422}
Let v be an element of a group I'. Let ¢ : F; — T be the group
homomorphism sending « to . Then ¢ induces the following diagram
which is a fibre product:

Rep2 (F>s.s.,~/ — Ch2 (F>s.s.,~/

1 \J
Rep2(F1)s.s.,o¢ — Ch2(F1)s.s.,a'

In particular, the morphism 7r g - can be obtained by base change of
the prototype for group representations.
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Corollary 4.24. The morphism mrgs. @ Repy(I')ss. = Cha(D)ss. is a
universal geometric quotient by PGLy for a group or a monoid I.

Proof. From Lemma [1.22] and Corollary .18 we see that mp ¢ gives
a universal geometric quotient. 0

Remark 4.25. The morphism 7r g5 : Repy(I')ss. — Cha(I')gs. is smooth
and surjective. Indeed, the prototype mr, ss. : Repy(T1)ss. = Cha(Y1)ss.
is smooth and surjective because it is obtained by base change of

7 : Repy(T1)mke — Chy(Y1) and 7 is smooth and surjective by Propo-

sition

Remark 4.26. For each point x € Chy(I')ss, there exists a local
section s, : V, — Repy(I')ss. on a neighbourhood V, of x such that
Trss. © Sy = idy,. Indeed, take v € I' such that + € Chy(I')ss 4. By
Lemma .22, 7rs. : Repy(I')ss.y = Cha(I')ss  has a section sp, be-
cause Repy(T1)ss. — Chy(T1)ss. has a section s. Hence we can take
Chs(I')ss. as a neighbourhood V, of z.

Lemma 4.27. Let py, py be representations with semi-simple mold for
a group (or a monoid) I' on a scheme X. Let f; : X — Repy(I)ss. be
the morphism associated to p; for i = 1,2. If mrss 0 fi = Trgs. © fo:
X — Chy(D)gs., then for each x € X there exists P, € GLy(I'(V,,, Ox))
on a neighbourhood V, of x such that P;lple = py on V.

Proof. For x € X, take v € I' such that (mpgs o f1)(x) = (mrss. ©
f2)(z) € Chy(I')ss. . We may assume that f; : X — Rep,(I')ss. o for
i = 1,2 from the beginning. By Remark .26 mrss : Repy(I')ss.y —
Chg(F)s,sw has a section sp,. Let p3 be the representations with semi-
simple mold on X associated to sp, o7 gs 0 fi = Sry 075 0 f2. Note

that

pa(y) = ( 0 —det(pm(v)) ) _ ( 0 —det(pa(7)) )

’ 1 tr(pi(7)) 1 tr(p2(9))
and that tr(py(9)) = tr(p2(d)) = tr(ps(d)) for each 6 € I'. There
exist Q1,Qs € GLy(['(V,, Ox)) on a neighbourhood V, of x such that

Qi1 (1)1 = ps(y) and @ 'p2(1)Qs = ps(7) by Lemma IR Since
() = (Lo t(l)  wx(pi() \7( x(pi(9))
o= n ) (i) iy ) (wioon )
on V, for 6 € I' and for i = 1,2,3, we have Q;"p1(0)Q1 = ps(d) and

Q5 p2(6)Q2 = p3(0) for each § € T. Hence (Q1Q5) p1(Q:1Q5") = p2
on V,. This completes the proof. O
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Theorem 4.28. Let R be a local ring. For two representations with
semi-simple mold p1,py : I' = GLa(R) for a group (or a monoid) T,
p1 and py are equivalent to each other (in other words, there exists
P € GLy(R) such that P~ pi(v)P = po(v) for any v € T) if and only
if tr(p1(7)) = tr(pa(7)) for each v € T

Proof. Let fi, fo be the R-valued points of Rep,(I')ss. associated to
p1, p2, respectively. Using Propositiond.2Tland m(p; (7)) = 2tr(p;(v?))—
(tr(pi(7)))? for i = 1,2, we see that tr(p; (7)) = tr(ps(7y)) for each v € T
if and only if mpgs © fi = 7rss. © f2 as R-valued points of Chy(I')ss.
The statement follows from Lemma [£.27]. d

Let us define £¢SSy(I") as the sheafification of the following con-
travariant functor with respect to Zariski topology:
(Sch)” — (Sets)
X — {p| rep. with s.s. mold for ' on X}/ ~ .

By a generalized representation with semi-simple mold for I on a
scheme X, we understand pairs {(U;, p;) }ies of an open set U; and a
representation with semi-simple mold p; : I' = My (I'(U;, Ox)) satisfy-
ing the following two conditions:

(i) UiertUi = X,

(ii) for each x € U; N Uj, there exists P, € GLy(I'(V,, Ox)) on a
neighbourhood V,, C U; N U; of x such that Px_lpiPm = pj on
V.

Generalized representations with semi-simple mold {(U;, p;) }ier and
{(V;,0j)}jes are called equivalent if {(U;, pi) }ier U {(V},05)}ies 1s a
generalized representation with semi-simple mold again. We easily see
that £¢SS,(T")(X) is the set of equivalence classes of generalized rep-
resentations with semi-simple mold for I on a scheme X.

Theorem 4.29. The scheme Chy(I)ss. is a fine moduli scheme asso-
ciated to the functor £qSSo(I') for a group or a monoid I':

EqSS»(I') : (Sch)” — (Sets)

gen. rep. with s.s. mold /
X ~ { forT' on X '
In other words, Chy(I')ss. represents the functor EgSSy(I"). The moduli
Chy(T)ss. is separated over Z; if I is a finitely generated group or
monoid, then Chy(I')ss is of finite type over Z.

Proof. 1t is easy to define a canonical morphism £¢SS»(I') —
Ry (r)... = Hom(—, Chy(I')ss.). Let us define a morphism hcpyry,, —
EqSS,(T). Let g € heny ), (X) with a scheme X. For each z € X,
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take 7, € I' such that g(xz) € Chy(I')ss ~,. By using the section
$r, ¢ Cha(D)ss.n — Repy(I)ss.,, in Remark .26] we can define a
representation with semi-simple mold p, on a neighbourhood U, of x.
By Lemma .27, we see that {(Us, pz)tzex € £¢SS2(I')(X) and that
the morphism hcn,r),,. — £¢SS2(T') is well-defined. It is easy to see
that Chy(T")ss. represents the functor £¢SSa(T).

Since Chy(I')s . is an open subscheme of the affine scheme Chy(I)k<2,
Chy(I)ss. is separated over Z. Suppose that I' is finitely generated.
Then Chy(I)k<o is of finite type over Z by Proposition L4l Hence
Chy(I)gs. is also of finite type over Z. O

Remark 4.30. Let A be an associative algebra over a commutative
ring R. For an R-scheme X, we say that an R-algebra homomorphism
p:A— My(['(X,0yx)) is a 2-dimensional representation of A on X.
For a 2-dimensional representation p of A, p is called a representation
with semi-simple mold if the subalgebra p(A) of My(Ox) generates a
semi-simple mold on X. In a similar way as group or monoid cases,
we can define generalized representations with semi-simple mold for
A on an R-scheme X. The contravariant functor £¢SS»(A) from the
category of R-schemes to the category of sets is defined as

EqSS2(A) : (Sch/R)®? — (Sets)

gen. rep. with s.s. mold
X — for A on X / e

Then we can construct the fine moduli Chy(A)g . associated to E¢SSa(A)
in the same way as Theorem The moduli Chy(A)ss. is separated
over R. If A is a finitely generated algebra over R, then Chy(A)ss.
is of finite type over R. For a local ring S over R, we see that two
representations with semi-simple mold py, p2 : A — My (S) are equiva-
lent to each other (in other words, there exists P € GLy(S) such that
P~ 'pi(a)P = py(a) for any a € A) if and only if tr(p;(a)) = tr(pz(a))
for each a € A (the associative algebra version of Theorem [1.28)).

Remark 4.31. We have introduced the notion of generalized repre-
sentations with semi-simple mold for describing the moduli functors
EqSS, (') and £¢SS2(A). However, the moduli functors can also be
described as £¢SS5(T') and £¢SS5(A) by using the notion of represen-
tations generating sheaves of algebras which define semi-simple molds.
More precisely, see §8.

5. UNIPOTENT MOLD (ch # 2 CASE)

Recall that a rank 2 mold A C My(Ox) over a Z[1/2]-scheme X is
called unipotent if m(s) := tr(s)> — 4det(s) = 0 for each open subset
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U C X and for each s € A(U). In this section, all schemes are over
Spec Z[1/2] and all commutative rings are over Z[1/2]. We construct
the moduli of representations with unipotent mold over Spec Z[1/2].

As seen in Theorem EIT, 7 : Repy(T1)e — Cha(T;) is a universal
geometric quotient by PGLy. Put A := oy, (o) for the universal repre-
sentation oy, of Ty = (). Let Z be the closed subscheme of Chy(Y;)
defined by m(A) = tr(A)? —4det(A) = 0. By base change, we obtain a
universal geometric quotient 7’ : Repy (Y1 )2 Xchy(r,) Z — Z by PGLo.
However, this quotient 7’ is not so good, because Z has a singular fibre
over Fy which is defined by tr(A)?> = 0. Therefore we assume that
all schemes are over SpecZ[1/2] in this section. The case of unipotent
molds over F, will be discussed in the next section.

Assume that R is a Z[1/2]-algebra and that A C My(R) is a unipo-
tent mold over R through this section.

tr(X)

Notation 5.1. For X € My(R), we define n(X) := X —

Lemma 5.2. Suppose that X € My(R) satisfies m(X) = tr(X)? —
4det(X) =0. Then n(X)*=0.

Proof. By the Cayley-Hamilton theorem, we have

n(X)? = X?—tr(X)X + %X))Q[Q
= tr(X)X —det(X)Iy — tr(X)X + WIQ
= 0,
since tr(X)? = 4 det(X). O

Lemma 5.3. Let R be a Z[1/2]-algebra. Let A C My(R) be a unipotent
mold over R. If X,Y € A, then 2tr(XY) = tr(X)tr(Y).

Proof. Since we have only to prove that the equality holds locally,
we may assume that there exists Z € A such that A= R-I,+ R-Z and
m(Z) =tr(Z)? —4det(Z) =0. Put X =al, +bZ and Y = cly + dZ.
Then we have

2t1(XY) = 2actr(ly) + 2(ad + be) tr(Z) + 2bd tr(Z?)
= 4ac+ 2(ad + be) tr(Z) + 2bd (tr(Z))* — 4bd det(2)
= dac+ 2(ad 4+ be) tr(Z) 4 4bd det(Z)
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and
tr(X)tr(Y) = (2a+0btr(2))(2c+dtr(2))
= dac+2(ad + be) tr(Z) + bd (tr(Z))?
= dac+ 2(ad + be) tr(Z) + 4bd det(Z2).
This completes the proof. O

Notation 5.4. Let R and A be as above. For X € My(R), we denote
tr(X)/2 by r(X). Note that n(X) = X — r(X)I[. From Lemma [5.3]
we have 7(XY) = r(X)r(Y) for X,Y € A If X = al, + bZ, then
n(X) =aly +bZ —r(aly +bZ)1y = b(Z —r(Z)13) = bn(Z).
Lemma 5.5. Let R and A be as in Lemmal23 For X,Y € A,
n(XY) = r(X)n(Y) +n(X)r(Y).
Proof. As in the proof of Lemmal5.3] we may assume that there exists
Z € Asuch that A= R-I,+ R-Z and m(Z) = tr(Z)? — 4 det(Z) = 0.
For X,Y € A, there exists \,u € R such that n(X) = A\p(Z) and
n(Y) = un(Z). Since n(X)n(Y) = Aun(Z)? = 0, we have
n(XY) = XY —r(XY)L
= (X =r(X)L)Y —r(Y)) +r(Y)(X —r(X)I)
+r(X)(Y —r(Y)Iy)
= n(X)n(Y) +r(X)nY) +n(X)rY)
= r(X)n(Y) +n(X)r(Y).
This completes the proof. O

Notation 5.6. Let I' be a group or a monoid. Let p : I' = My(R) be a
representation with the unipotent mold A. For each v € I', we denote
n(p(7y)) and r(p(7)) by n(y) and r(v), respectively. Assume that there
exists a € I' such that A= R- b+ R-p(«). Then A= R-I,+ R-n(«a)
and for each v € IT" there exists a unique a,(vy) € R such that n(y) =

ao(7)n(a).

Remark 5.7. Note that the map r(-) : ' — R is a character of I'. In
other words, r(e) = 1 and r(yd) = r(y)r(d) for 7,0 € I'. From Lemma
we see that the map a,(-) : I' = R is a derivation with respect to
r, that is, a, satisfies the condition a,(70) = 7(7)aa(0) + as(y)r () for
each v,0 € T'.

For a representation p : I' — My(R) with the unipotent mold A such
that A = R-I,+ R- p(«) for some a € ', we have a character r : ' - R
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and a derivation a, : I' = R with respect to r. Conversely, a character
and a derivation give us a representation with unipotent mold.

Lemma 5.8. Let r : I' — R be a character and let a : I' — R be a
derivation with respect to r. Assume that there exists a € I' such that
a(a) € R*. Furthermore assume that there exists Z € My(R) such that
A:=R-Ih+ R-Z C My(R) is a unipotent mold. Then the map
P r — MQ(R)
v = r(Yh+a()n(Z)

s a representation for I' with the unipotent mold A.
Proof. For v,0 € I', we have
p(Mp(0) = (r(MIz2+ a(y)n(Z2))(r(6) 12 + a(d)n(Z))

= r(Vr0) L2+ a(y)r(6)n(Z) + r(v)a(d)n(Z)

= r(y0) L + a(vd)n(Z)

= p(79).
Since p(e) = Iy and p(a) = (r(a) — a(a)tr(Z)/2)15 + a(a)Z, the map
p is a representation with the unipotent mold A. O

Definition 5.9. Let us denote Rep,(I') ®7z7Z[1/2] by Rep,(I")[1/2]. We
define the subscheme Rep,(I"), of Rep,(I')[1/2] by

Repy(I), := {p € Repy(I')[1/2] | p has a unipotent mold }.

We call Rep,(T'), the unipotent part of the representation variety of de-
gree 2 for I over Z[1/2]. Recall that Rep,y(I')x<2 is a closed subscheme
of Repy(I') and that Rep,(I')xe is an open subscheme of Repy(I')k<2
(Definition A.]). Set Repy(I)ik<a[1/2] := Repy(I') k<2 ®z Z[1/2] and
Repy(I)k2[1/2] := Repy(I)ie ®z Z[1/2]. Then Rep,y(I'), is a closed
subscheme of Repy(I'),x2[1/2] defined by m(or(y)) = 0 for all v € I'.

Definition 5.10. Let us Rep,(I')[1/2] denote the representation va-
riety Rep, (I') ®z Z[1/2] of degree 1 for I' over Z[1/2]. Let us denote
by A;(I')[1/2] the coordinate ring of Rep,(I')[1/2]. For an A;(I")[1/2]-
module M, we define the A, (I")[1/2]-module of derivations by

a(y0) = xr(v)a(d) + a(y)xr(9) } .

Der(I', M) := { for each v, € T’

Here we denote by xr : I' = A;(I")[1/2] the universal representation of
degree 1 for T'.
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Lemma 5.11. There exists a universal A, (I")[1/2]-module Qr repre-
senting the covariant functor

Der(T,—) : (A,(D)[1 ]\/42] ‘Mod) (A,(T)[1/2)-Mod)

s
— Der(T", M).
In particular,
Der(T', M) = Hom, 0y /2 (Qr, M)
is an isomorphism for each A;(I")[1/2]-module M.
Proof. We define the A;(I")[1/2]-module Qr by
QU = (Byer A (T)[1/2] - )N,

where N is the A;(I")[1/2]-submodule generated by {xr(v)do+xr(d)dy—
d(y0) | 7,0 € I'} of the free A;(I')[1/2]-module @,erA1[1/2](T) - dy. It
is easy to check that Q) represents the above functor. O

Remark 5.12. If T" is a finitely generated group or monoid, then
A;(T)[1/2] is a finitely generated algebra over Z[1/2] and Qr is a
finitely generated A;(I')[1/2]-module. Indeed, let S = {ay,- - ,a,}
be a set of generators of . We may assume that o; ' is also an el-
ement of S for each 1 < i < n if I' is a group. Then A;(I")[1/2] is
generated by {xr(a1),..., xr(a,)} over Z[1/2] and Qr is generated by
{d(a),...,d(ay,)} over A;(I')[1/2].

Definition 5.13. We define the scheme Chy(I"), over A;(I')[1/2] by
Chy(I'),, == ProjS(Qr),
where S(Qr) is the the symmetric algebra of Qr over A;(I')[1/2].

Example 5.14. Let T; = (ap) be the free monoid of rank 1. The
A;(Y)[1/2]-module Qv is isomorphic to A;(Y1)[1/2]. Indeed, the
A;(Y1)[1/2]-module homomorphism

Al(Tl)[1/2] — QT1
1 — dOéQ

gives an isomorphism. In particular, Chy(Y;), = Rep;(Y1)[1/2].



30

Let ¢ : X — Rep,(I')[1/2] be a Z[1/2]-morphism. Let us regard Qr
as a quasi-coherent sheaf on Rep;(I')[1/2]. There exists a one-to-one
correspondence

Hom Rep; (I)[1/2] (X7 Ch?(r)u) =
{*(Qr) - L — 0| L is a line bundle on X}/ ~ .

! f . .
Here we say that 1*({r) = £ and »*(Qr) = L, are equivalent if
there exists an isomorphism ¢ : £; — L5 such that go f; = fo.

The group scheme PGLy[1/2] := PGLy ®z Z[1/2] over Z[1/2] acts
on Repy(T), by p — P~1pP. We define the morphism ) : Repy(T"), —
Rep,(T")[1/2] by p — r = tr(p)/2. For a € T', we define the open
subscheme Repy(I')y,o of Repy(I'), by

Repy(D)ua = {p € Repy(I),, | (12, p(a)) generates a unipotent mold }.

Then Repy (')« is a PGLy[1/2]-invariant open subscheme of Repy(T'),.
The derivation a, : I' = T'(Repy(I')u,ar ORep, (). ) in Remark B.7] in-
duces the A;(I')[1/2]-module homomorphism A*(2r) — ORepyr),.a
and hence we can define the morphism 7, : Repy(I')yo — Cha(I'),
over Rep, (I')[1/2] associated to A*(€2r) = ORep, (1), .- Gluing the mor-
phisms {7, }aer, we have the morphism nr, : Repy(I'), — Chy(T'),
over Rep,(I')[1/2].

For o € I', we define the open subscheme Chy(I"),  of Chy(I'), by
Chy(I)y,e == D(da) = {da # 0}. From the definition of 7 ,, we see
that WEi(Chg(F)u,a) = Repy([')y,o. For a Z[1/2]-morphism ¢ : X —
Rep; (I')[1/2], there exists a one-to-one correspondence

Hom Rep; (I')[1/2] (X7 Ch?(r)%a) =
{@D*(QF) L0 L is a line bundle on X and *(da) is }/N

nowhere vanishing as a section of £
Since L is generated by ¢*(da), £ is isomorphic to Ox. Let r : T' —
I'(X, Ox) be the character associated to ¢ : X — Rep;(I")[1/2]. Re-
garding 1*(da) as 1 of Ox, we have the following;:
Hom Rrep, (1721 (X, Cha(T)y,0) =
{ d d:T'— I'(X,Ox) is a derivation with respect to r } .

such that d(a) =1

Remark that 7, : Repy(I'), — Chy(I'), and 7, : Repy(I)ua —
Chy(I')y,o are PGLy[1/2]-equivariant morphisms, where the actions of
PGLs[1/2] on Chy(I"), and Chy(I'), , are trivial.
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Definition 5.15. For the free monoid T; = (ag) of rank 1, we say
that the morphism my, ,, : Repy(Y1), — Chy(Y1), is the prototype in
the unipotent mold case. Remark that Repy(T1)y = Repy(Y1)u.q, and
that Chg(Tl)u = Chg(Tﬁu,ao.

By Theorem 17, 7 : Repy(Y1)k2 — Cha(T1) is a universal geomet-
ric quotient by PGL,. Taking the base change of m by Spec Z[1/2] —
Spec Z, we have Repy(Y1)mk2[1/2] — Chy(Y1)[1/2]. Here we denote
X ®z Z[1/2] by X[1/2] for a Z-scheme X. Let Z be the closed sub-
scheme of Chy(Y)[1/2] defined by m(oy(ap)) = 0. Since Chy(Y) =
Spec Z[T, D], the affine ring of Z is isomorphic to Z[1/2,T]. Note that
r(-) = tr(oy,(+))/2 gives a character of T; on Z and that r(ag) = T'/2.
Hence Z is isomorphic to Cha(Y1), = Rep,(T1)[1/2]. Taking the base
change of Repy(Y1)2[1/2] — Cha(Y1)[1/2] by Z — Chy(Y1)[1/2], we
have 7y, 4 : Repy(T1), — Cha(T1),.

Here we introduce the following lemma without proof:

Lemma 5.16. Let X — Y be a (universal) geometric quotient by G
over S. For 8" — S, put Xg = X xg5', Yo =Y xg 5, and
Gs = G xg 5. Then Xg — Y is a (resp. wuniversal) geometric
quotient by Gg over S'.

By the lemma above, we have:

Theorem 5.17. The prototype mr, . : Repy(T1)y — Cha(Y1), is a
universal geometric quotient by PGLy[1/2].

Let T be a group or a monoid. For a € I', we define the monoid
homomorphism ¢ : Ty = () — I' by ap — a. By restricting repre-
sentations and derivations of I' to those of T through ¢, we can obtain
the following commutative diagram:

Reps(Mua — Cho(I)ua

1 1
RGPQ(Tl)u — ChQ(Tl)u

Under this situation, we have the following lemma.
Lemma 5.18. The above diagram gives a fibre product. In particular,

the morphism Repy(I')y,a — Cho(I')ya is obtained by base change of
the prototype.

Proof. We claim that Repy(I")y.a — Repy(T1)u X cha(ry), Cha(I)u,q is
an isomorphism. Let X be a Z[1/2]-scheme. Assume that an X-valued
point p € Repy(I')y,q is sent to (o', 0) € Repy(T1)u Xcna(ry) Cha(I)y,q-
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We can regard the X-valued point o € Chy(I'), , as a pair (r,d) such
that d : [ — T'(X,Ox) is a derivation with respect to a character
r:I' = I'(X,Ox) and d(«) = 1. Since () = d(y)n(a),

(6) p(v) = (V)12 + d(v)n(p'(a0))

for each v € I". Hence p is uniquely determined by (o', o).

For an X-valued point (p',0) € Repy(T1)u Xcho(ry). Cha(l)uy,a, we
define the map p : I' — My(I'(X, Ox)) by (@). From Lemmal[h.8 we see
that p is an X-valued point of Rep,y(I'), . Then the X-valued point p
is sent to (p', o) € Repy(T1)u Xchy(ry), Cha(I')y,o- By these discussion,
the diagram gives a fibre product. O

Theorem 5.19. The morphism 7r,, : Repy(I'), — Cha(I"), is a uni-
versal geometric quotient by PGLy[1/2] for a group or a monoid T".

Proof. For each o € I', m, : Repy(I') .0 — Cha(I')y,q is a universal
geometric quotient by PGL2[1/2] because 7, is obtained by base change
of the prototype. Hence this implies the statement. O

Remark 5.20. The morphism 7, : Repy(I'),, — Chy(T'), is smooth
and surjective. Indeed, the prototype 7y, , : Repy(Y1), — Chy(Yy),
is smooth and surjective because it is obtained by base change of
7 : Repy(T1)m2 — Chy(Y1) and 7 is smooth and surjective by Propo-
sition [£.9

Remark 5.21. For each point x € Chy(T'),, there exists a local sec-
tion s, : V. — Repy(I'), on a neighbourhood V, of x such that
Try © S = idy,. Indeed, take o € I' such that x € Chy(I'),q.
The prototype Repy(T1), — Chy(Y1), has a section s since it is ob-
tained by base change of Repy(Y1)k2 — Cha(T;), which has a section
(it has been defined just before Proposition [412]). By Lemma [5.I8]
Ta : Repy(IN)ya — Chy(I'), . has a section sr,. Hence we can take
Chy(T),,,o as a neighbourhood V, of .

Lemma 5.22. Let p1, po be representations with unipotent mold for a
group (or a monoid) I' on a scheme X over Z[1/2]. Let f; : X —
Rep, (L), be the morphism associated to p; fori =1,2. If mp, 0 fi =
ry © fo 0 X — Chy(I'),, then for each x € X there exists P, €
GLy(T'(V,, Ox)) on a neighbourhood V, of x such that P, 'pi P, = po
on V.

Proof. For x € X, take a € I' such that (7, o fi)(z) = (7r. o
f2)(x) € Cha(I')y,o. We may assume that f; : X — Repy(I')y.q for i =
1,2 from the beginning. By Remark 5.21] 7, : Repy(I')y,0 — Cha([)y 0
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has a section sp,. Let p3 be the representations with unipotent mold
on X associated to spq © 7y © fi = Spq 0 7y © fo. Then pi(y) =
()12 + d(vy)n(pi(a)) for each v € " and ¢ = 1,2,3, where d is the
derivation with respect to the character r associated to 7,0 f1 = 74,0
fo such that d(«) = 1. Note that p3(«) = < (1) _YP ) and that T' =
tr(pi(a)) = tr(pa(a)) = tr(ps(a)) and D = T?/4. There exist Q1, Qs €
GLy(T'(V,, Ox)) on a neighbourhood V,, of & such that Q; ' p;(a)Q; =
ps(@) and Q3 'ps(a)Qy = ps(a) by Lemma B8 Since Q;'pi(7)Q1 =

ps(7) and Q5 p2(7)Qa = p3(7) for each v € T, (Q1Q5 1) ' (Q1Q5 ") =
p2 on V.. This completes the proof. O

Let us define Eqly(I") as the sheafification of the following contravari-
ant functor with respect to Zariski topology:
(Sch/Z[1/2])* — (Sets)
X — {p| rep. with unipotent mold for I on X'}/ ~ .

By a generalized representation with unipotent mold for I' on a scheme
X, we understand pairs {(U;, p;) }ier of an open set U; and a represen-
tation with unipotent mold p; : I' — My(I'(U;, Ox)) satisfying the
following two conditions:

(i) VierUi = X,

(ii) for each x € U; N Uj, there exists P, € GLy(I'(V,, Ox)) on a
neighbourhood V, C U; N U; of z such that P lpP, = p; on
V.

Generalized representations with unipotent mold {(Uj, p;)}ier and
{(V;,0j)}jes are called equivalent if {(U;, pi)}ier U {(V},05)}ies is a
generalized representation with unipotent mold again. We easily see
that EqUy(T")(X) is the set of equivalence classes of generalized repre-
sentations with unipotent mold for I' on a scheme X.

Theorem 5.23. The scheme Chy(T"), is a fine moduli scheme associ-
ated to the functor EqUq(T") for a group or a monoid T':
EqUy(T') : (Sch/Z[1/2])® — (Sets)
gen. rep. with unipotent
X ~ moldforFonX}/N'

In other words, Chy(I'),, represents the functor EqUs(I"). The moduli
Cho(T'),, is separated over Z[1/2]; if I is a finitely generated group or
monoid, then Chy(I"), is of finite type over Z[1/2].

Proof. Since mr,, : Repy(I'), — Chy(I"), is a PGLy[1/2]-equivariant
morphism, we can define a canonical morphism EqUs(I") = hcny ), =
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Hom(—, Chy(I'),). Let us define a morphism hcn,ry, — Eq Us(T).
Let g € hcnym),(X) with a Z[1/2]-scheme X. For each z € X,
take o, € I such that g(z) € Chy(I')y.,. By using the section
Sra, © Cha(I)ya, — Repy(I)yq, in Remark B.2T] we can define a
representation with unipotent mold p, on a neighbourhood U, of x.
By Lemma (.22] we see that {(U,, p:)}eex € EqUs(T")(X) and that
the morphism hcp,r), — EqUa(I) is well-defined. It is easy to see that
Chy(I"),, represents the functor £qUs(T).

Since Chy(I"),, is defined as ProjS(€2r), it is separated over Z[1/2].
If I' is finitely generated, then Chy(I"), is of finite type over Z[1/2] by
Remark O

Remark 5.24. Let A be an associative algebra over a commutative
ring R over Z[1/2]. For a 2-dimensional representation p of A on an
R-scheme X, p is called a representation with unipotent mold if the
subalgebra p(A) of My(Ox) generates a unipotent mold on X. In
a similar way as group or monoid cases, we can define generalized
representations with unipotent mold for A on an R-scheme X. The
contravariant functor £q Us(A) from the category of R-schemes to the
category of sets is defined as

EqUy(A) : (Sch/R)* — (Sets)

gen. rep. with unipotent /
X ~ mold for A on X } ’

Then we can construct the fine moduli Chy(A),, associated to Eq Us(A)
in the same way as Theorem (for details, see Remark [5.25]). The
moduli Chy(A), is separated over R. If A is a finitely generated algebra
over R, then Chy(A), is of finite type over R.

Remark 5.25. For an associative algebra A over a commutative ring R
over Z[1/2], we can construct Chy(A), in the following way. We define
the contravariant functor Rep,(A) from the category of R-schemes to
the category of sets by X — {¢ : A — I'(X, Ox) | R-algebra hom. }.
The functor Rep,(A) is representable by an affine scheme, and let us
denote its coordinate ring by A;(A). Let d : A — A;(A) be the uni-
versal R-algebra homomorphism. For an A;(A)-module M, put

0 : R-linear and for a,b € A, }
d(ab) = d(a)d(b) + 6(a)d(b)

The functor Der(A, —) : (A;(A)-Mod) — (A;(A)-Mod) defined by
M +— Der(A, M) is representable by some A;(A)-module Q,/r. Let
Rep,(A) be the representation variety of degree 2 for A over R, that
is, the affine scheme representing the contravariant functor from the

Der(A, M) := {5:A—>M‘
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category of R-schemes to the category of sets which is defined by
X +— {2-dim. rep. of A on X}. Let Repy(A), be the subscheme of
Repy(A) consisting of representations with unipotent mold, and o :
A — My(T'(Repy(A)u, Orepy(a),)) the universal representation with
unipotent mold. Then tr(o(-))/2 : A — I'(Repy(A)u, Orep,(4),) is
an R-algebra homomorphism, and it defines a morphism Repy(A), —
Rep; (A). In a similar way as group or monoid cases, we can define a
Rep, (A)-morphism 7 : Repy(A), — Chy(A), := ProjS(Qa/r), where
S(Qa/r) is the symmetric algebra of Q4/r over A;(A). We can ver-
ify that 7 is a universal geometric quotient by PGLy; ®z R and that
Chy(A), represents Eq Us(A).

Remark 5.26. We have introduced the notion of generalized represen-
tations with unipotent mold for describing the moduli functors Eqlda(I")
and Eqldz(A). However, the moduli functors can also be described as
EqU(T) and EqUy(A) by using the notion of representations generating
sheaves of algebras which define unipotent molds. More precisely, see

§8.

6. UNIPOTENT MOLD OVER [y

In this section, all schemes are over Spec F5 and all commutative
rings are over Fy. Recall that a rank 2 mold A C My(Ox) over an
Fy-scheme X is called wunipotent over Fy if tr(s) = 0 for each open
subset U C X and for each s € A(U). We construct the moduli of
representations with unipotent mold over [Fs.

Definition 6.1. Let X be an Fo-scheme. Let A C My(Ox) be a
unipotent mold over F; on X. Let U C X be an open subset of X.
Suppose that Z € A(U) satisfies Aly = Op - I, & Op - Z. For each Y €
.A(U), we set Y = aZ(Y)[2 + bz(Y)Z We call az(Y), bz(Y) € Ox(U)
the (a, b)-coefficients of Y with respect to Z.

Lemma 6.2. Let U and Z be as in Definition [6.1. Assume that p :
I' - My(I'(X, Ox)) is a representation with unipotent mold A on X
for a group or a monoid I'. For each v € T, let us denote az(p(y)) and
bz(p(7)) by a(y) and b(~), respectively. Then for v,d € I', we have

afe)

be) ,

a(70) = a(y)a(d) +b(7)b(d) det Z,
b(9) (
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Proof. Since p(e) = I, =1-1,+0-Z, ale) =1 and b(e) = 0. By
the Cayley-Hamilton theorem, Z? — tr(Z)Z + det(Z)I, = 0. Hence we
have Z? = —det(Z)I, = det(Z)1I; by tr(Z) = 0. We see that

p(v8) = p(v)p(d)
= (a(y) 12 +b(7)Z)(a(6)I2 + b(5)Z)
= {a(v)a(0) + b(7)b(d) det(Z) } 2 + {a(v)b(0) + b(v)a(d)} Z.

Comparing the coefficients of p(7d) = a(v0)Iy + b(vd)Z, we obtain
a(v6) = a(y)a(d) + b(v)b(d) det Z and b(~d) = a(v)b(d) + b(y)a(d). O

Let R be an algebra over Fo. Let p : I' — May(R) be a representation
with unipotent mold A over Fy such that A = R-I,® R-p(«a). For each
v € I', we denote ap(a)(7), bp)(7) by a(y),b(7), respectively. Then
a(-) and b(-) satisfy the formulas in Lemma .2 where Z = p(a).
Furthermore, a(a) = 0 and b(«r) = 1. Conversely, a character and
(a, b)-coefficients give a representation with unipotent mold over Fs:

Lemma 6.3. Let d : I' — R be a character. Let A = R-1, ® R -
Z C My(R) be a unipotent mold over Fy such that tr(Z) = 0 and
det(Z) = d(a) for some a € I'. Assume that a : T' - R, b: ' — R,
and o € I satisfy the equalities

a(70) = a(y)a(d) + b(7)b(d)d(e),
b(10) = a(v)b(0) + b(v)a(d),
d(v) = a(v)’+b(7)%d(a)

for each 7,6 € I'. Furthermore, assume that a(a) = 0 and that b(a) =
1. Then the map

P r — MQ(R)
v o= a() I +b(7)Z

is a representation with unipotent mold A over Fy such that det(p(v)) =
d(vy) for each v € T.

Proof. First we show that a(e) = 1 and b(e) = 0. By the assumption,
ble) =ble-e) = ale)ble) + ble)ale)
= 2a(e)b(e) =0
and
a(e) = a(e - e) a(e)a(e) + b(e)b(e)d(«)
= d(e)=1
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Next we show that p(7d) = p(7)p(d) for each ,5 € T'. Since Z? =
det(Z)]2 = d(a)lg,

p(Mp(6) = (a(v)I2+b(7)Z)(a(d)]> + b()Z)
{a(v)a(d) + b(v)b(8)d() }2 + {a()b(d) + b(y)a(d)} Z
= a(y0)Is +b(v6)Z
p(76).
By Lemma EAI0, det p(y ) = det(a(y)ls + b(7)Z) = a(y)*det Iy +
b(7)*det Z = a(y)* + b(y)*d(a) = d(y).
Finally, p(a) = 0- Iy +1-Z = Z implies that p(I') generates .A.
Hence p is a representation with unipotent mold A over Fs. O

Definition 6.4. Let d : ' — R be a character in an Fy-algebra R.
Fora:I' - R, b: 1 - R and a € ', we say that a and b are
(a, b)-coefficients with respect to (d, «) if

a(e) = 1,b(e) = 0,a(a) = 0,b(a) =1,
a(y0) = a(v)a(d) + b(v)b(0)d(a),
b(v6) = a(y)b(d) + b(v)a(), and

d(y) = a(7)*+b(v)%d(a)

hold for each ~v,6 € I.

Definition 6.5. Set Rep,(I')r, := Rep,y(I') @z F5 and Repy(I')wko/m, :=
Repy(I')ike ®z Fy. Let us define Repy(I'),/r, as a closed subscheme of
Rep2(r)rk2/F2 by

Repy(D)u/r, = {p € Repy(I) iz, | tr(p(y)) = 0 for each v € T }.

For v € I, we define Rep,(I")./r, , as an open subscheme of Rep, ('), /r,
by

a unipotent mold over [Fy

I, and enerate
Repy(l)u/e, o = {pGRepz( Vst | p(7) & }

Note that
Repy(D)u/e, = () Repa (D)uyrs -

vel

Definition 6.6. Set Rep,(I')r, := Rep,(I') ®z Fy. Let A;(I')g, be the
coordinate ring of Rep,(I')g,, and let d : I' — A;(I")p, be the universal
character of I'. For o € I'; we define the A;(I")p,-algebra As(I" )u/]F2 N

by A1 (I)g,[a(y),b() | v € T']/I, where a(v),b(y) are indeterminates
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for each v € I and [ is generated by

a(e) = 1,b(e), a(@), b(er) — 1
a(y0) — a(7)a(d) — b(y)b(d)d(a)
b(76) — a(7)b(5) — b(v)a(d)
a(y)* = b(y)*d(a) — d(7)
for all 7,8 € I'. We set Chy(I")y/my,0 = Spe(:A2(F)u/]F2 o

For a € T', Chy(I")y/m,,a is a Rep;(I')p,-scheme. For a Rep;(I')r,-
scheme X, denote by x : I' = I'(X, Ox) the character of I associated
to X — Rep;(I')p,. There exists a 1-1 correspondence

CL,b I'— P(X, Ox)
Homgep, (15, (X, Cha(I)u/r,a) = { (a,b) | are (a, b)-coefficients
with respect to (x, @)

Let or .k, and ot /r, .« be the universal representation with unipo-
tent mold over Fy on Repy(I'),/r, and Repy(I'),/r, o, respectively. Put
d(y) = det(or,u/m,,a(7y)) for v € I'. By Lemma [6.2] agr’u/%’a(a)() and
Doy /iy o (e) () are (a, b)-coeflicients with respect to (d, &) on Repy (') u/r, ,a-
Hence we have the morphism 7, /r, o : Repy(I')u/mya — Cha(D)u/ks 0
associated to aoy. () () a0d bop., o (a) (). Note that Repy(I')u/ry 0 —
Rep; ('), is given by p ~— det(p). The group scheme PGL; ®z Fo
over Fy acts on Repy(T)um, by p — P~ 'pP. The open subscheme
Repy(I)u/is,0 of Repy(L)y/r, is PGLy ®z Fo-invariant for each o € T
Let PGLy ®z Fs act on Chy(I'),/m, « trivially. Then we have:

Proposition 6.7. 71 /r,. : Repy(I)u/my,a = Cha(I')y/p,,a is PGLy ®7
Fy-equivariant.

Proof. Let (p, P) be an X-valued point of Repy(I")y/r,.o X (PGL; ®7
[Fy) for an Fy-scheme X. The representations p and P~!pP on X have
the same determinants. For proving that p and P~!pP induce the
same X-valued point of Chy(I")y/m, ., it only suffices to show that p
and P~1pP have the same (a,b)-coefficients. We may assume that X
is an affine scheme SpecR and that P € GLy(R). Note that R[p(I")] =
R-I,+ R-p(a) C My(R) is a unipotent mold over Fy. For each v € ',
p(v) = a(v)Is + b(y)p(a), where a(-) and b(-) are the (a, b)-coefficients
of p. Multiplying the both sides by P~! from the left and by P from
the right, we have P~'p(y)P = a(y)Iy + b(y)P~'p(a)P. Hence the
(a, b)-coefficients of PpP~! with respect to P~'p(a)P coincide with
the (a, b)-coefficients of p with respect to p(«). This implies that (a, b)-
coefficients are PGLy ®7 Fo-invariant, which completes the proof. [
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Example 6.8. Let Yo = (1, @) be the free monoid of rank 2. Let o :=
0¥y u/Fs0, denote the universal representation of Ty on Repy(Y2)y/my 0, -

Then we can write o(a;) = ( Z 2 ), o(ag) = ( jcl 2 )7 and

Repy(Y2)u/ms,ar = D(b) U D(c) C Spec Fyla, b, ¢, d, e, f]/(bf — ce).

The (a, b)-coefficients of () with respect to o(ay ) are given by a(as) =

& ; X b(as) = % on D(b), and a(ay) = - af’ bla) = % on D(c).

For the universal matrix P = ( f z ) € PGLy ®7 Fq,

1

P lo()P =+ (

al + brs — cpq bs? — cq?
A

—br? +cp®> aA —brs+ cpg

and

_ 1 (dA+ers— fpq es? — fq?
1
P O'(OéQ)P A ( s

- —er? + fp? dA — ers + fpq

where A = ps —qr. By direct calculation, we can verify that a(as) and
b(az) are PGLy ®z Fo-invariant functions on Repy(Y2)u/k,.q,- Hence
Ty u/Faoar * RePo(L2)u/Faar — Cha(T2)u/ks 0 is PGLy®zFo-equivariant.

Remark 6.9. For any group I' and for any a,y € I', let us de-
fine the group homomorphism ¢ : Ty = (aj,a0) — ' by a1 — «
and a; — . Then ¢ induces a morphism ¢* : Repy(I')y/ma —
Repy(Y2)u/Fsar by p = po ¢. By Example [6.8, the (a,b)-coefficients
a(ap) and b(ap) are PGLy ®7 Fo-invariant functions on Repy(Y2)y/ms 0, -
Let op be the universal representation of I' on Repy(I')y/k,.0- Let aa ()
and b, () denote the (a, b)-coefficients of or(y) with respect to or(a).
Note that ¢*(a(a2>> = aa(V) and ¢*(b<a2)) = ba(fy)v where ¢* de-
notes the ring homomorphism I'(Repy(Y2)u/ms 015 ORepy(Ta) e, .0, )
L'(Repy (D) u/s00 ORepy (1), js,..) associated with ¢ : Repy(D)u/mya —
Repy(Y2)u/my,a,- Since ¢* is PGLy ®z Fo-equivariant, aq(y) and b, (7)
are PGL; ®z Fo-invariant functions on Repy(I")y/r,.o. Hence any (a, b)-
coefficients are PGLy ®z Fo-invariant and 7y /r,.0 @ Repy(I')u/mpa —
Chy(I")u/rs,a is PGLy®zFo-equivariant. This is another proof of Propo-
sition [6.7]

Definition 6.10. For the free monoid T; = (o) of rank 1, we say that
the morphism vy, u/ry.a0 : RePo(T1)u/Fe,a0 = Cha(T1)u/my a0 is the pro-
totype in the unipotent mold over [Fy case. Remark that Repy (Y1), /m, =
RepQ(Tl)u/]Fg,ag and that Chg(Tl)u/FQ = Ch2(T1)u/F2,a0-
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The coordinate ring A2(T1)S/h]F2,a0 of Chy(Y1)u/F,,a0 is isomorphic to
Ai(T1)r,. Indeed, a(ap) = 0 and b(ap) = 1. By induction on n, we can
verify that a(a) = 0,b(a}) = d(ag)™1/? for each positive odd integer
n and that a(af) = d(ag)™?,b(af) = 0 for each positive even integer
n. Hence A2(T1)S/h]F2,ao = Al(Tl)Fz and Ch2(T1)u/F2,o¢o = Repl(Tl)FQ.

By Theorem 17 7 : Repy(Y1)me — Chy(Yy) is a universal geo-
metric quotient by PGLy. Taking the base change of m by Spec Fy —
Spec Z, we have Rep2(T1)rk2/F2 — Chy(Y1)r,, where Rep2(Tl)rk2/IF2 =
Repz(Tl)rkg K7z FQ and Ch2(T1)F2 = Chg(Tl) Rz FQ. Let Z be the
closed subscheme of Chy(Y;)p, defined by tr(oy,(ap)) = 0. Since
Chy(Yy) = Spec Z[T, D], the affine ring of Z is isomorphic to Fy[D].
Hence Z is isomorphic to Cha(Y1)u/rya, = Rep;(T1)r,. Taking the
base change of Repy(Y1)wmo/m, — Cho(Y1)r, by Z < Chy(Y1)g,, we
have the prototype TY1,u/Fa,a0 + Rep2(T1)u/IF2,ao - Ch2(T1)u/IF2,a0’

By Lemma 516 we have:

Theorem 6.11. The prototype mr, u/Fy,a0 - RePa(T1)u/Fa,00 — Cha(T1)w/Fs a0
s a universal geometric quotient by PGLy ®7 Fs.

Let T be a group or a monoid. For a € I', we define the monoid
homomorphism ¢ : T; = (ag) — [ by ap — «. By restricting repre-
sentations and (a, b)-coefficients of I' to those of T through ¢, we can
obtain the following commutative diagram:

Repz(r)u/ﬂ‘“za - Ch2(P)U/F2,a
! {
Rep2(T1)U/F27ao - Ch?(Tl)u/ano'

Under this situation, we have the following lemma.

Lemma 6.12. The above diagram gives a fibre product. In particular,
the morphism Repy(I")y/ry.a — Cha(I')u/p,.« is obtained by base change
of the prototype.

Proof. Set Z = Repg(Tl)u/F2,a0 X Cha(T1)u/my a0 Ch2(r)u/1F2,a- We
claim that Repy(I')y/m,,a — Z is an isomorphism. Let X be an Fs-
scheme. Assume that an X-valued point p € Repy(I')y/m, o is sent to
(p/,0) € Z. We can regard the X-valued point o € Chy(I'),/p,, as a
pair (d, (a, b)) such that a,b: I' = I'(X, Ox) are (a, b)-coefficients with
respect to (d, ), where d(-) := det(p(:)) : I' = I'(X, Ox). Since

(7) p(7) = a(y) L2 + b(v)p (o)
for each v € T, p is uniquely determined by (o', o).

For an X-valued point (p/,0) € Z, we define the map p : ' —
My (I'(X, Ox)) by ([@). From Lemma [6.3] we see that p is an X-valued
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point of Rep,(I')y/,,o. Then the X-valued point p is sent to (o', 0) € Z.
By these discussion, we see that Rep,(I")y/r,,o — Z is an isomorphism,
and hence that the diagram gives a fibre product. U

Theorem 6.13. The morphism Ty /ry .0 : Repo(I)u/ma,a — Cha(I)w/my e
1s a universal geometric quotient by PGLy ®7 Fy for each a € T'.

Proof. The statement follows from that 7, /r, o is obtained by base
change of the prototype. O

Let o, 8 € I'. Let Uy € Chy(I")y/r,,a be the open subscheme de-
fined by {b(58) # 0}. The inverse image Wr_’t/F%a(Uaﬁ) by T w/Faa
Repy(I)u/s,0 — Cha(L)y/p, o coincides with Repy (L), o MReDy (1) u ks 8-
Then 7T;72/F2’Q(Ua75) = Repy(I')u/Fy,a N Repy(L)u/rys — Uap is a uni-
versal geometric quotient by PGLy ®z Fy. Hence U, s = Us,, and
let us denote the canonical isomorphism by ¢, 5 : Uy s — Ugq. Note
that 054 = ¢, For a,8,7 €L, ¢as(Uas NUay) = Upa N Uz, and
Pay = P3~0Pa,p 00 Uy gNU, . Gluing the schemes {Cha(I')u/ry.0 }bacr,
we obtain a scheme, which we call Chy(I'),/r, (for example, see [6,

Chap. II, Ex. 2.12]). Gluing {71 u/F,q }aer, We also obtain 7/, :
Repy (I u/r, = Cha (L) u/m,-

Corollary 6.14. The morphism 7 /r, : Repy(I)y/m, — Cha(I)y/m, is
a universal geometric quotient by PGLy ®7 Fo.

Remark 6.15. By Definition [6.6] Chy(I")y/r, .« is a Rep;(I')g,-scheme
for each v € I". Let d : Chy(I')y/r, o — Rep;(I')r, be the canonical
morphism for each o € I'. We can obtain a morphism d : Chy(I'),/r, —
Rep, (I')r, by gluing the canonical morphisms {d, }aer. Hence Chy(I'),/r,
is also a Rep,(I')r,-scheme. Let us denote by det : Repy(I')u/m, —
Rep, (I')g, the morphism corresponding to the character det(or . /r,(+))).
Then d o 7, /r, = det.

The open subscheme U, 3 C Chy(I')y/r,,« is affine and its coordi-
nate ring is isomorphic to the localization A2(F)ChF2’a[ba(ﬁ)_1] of the

coordinate ring Az ('), o Of Cha(T)u/ms0 by ba(B) ™. Here we denote
by @, by the (a,b)-coefficients of the universal representations oy, JFa,a
with respect to (det(orur,.a), @) Let ¢} 5 : Ag(F)Sh&ﬂ[bg(a)_l] —
A2(F)S?F2,a[ba (8)7'] denote by the ring isomorphism associated to ©,. 4
Ua,p — Upa- Then ¢, 5(as(7)) = aa(y)+as(a)ba(y) and ¢}, 5(bs(7)) =
ba(7)bg(cr) for each v € T'. Note that bg(a) = b,(8)~" and ag(a) =
—ao(B)ba(B)™r on U, p = Us,. Since Ag(F)Ch]FW ®r, AQ(F)S}}FM —

u
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Ay (D)Ch ¥zl 0a (8)71] is a surjective ring homomorphism, the diagonal

morphism U, g 4 Chy(I")u/Fy,a XF, Cha(I)y/k, s is a closed immersion.
Hence we have:

Proposition 6.16. For a group or a monoid I, Chy(I'),/r, is separated
over Fy.

Remark 6.17. The morphism 7, r, : Repy(I)um, — Cha(I')y/r,
is smooth and surjective for each group or monoid I'. Indeed, the
prototype Ty, u/Fya0 : RePo(T1)u/Fa,a0 — Cha(Y1)u/Fy,a, s smooth and
surjective because it is obtained by base change of 7 : Repy (11 )2 —
Chy(Y;) and 7 is smooth and surjective by Proposition Hence
Repy (D) u/pye = 7r1?71u/]F2(Ch2(F)u/F27a) — Chy(I')y/p,ye is smooth and
surjective for each o € I". Therefore, so is 7 ,/F,.

Remark 6.18. For each point € Chy(I'),/r,, there exists a local
section s, : V; — Repy(I')y/r, on a neighbourhood V, of x such that
Tr,u/Fs © Sz = idy,. Indeed, take o € I" such that x € Chy(I")y/r,,0. The
prototype Repy(T1)u/my,a0 = Cha(Y1)u/F,,a, has a section s since it is
obtained by base change of Repy (Y1) — Cha(Y1), which has a sec-
tion (it has been defined just before Proposition L12)). By Lemmal6.12]
we see that Repy(I')u/my,a — Cha(I')u/k,.« has a section sp . Hence we
can take Chy(I'),/r, o as a neighbourhood V;, of x.

Lemma 6.19. Let py1, po be representations with unipotent mold over
Fy for a group (or a monoid) T' on a scheme X over Fy. Let f; :
X — Repy(I')ym, be the morphism associated to p; for i = 1,2. If
TruFs © f1 = Traum, © fo 0 X — Cho(I')yr,, then for each x € X
there exists P, € GLy(I'(V,, Ox)) on a neighbourhood V, of x such that
Px_lplpx = p2 on Va.

Proof. For x € X, take a € I such that (mp . /r, © f1)(x) = (7r,u/m, ©
f2)(x) € Chy(I")y/my,a- We may assume that f; : X — Repy(I')u/p,,o for
i = 1,2 from the beginning. By Remark[6.18, 71 ,/r, o : Repy(I')u/mp,a —
Chy(I")y/r,,a has a section sp,. Let ps be the representations with
unipotent mold over [F; on X associated to sp o 0 7rr, © f1 = Spa ©
Tru/m, © f2. Then p;i(y) = a(y)ly + b(y)pi(e) for each v € I' and
i = 1,2,3, where (a,b) is the (a,b)-coefficients with respect to (d, @)
and d(-) = det(py (-)) = det(pa(-)) = det(ps ("))

Note that ps(« 0 _OD and that D = d(«). There ex-

) =
ist Ql Q2 € GLy(T'(V, )) on a neighbourhood V, of x such that
Qi pr(@)Q1 = pala) and Q' pa()Qz = py(a) by Lemma BB Then
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Q' ,(V)Q1 = ps(v) and Q5" pa(7)Q2 = ps(7) for each v € T, and
hence (Q1Q51) 'p1(Q1Q5") = p2 on V. This completes the proof. [

Let us define £q Us(I")r, as the sheafification of the following con-
travariant functor with respect to Zariski topology:

(Sch/F5)? — (Sets)
D% s {p rep. with unip. mold }/N

over Fy for I' on X
By a generalized representation with unipotent mold over Fy for T’
on an Fo-scheme X, we understand pairs {(U;, p;) }ier of an open set
U; and a representation p; : I' — My(I'(U;, Ox)) with unipotent mold
over [Fy satisfying the following two conditions:
(i) UierUs = X,
(ii) for each x € U; N Uj, there exists P, € GLy(I'(V,, Ox)) on a
neighbourhood V, C U; N U; of z such that P lpiP, = p; on
V.

Generalized representations {(U;, p;) bier and {(V}, ;) } jes with unipo-
tent mold over Fy are called equivalent if {(U;, pi) }ierU{(V}, 0;)}jes is a
generalized representation with unipotent mold over Fy again. We eas-
ily see that EqUs(I)g, (X) is the set of equivalence classes of generalized
representations with unipotent mold over Iy for I' on an Fo-scheme X.

Theorem 6.20. The scheme Chy(I')y/r, is a fine moduli scheme asso-
ciated to the functor EqUs(T)r, for a group or a monoid I':

EqUs(T)p, : (Sch/Fy)? — (Sets)

D% . gen. rep. with unipotent /
mold over Fy for T" on X '

In other words, Chy(I')y,/r, represents the functor £q Us(I')r,. The
moduli Chy (), /r, s separated over Fy; if I' is a finitely generated group
or monoid, then Chy(I'),/r, is of finite type over Fy.

Proof. Since 7w, : Repy(I')um, = Cho(I')y/k, is a PGLy @z F-
equivariant morphism, we can define a canonical morphism Eqls(I")r, —
Ay (r), e, = Hom(—, Chy(I'),/r,). We define a morphism Acp,r, ey
EqUs(T)r, as follows. Let g € hcny(r), s, (X) with an Fao-scheme X.
For each z € X, take o, € I' such that g(z) € Chy(I")y/ya,. By us-
ing the section spq, : Cha(I')y/ry .0, — Repy(I)w/my a, in Remark G.I8]
we can define a representation p, with unipotent mold over Fy on a
neighbourhood U, of x. By Lemma [6.19] we see that {(Uy,, p:)}eex €
Eq Us(I")p,(X) and that the morphism hcn, ) — Eq Us(TD)p, is

u/Fo
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well-defined. It is easy to see that Chy(I"), r, represents the functor
& q u2 (F)Fz :

By Proposition [6.16, Chy(I"),/r, is separated over Fy. If I' is finitely
generated, then we can verify that A (F)Sh&a is a finitely generated
algebra over [y in a similar way as Remark 5121 Let S = {ay,...,a,}
be a set of generators of I'. Then Chy(I'),/r, is covered by finitely many
affine open subschemes Chy(I')y/F,.0,(1 < ¢ < n). Hence Chy(I')y/p, is
of finite type over Fs. O

In the following Example [6.21], we describe Chy(Y,,)./r, for the free
monoid Y, = (a1, ..., q,) of rank m. This description has been in-
spired by the referee.

Example 6.21. Let us describe Chy (Y, ),/r, for the free monoid Y, =
(a1,...,04,) of rank m. Put C(m) := Chy(Y,,)um, and C(m); =
Chy (Y0 )u/Fsa, for 1 < i < m. Let us denote by A(m); the A;(Y,,)r,-
algebra Ay (T,,)h for 1 <4 < m in Definition [6.6l We can write

u/Fa,0

Al(Tm)Fz = F2[d(a1)7 R d(am>] and
A(m); = Fald(ay), ai(ay), bi(ay) | 1
where I(m); is the ideal of Fao[d(c;), a;(a;), b;
erated by a;(;), bi(a;) — 1, and d(a;) — a;
1 <7 < m. Note that
C(m); = AF" " = {(as(), .., ai(0i1), ai(iga), - - - ai(om),
bi(on), ..., bi(ai—1),bi(ai1), .., bilou), d(ay)) € A?FT_I}-

We set U;; := {bi(ej) # 0} C C(m); = SpecA(m);. For 1 <i# j <m,
the isomorphism ;; : U;; — Uj; is given by the Fy-algebra isomor-
phism ¢}; © A(m);[bj(cs) "] = A(m)i[b;(a;)~"] which is defined by
ei(aj(on)) = ai(ow) + bilow)ai(a;) /bi(y), ¢35 (bi(ow)) = biax) /bi(ay),
and ¢j;(d(ag)) = d(ag) for 1 < k <m.

On the other hand, let us define the closed subvariety D(m) of
IP’g’erm_l X Ay over [Fy in the following way:

D(m) = {([a5 : b1 : - bnlicijems (diy - ., dp)) € PR AL |
aj; = a5, a; =0 (1 <14,5 <m),
al, + bid; + bid; =0 (1< i,5 <m),
a;ibe + ajib; + agb; =0 (1 < 4,5,k <m)}.

m(m+1) _
(Note that D(m) can also be defined as a closed subvariety of P, * %

Af. by using homogeneous coordinates {a;}i<i<j<m and {b;}i<i<m-)
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Put D(m); := {b; # 0} C D(m) for 1 < i < m. By using inhomo-
geneous coordinates @, = a;/b; and b; = b;/b; for 1 < j, k < m, we
easily see that

~J 2m—1
D(m); = A,
— — — - T 7 7 7 2m—1
= {(%1, ey Q=15 Qi g1y - - - Qi bi,. ., bi—1,bip1, ..., b, di) € AFZ .

Note that D(m) = U*, D(m);.

Let us define the Fy-isomorphism v¢; : C'(m); — D(m); C D(m)
by the Fs-algebra isomorphism ¢ : A(D(m);) — A(m); which is de-
fined by (@) — ai(ay), 6:(5;) = bilay) for j # i, and v} (d;) —
d(c;), where A(D(m);) is the coordinate ring of D(m);. We can glue
{p; + C(m); — D(m);}1<i<m (remark that —1 equals to 1 in char-
acteristic 2 for the verification), and hence we have an isomorphism
Y+ C(m) — D(m). Note that Chy(Y,,)um, = C(m) = D(m) is a
(2m — 1)-dimensional smooth irreducible variety over .

Let p; be the representation of T,, on D(m); = C(m); defined by

i bad:
pilay) = ( b )
’ bj G

for 1 < j < m. Then {(C(m);, p:) h1<i<m is the universal equivalence
class of generalized representations with unipotent mold over Fy of T,
on Chg(Tm>u/F2

Remark 6.22. Let A be an associative algebra over a commutative
ring R over Fy. For a 2-dimensional representation p of A on an R-
scheme X, p is called a representation with unipotent mold over Fy if
the subalgebra p(A) of My (Ox) generates a unipotent mold over Fy on
X. In asimilar way as group or monoid cases, we can define generalized
representations with unipotent mold over Fy for A on an R-scheme X.
The contravariant functor £q Us(A)p, from the category of R-schemes
to the category of sets is defined as

EqUy(A)p, = (Sch/R)* — (Sets)
gen. rep. with unipotent
X — mold over F, for A on X } / '

We can construct the fine moduli Chy(A),/r, associated to Eq Us(A)r,
in the same way as Theorem (for details, see Remark [6.23]). The
moduli Chy(A),/r, is separated over R. If A is a finitely generated
algebra over R, then Chy(A),r, is of finite type over R.

Remark 6.23. For an associative algebra A over a commutative ring
R over Fy, we can construct Chy(A),/r, in the following way. We define
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the contravariant functor Rep}(A) from the category of R-schemes to
the category of sets by

Rep, (A)(X) = {d . A T(X,0x) d is a ring homomorphism and }

d(aa) = o?d(a) fora € A,a € R

for each R-scheme X. The functor Rep}(A) is representable by an
affine scheme, and let us denote its coordinate ring by Aj(A). Let
d: A — A(A) be the universal ring homomorphism. Let Rep,(A)
be the representation variety of degree 2 for A over R introduced in
Remark [5.25] Let Repy(A),/r, be the subscheme of Rep,(A) consist-
ing of representations with unipotent mold over Fy, and o4/, : A —
Mo (I'(Repa(A)u/rs s ORep,(4),,5,)) the universal representation with unipo-
tent mold over Fy. Note that det 04, /r, : A = I'(Repy(A)u/m,, ORCPQ(A)H/%)
gives a morphism Rep,(A),/r, — Rep(A). For ¢ € A, define the open
subscheme Repy(A)y/r,c := {(I2,04,u/r,(c)) is a unipotent mold over Fy }
of Rep,(A),/r,. For a scheme X over A7(A) and for c € A, we say that
a,b: A — I'(X,Ox) are (a,b)-coefficients with respect to (d,c) on X
if a,b are R-linear maps satisfying
a(l) =1,a(c) =0,b(1) = 0,b(c) =1,
a(cicy) = a(er)alea) 4+ b(cr)b(e2)d(c),
b(cic2) = alc1)b(cz) + bler)alcs),
a(c1)” +b(e1)*d(c) = d(e),

for all ¢;,co € A. Here d : A — I'(X,Ox) denotes the ring homo-
morphism associated to X — Repj(A). There exists a commutative
ring AQ(A)U/]F . over A{(A) such that Chy(A)y/k,.c = SpecAg(A)u/]F2 .
represents the functor corresponding X to the set of (a, b)-coefficients
with respect to (d,c) on X for each scheme X over Aj(A). In a simi-
lar way as group or monoid cases, we can define a Rep)(A)-morphism
7o : Repy(A)u/rye = Cha(A)y/r,e. We see that 7. is a universal geo-
metric quotient by PGLy; ®z R. Gluing schemes {Chy(A)u/r,.c}eca, We
have a scheme Chy(A),/r, over Rep}(A). Gluing {7.}.ca, we also have
a morphism 7 : Rep,(A),/r, = Cha(A),/r, over Rep)(A). Hence 7 is a

universal geometric quotient by PGL; ®7 R and Chy(A),/r, represents
£ q Z/{g (A)]FQ

Remark 6.24. We have introduced the notion of generalized represen-
tations with unipotent mold over [y for describing the moduli functors
EqUs(T)g, and EqU(A)r,. However, the moduli functors can also be
described as EqU(T)p, and EqU)(A)p, by using the notion of repre-
sentations generating sheaves of algebras which define unipotent molds
over Fy. More precisely, see §8.
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7. ANOTHER APPROACH FOR UNIPOTENT MOLDS OVER [y

In this section, we construct the moduli scheme Chy(I"),/r, in a dif-
ferent way from §6. When we take the quotient of Rep,(I'),/r, by
PGL; ®z Fy, we need to introduce the notion of (a,b)-coefficients be-
cause there exist no eigenvalue of op ,,/r,(v) on Repy(I'),/r, in general,
where op ,/r, is the universal representation on Rep,(I'),/r,. However,
we can obtain eigenvalues of or ,,/r, () by taking the pull-back of ot ,/,

by a faithfully flat finite morphism p : Repy(I'), 5, = Repy(I)u/m,.
Then by discussing derivations we can construct a universal geomet-

—_—

ric quotient 7r ,r, : Repy(I'), r, = Cha(l), p, by PGLy ®7 F in the
same way as the unipotent mold (ch # 2) case in §5. Considering the

“descent” of @ruw, : Repy(I'), r, = Cha(I'), 5,, we have a universal
geometric quotient 7, /r, : Repy(I)y/m, — Cha(I)y/m,. In this section,
we will use the same notation as §6. Without Lemma [6.12] we will
prove Theorem [6.13] It should be pointed out that this section was
inspired by the referee.

Let I" be a group or a monoid. For o € I'; let us consider the scheme
Repy(I)u/ry.o over Fy. Recall that

I, and p(«) generate
Rep2(r)u/F2,a = {p S RepQ(F)u/Fz 2 p( ) g } .

a unipotent mold over Iy

Denote by or ./, the universal representation with unipotent mold
over Fy on Repy(I')y/k, - There exists no eigenvalue of or ,/r, o() on
Repy(I')u/py.o in general, and hence we will construct a faithfully flat

—~—

finite morphism p, : Repy(I'),, r, o — RePa(L)ur, 0 such that there

exist eigenvalues of p;, (o1 u/r, (@) on Repy(l'),, g, 4
Definition 7.1. Let us define a quasi-coherent sheaf A, of Ogep, (1)
algebras on Repy(I')y/F,y,a Dy

Aa = ORsz(F)u/FQ,a [Xa]/(Xg — det O'F’U/FZQ(Q)).

e~

Then set Repy (L), /r, o == SpecA,.

u/]Fg,a_

—_—

Remark 7.2. The canonical morphism p, : Rep,y(I'), /r, , = Repa(I)u/psa
is faithfully flat and finite. Since tr(op . m, (@) = 0, X, is an eigen-

value of pY, (ot u/m,a(a)) on Repy(L), g, ,- We see that

Repy(D) /0 = 1(0, X) | p € Repy(D)uyi, o and X? = det p(a) } .
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—_—

For simplicity, we put R, := Repy(I'),, /i, 0 and Ro = Repy (L) u/ms a-
Remark that Og, (01 u/Fy.a(I)] = Or, - Is+ORg, - 01 u/F,,o (@) is & unipo-
tent mold over Fy on R,. For each v € I, we can write or /r,.q(7) =
aa(7) 2 4 ba (7)o u/ms.a(). Note that as(e) = 1,b,(e) = 0 and that
a(a) = 0,b(a) = 1.
Definition 7.3. For each ~, we define r,(vy) € (’)EQ(EQ) by ro(y) =
aa(y) + ba(7)Xa- (In the sequel, we will omit p?.)
Proposition 7.4. For eachy € T, r(7) is an eigenvalue of or /7y 0 (7)
on Ry. In other words, r(7) is a root of the characteristic polynomial
Of UF,U/R@(V)'

Proof. By using X? = det or 45, () and Lemma EI0, we have

ra(7)? = (aa(y) + ba(7)Xa)®
= aa('y)z + ba(V)ng
- aa(’y)z + ba(’y)z det UF,u/Fz,a(a) = det UF,U/FQ,Q(,}/)‘

Since tr(or u/rya(7)) = 0, the characteristic polynomial of or k..« (7)
is 2% —det o1 4k, 0(7). Hence r4(7) is an eigenvalue of ot /r, o(7). O

Proposition 7.5. For each a € T, ro : I' = O (R,) is a character.

Proof. Note that a, () and b,(7y) are the (a, b)-coefficients of o,y /r, . (7)
with respect to o1 u/F,o(@). By Lemmal6.2] ro(e) = aq(e)+ba(e) Xo =
1 and

Ta(Y)7a(0) = (@a(7) + ba (V) Xa)(@a(0) + ba(d) Xa)
= (aa('y)aa(é) + ba('y)ba(é)Xi) + (aa('y)ba((s) + ba(V)aa(é))Xa
= aa(70) + ba(70)Xo = ra(70)

for 7,6 € I. Here we used X2 = detor,/r, (). Hence r, is a
character of I'. O

For a, 8 € I'; let us consider the pull-backs of the intersection R, N
Rg € Repy(I)u/r, by pa : Ry — Ry and ps : Ry — Rg. Set Ros =
P (Ra N Rs) and Rg, = p5'(Rg N Ry). We define the morphism
Oba - Eaﬁ — Ega over Ry, N Rg by Xg — aa(B) + ba(8)X,. Since
(aa(B) + ba(B)Xa)? = aa(B)® + ba(B)?X3 = det oru/m,a(B) (see the
proof of Proposition [7.4)), we can define the morphism ¢g,.

It is easy to check that ¢na = 1, ¢ap 0 Ppa = 1 and ¢, 0 dp, =
¢ over Ry, N Rg N R, for o, 8,7 € I'. Gluing {Ea}aer‘, we have a

scheme Repy(I'),, g, over Repy ('), by [6 Chap. II, Ex. 2.12]. The
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—_—

canonical morphism p : Rep,(I'), 5, — Rep,(I')ur, is a faithfully flat
finite morphism.

—~—

Let us define a PGLy ®7 Fa-action on Rep,(I'), p,. First, we de-
fine the action o, of PGLy ®z Fy on éa as follows: For a Z-valued
point ((p, X), P) of R, x PGLy ®z Fo with an Fo-scheme Z, we set
oa((p, X), P) := (P71pP, X) as a Z-valued point of R,. Since X2 =
det(p()) = det (P~ p(a) P), the morphism o : Ry X PGLy®zFy — R,
can be defined. It is easy to see that o, gives a group action.

Next, let us glue the actions {04 }aer of PGLy ®7 Fy. Recall that
o Eaﬁ — Ega over R, N Ry is given by Xz — an(5) +0a(8)Xa. The
proof of Proposition shows that a,(5) and b,(5) are PGLy ®7 Fo-
invariant on R,. Thereby, the actions o, and og are compatible over

—~—

RaNRg, and hence we obtain the action o of PGL®z[F> on Repy(I'),, ,
by gluing {04 }aer. Finally, remark that the canonical morphism p :

Rep, ('), /5, = Repa(I)usw, is PGLy ®z Fa-equivariant.

Let A;(I") be the coordinate ring of the affine scheme Rep,(I"). Set
Ai(T)r, = A1(I') ®z F2 and Rep, (I)r, = SpecA;(I')r,. Let xr : I' —
A;(T")p, be the universal character of " over Fs.

Definition 7.6. For a A;(I")p,-module M, we define

Der(T', M) = {5 T — M‘ 8(af) = Xlgéffj(g)eﬂtg(a)xf(ﬁ) } .

We can prove the following lemma in the same way as Lemma [5.111

Lemma 7.7. There exists a universal Ay (I')g,-module Qr/r, represent-
ing the covariant functor

Der(T,—) : (A;(I')s,-Mod)
M

(Al (F)F2 -MOd)

%
—  Der(I', M).

In particular,
Der(I', M) = Homy, ()., (Qr/r,, M)
is an isomorphism for each Ai(I')g,-module M.

Remark 7.8. Let d : I' — Qr/p, be the universal derivation of I". We
see that Qp/p, is generated by {dy |~y € I'} as an A;(I')p,-module. As
in Remark 5.12, we see that if I' is finitely generated, then Qr/p, is a
finitely generated A;(I")p,-module.
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—_—

Definition 7.9. We define the scheme Chy(I'),, 5, over Rep; (I')r, by

Chg(r)u/Fz = PI‘Oj S(QF/Fg)a
where S(Qr/g,) is the symmetric algebra of Qr/g, over A;(I')g,.

Example 7.10 (¢f. Example [5.14). Let T1 = (ag) be the free monoid
of rank 1. The A;(Y;)g,-module Qy, /g, is isomorphic to A;(Y1)g, by

Al (Tl)Fz — QT1/]1“2
1 — dOéQ.

—_—

In particular, Chy (1), /r, = Repy(T1)r,.

Let ¢ : X — Rep,(I')r, be an Fy-morphism. Let us regard Qr/g, as
a quasi-coherent sheaf on Rep,(I')r,. There exists a one-to-one corre-
spondence

—_—

HOIIl Rep1(F)F2 (X, Chg(r)u/Fz) =
{*(Qrjp,) - L — 0| L is a line bundle on X}/ ~ .

Here we say that ¢*(Qr/r,) R Ly and *(Qrr, ) 5 L, are equivalent
if there exists an isomorphism ¢ : £, 5 Lo such that go f; = fs.

For o € I', we define the open subscheme Chy(l'), g, , of Cha(I'), r,
by Chs(I'), g, o, := D(dar) = {da # 0}. For an Fy-morphism ¢ : X —
Rep; (T')F,, there exists a one-to-one correspondence

—_—

Hom Rep; (T)r, (X7 Ch2(r)u/]F2,a) =
. L is a line bundle on X and ¢*(da) is
{w (Qryp,) = L =0 nowhere vanishing as a section of £ ~
When L is generated by ¢*(da), L is isomorphic to Ox. Let r : I' —
I'(X, Ox) be the character associated to ¢ : X — Rep;(I')r,. Regard-
ing ¢*(da) as 1 of Ox, we have the following:

Hom Rep, (F)]FQ (X, Chg(F)u/sza) =
{ d d:T'— I'(X, Ox) is a derivation with respect to r }

such that d(a) =1
where we say that d : I' — I'(X, Ox) is a derivation with respect to r
if d(~0) = r()d(0) + d(y)r(d) holds for each v, € T.
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—_—

We construct a morphism A : Repy(l'),, p, — Rep;(I')r,. By Propo-
sition [TH, r, : [' — Oﬁa(éa) is a character for each a € T". It
gives us a morphism \, : Ro — Rep, (I)g,. Through the isomorphism

®ga + Rap — Rga, Ao and Ag coincide on R, N Rg for each o, 8 € I.
Indeed, ¢p, is given by Xz — aq(8) + ba(8) X, By comparing

oru/m,68(7) = ag(v) L2 + bs(V)or,u/Fs,5(53)
= ag(7) 12 + bs(7)(aa(B) L2 + ba(B)0r u/Fs ()
= (ap(7) + bs(V)aa(B)) L2 + bs(7)ba(B) 0T u/Fs ()
with
O'F,u/]Fg,a(fy) = aa(7>[2 + ba(7>0F,U/F2,a(a>7

we have aq(7) = ag(7) + bs(7)aa(f) and ba(v) = bs(7)ba(B) on Re N
R for each v € T'. The isomorphism ¢g, induces \g(y) = ag(y) +

be(7) X = ag(7)+05(7)(@a(B)+ba(B)Xa) = aa(7)+ba(7)Xa = Aa(7).

Hence A\, and A\ coincide on R, N Rg. By gluing {A,}aer, we obtain

a morphism A\ : RepQ(F)u/IF2 — Rep, (I')p,. We regard RepQ(F)u/IF2 as a
Rep; (I')g,-scheme by \.

We construct a Rep, (I')r,-morphism 7r,.r, : Repy(I'), /g, = Cha(I'),, 5, -

—_ e/~

—_—

First, let us define Tru o @ Ra = Repy(l), 5, , — Cho(l'), /5, , for

e~

each a € I. Put C, = Chy(T'),,/p, 0 and o = Tr,u/p,,q for simplic-
ity. Set 1a(7) = oru/Fra(7) = Ta(V) 2 € My(Op (Of.)) for v € T.
By Proposition [T4] 1, (7)? = oru/ms,a(Y)? + 7a(7) L2 = 01 u/Fa(7)* +
det(O'Ru/Fz’a(’}/))Ig = 0. Note that Oéa [O’nu/ﬂ?%a(r)] = Oéa : [2 + Oéa :
0T u/Fa,a(Q) = Op. I+ Og_ - Na(a). For each v € T,

Na(y) = (aa(y) = ra(y) 2+ ba(’y)aF,u/Fz,a(oo
= —ba (V)Xah + ba(7>af,u/F2,a(a)
= ba(V)Na(a),
since r,(a) = X,.

Proposition 7.11. For each a € ', bo(+) : I' = Op (R,) is a deriva-
tion with respect to r,.

Proof. By calculating or y/r,.o(v9) and oru/my,a(7)0ru/Fea(d), we
have b, (70) = aa(7)ba(0) +ba(7)an(d) for each v, § € T'. It follows that
ba(70) = 7a(7)ba(0) + ba(¥)ra(d). [

Hence we have a morphism 7, : Ry — Cy by the derivation by () :

I = Of (Ra) with by(a) = 1.
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Next, let us glue the morphisms {7, : — C,
ba () = bs(7)ba(B) on R, N Rs for each v € F and ba (B
we have the following commutative diagram:

AZ(Qu/I&) |Ram§5 - Oﬁzaﬁﬁg —0

I T (8)

)‘*B(Qu/Fz) |Eaﬂ§ﬁ - Oﬁaﬁﬁg _)09

}aer. Because
) (ORaﬂng ) * )

where the morphism b, (5)- : Ok, = Ofioni, defined by ¢ —
bo(B)p is an isomorphism. It follows that 7, | oty = g | Fanit, fOT
each a,3 € I'. Therefore we have a Rep,(I')g,-morphism 7 ,/r, :

e~

Rep,(I'),,/r, = Cha(L),, /p,

—_—

Let PGLy ®7 Fy act on Chy(I), /F trivially. Then we have the fol-
lowing proposition:

—_ e/~

Proposition 7.12. The morphism Tr u/r, : Repy(l), 5, = Cha(D),, p,
18 PGLy ®7 Fa-equivariant.

Proof. It suffices to show that 7, : ﬁa — é’a is PGLy ®z Fa-
equivariant for each « € I'. The character r, on R, is given by
To(Y) = aa(y) + ba(7)X, for v € T'. The proof of Proposition
shows that a,(v) and b,(v) are PGLy ®7 Fa-invariant on R,,. From the
definition of the action o, on R,, X, is PGLy ®z Fo-invariant. Hence
ro(7y) is also PGLy ®; Fo-invariant for each v € I'. The morphism
Ta is given by the derivation b,(-) with respect to r,. Since b,(7) is
PGLy ®7z Fo-invariant, the morphism 7, is PGLy ®7 Fa-equivariant.
This completes the proof. O

—_——

Let us define a morphism ¢, : Chy(I'), o Chy(I")y/r,,q for each
a € I'. By the definitions, Chy(I'),, g, , and Cha(I')u/r, « are Rep; (I')g,-

e~

schemes. Let r and d be the universal characters on Chy(I"), /Fy.0 a0d

Cha(T)u/ky .0, respectively. Consider the character 7 on Chy(T'), [Fac
instead of r. For constructing q,, it suffices to define (a, b)-coefficients
with respect to (r?,«) on Chy(T), /P Denote by 0 the universal

—_—

derivation with respect to r on Chy(I'), , ., such that 6(a) = 1. Then
we define a(y) = r(y) — r(a)d(y) and b(y) = 6(~) for v € I.

Proposition 7.13. Let a and b be as above. Then a and b are (a,b)-

—_—

coefficients with respect to (r?, a) on Cha (1), /g, o



53

Proof. 1t is easy to check that a(e) = 1,b(e) = 0 and that a(«a) =
0,b(a) = 1. By direct calculations, we have
a(my2) = r(nv2) —r(a)d(ny2)
= 1(v)r(re) —r(a)r(1)d(v2) — r(@)d(y1)r(ye)
(r(m) = r(@)3(1))(r(2) = r(@)d(72)) + r(@)?6(1)d(72)
= a(m)a(y) + r*(@)b(71)b(72),

b(r1y2) = d(n2)
= r(7)0(y2) +6(v1)r(72)
r(a)d(71))0(72) + 6(71)(r(r2) — 7(a)d(72))

= (r(n) -
= a(71)b(12) + b(11)a(r2),
and
a(y)® +0(y)*r*(a) = (a(7) +b(7)r(a))?
= (r(y) = r(@)d(7) +(y)r(a))?
= (7).
Hence we have proved the statement. [l

By the (a, b)-coefficients on Chy(I'), y, . we obtain a morphism g, :

Chy(T),, /.0 = Cha(T)usm, o Denote by 1 : Chy(T), i, o — Repy (D),
and d : Chy(I")y/r,.« — Rep;(I')r, the morphisms induced by the char-
acters r? and d, respectively. Then d o ¢, = 2.

Thus, we have the following commutative diagram for each o € I':

—~—

Rep2(r)u/F2,a " Repz(F)U/Fm

To 4 1 o
Che(D)ypye =5 Cha(D)u/esan

where we denote by m, the morphism 7, /m,a @ Repy(I)uma —
Chy(I')y/k,,o Which was defined in §6. These morphisms are PGLy®7F,-

equivariant. Let A\ : Repy(I'),,/r, 0 — Rep1(I)r, and det : Rep,(I')u/ma 0 —
Rep, (T')r, be the morphisms corresponding to the characters r2 and
det(or,um,.a(+)), respectively. Then det o p, = A2.

Proposition 7.14. The commutative diagram

Rep2(r)u/F2,a " Repz(F)U/Fm
7’?06 i’ i/ Ta

Cha(T), pye = Cha(D)u/m,a-
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gives a fibre product for each o € T'.

Proof. Put Ry := Repy(I')y/rs,0 and Cy := Chy(I")y/r,,a. We show
that (pa, Ta) : R, — R, Xc. C., is an isomorphism. It suffices to prove
that (pa,7a) induces a bijective map between the sets of Z-valued
points for any Fy-scheme Z. Let (p;, X7) and (p2, X3) be Z-valued
points of R, such that the images by (pa.,T.) coincide. Obviously,
p1 = p2. By the assumption, (p;, X;) and (p2, X2) induce the same
character r on R,. Since X; = r(a) = Xoon Z, (p1,X1) = (p2, Xa).
Hence we have proved the injectivity. N

Let (p, (r,0)) be a Z-valued point of R, X¢, C,, wherer : I' = O4(2)
is a character and § : I' — Oz(Z) is a derivation with respect to r such
that 0(a) = 1. The Z-valued point (a, b) of C,, induced by (r, §) is given
by a(y) = r(y) —r(a)d(y) and b(y) = (~y) for each v € T'. Note that a
and b are (a, b)-coefficients with respect to (12, a) by Proposition [T.T3l
Because p and (r,d) induce the same Z-valued point of C,, r*(y) =
det p(v) and p(7) = a(v) L2 +b(y)p(e) = (r(y) = r(@)d(y)) L2+ () p(@)
for each v € I'. Set X := r(a). Then (p, X) is a Z-valued point of R,
by X? = r?(a) = det p(). It is obvious that p,(p, X) = p. Denote by
(r’',40") the image of (p, X) by 7,. For each v € I, ¢'(y) = b(y) = d(7)
and

() = a(y) +b(y)X
= (r(7) = r(@)d(y) +o(v)X

= ().
Thus 7o (p, X) = (r,9). Hence (pa,7a)(p, X) = (p,(r,9)), which im-
plies the surjectivity. Therefore we have proved the statement. U

Definition 7.15. Let T; = () be the free monoid of rank 1. As in
Definition [6.10, we call the morphism T, u/F, 6, : Repa(T1)

u/Fa,a0 -

Chsy(14), JFao UD€ prototype in the unipotent mold over Fy case. Re-

e~

mark that Repy(T1), /s, = Repa(T1),/p, q, and that Cha(Y1), p, =

—_—

Chz(Tl)U/Fz,ao .

Remark 7.16. Recall that 7TT1,u/]F2,aO . RGPQ(Tl)u/F%aO — Chg(’rl)u/]p%ao
is a universal geometric quotient by PGLy ®z Fy (Theorem [6.11]). The
prototype oy, u/r,.a0 is described by Spec(Fs[a, b, ¢, d]/(a+d)) > D(b)U

e~

D(c) — SpecFs[D], where D is mapped to ad—bc. Then Rep,(T1),, /i, o,
is isomorphic to D(b) U D(c) C Spec(Fy[a, b, ¢, d][X]/(a +d, X* — ad +
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bc)). Since Qy, y/r, is isomorphic to Ay (Y1)m,, Ch2(T1)u/F2,ao
morphic to Rep;(T1)r, = SpecFs[x]. Here the indeterminate y cor-
responds to the value at g of the universal character on Rep;(Y1)p,.

—_——

Therefore T, u/Fs a0 : RePo(T1),/my 00 = Cha(T1),/m, o IS described by
Spec(Fa[a, b, ¢, d|[X]/(a+d, X? —ad+bc)) D D(b)UD(c) — SpecFa[x],
where x is mapped to X.

18 iso-

—_—

By Proposition [.14] the prototype 7y, u/Fs.a @ Repa(T1) —

u/Fa,00

—_——

ChZ(Tl)u/Fz,ao is obtained by base change of 7y, u/Fs.a0 : RePo(T1)u/Fasa0 —
Chy(Y1)u/Fy,a0- Theorem B.I1limplies the following:

Theorem 7.17. The prototype

—_— —_—

%TLU/F%QO : R’ep2(T1)U/F2,ao - Ch2(T1>u/]F2,ao

1s a universal geometric quotient by PGLy ®7 Fy.

Let I' be a group or a monoid. For a € I', we define the monoid
homomorphism ¢ : T; = (ag) — [ by ap — «. By restricting repre-
sentations, characters, and derivations of I' to those of T; through ¢,
we can obtain the following commutative diagram:

—_—— —_—

R’ep2(r)u/F2,O¢ - Ch2(r)u/ﬂ72,a
| 2

——~— e~

Repz(Tl) — ChQ(Tl)

Under this situation, we have the following lemma.

u/F2,00 u/Fa,a0°

Lemma 7.18. The above diagram gives a fibre product. In particular,

—_—

the morphism Rep,(I'),, /g, , = Cha(I'),, g, , s obtained by base change
of the prototype.

Proof. Here we prove the statement without using Lemma [6.12]
Put Ra, = Repy(T1), /5, o and Co, = Chy(T1) It suffices to

prove that ﬁa — R,, Xz C, induces a bijective map between the
@Q

u/Fa,00°

sets of Z-valued points for any Fy-scheme Z. Let (p1, X1) and (p2, X»)
be Z-valued points of R,, whose images coincide. By the assumption,
X; = X, and p(a) = pr(@la0)) = pa(élao)) = pa(a). Since (py, X1)
and (pa, X») induce the same Z-valued point (r,0) of Cy, a(y) = r(vy)—
r(a)d(y) and b(y) = 0(7) have the same values for (p1, X;) and (pa, X3).

It follows that py (v) = a(y)la+b(7)p1(a) = a(y)l2+b(y)p2(@) = pa(7)
for each v € I'. Hence (p1, X1) = (p2, X2), which implies the injectivity.
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Let ((po, Xo), (r,9)) be a Z-valued point of R,, X g C,, where r :
I' - Oz(Z) is a character and ¢ : I' — Oz(Z) is a derivation with
respect to r such that 6(a) = 1. Put a(y) = r(y) —r(a)d(y) and b(y) =
d(7y) for each v € I'. By Proposition [[.13] a and b are (a, b)-coefficients
with respect to (1%, ). Set X := Xy and p(v) == a(y)ls + b(y)po(v)
for v € I'. Since a(a) = 0 and b(a) = 1, p(a) = po(ap). Note
that 72(a) = r*(¢(ag)) = X2 = det po(ap). It follows from Lemma
that p is a representation with unipotent mold over Fy such that
det p(y) = r?(v) for each v € . Then (p, X) is a Z-valued point of
R,. It is easy to check that (p, X) is mapped to ((po, Xo), (r,8)). This
implies the surjectivity. Hence we have proved the statement. 0

—_—

Theorem 7.19. The morphism Tr y/ry.q Repz(F)u/Fm — Ch2(F)U/F2’a
15 a universal geometric quotient by PGLy ®z Fy for each o € I'. Fur-

thermore, Truw, : Repy(I'),, r, = Cha(l), g, is a universal geometric
quotient by PGLy ®7 F.

Proof. The statement follows from Theorem [.17] and Lemma [7.18]
O

The following Lemma states the “descent” of universal geometric
quotients. The proof was suggested by Michiaki Inaba.

Lemma 7.20. Let G be a group scheme separated of finite type over
a scheme S. Let ¢ : X — Y be a G-equivariant separated morphism
of finite type over S, where G acts on'Y trivially. For a faithfully flat
and quasi-compact morphism f :Y' — Y, put X' := X xy Y’ and
¢ X' =Y. If ¢ is a (universal) geometric quotient by G, then ¢ is
also a (resp. universal) geometric quotient by G.

Proof. It suffices to prove that if ¢’ is a geometric quotient, so
is ¢. It is easy to see that ¢ is surjective and that the image of
G x X — X xg X is equal to X xy X. If ¢/ is (universally) sub-
mersive, then so is ¢ by [5, Lemma 15.7.11.1]. Let 0 : G xg X — X
and o’ : G xg X’ — X' be the groups actions of G on X and X',
respectively. Denote the second projections by ps : G xg X — X and
ph:GXg X' — X'. Put 7:=¢oo=¢opy, 7 :=¢ oc = ¢ oph,
and f' : X’ — X. For proving that ¢.(Ox)% = Oy, we show that
0 = Oy — ¢.(0x) i T(Ogxgx) is exact. Taking the pull-

back by f, we have 0 — f*Oy — f*¢.(Ox) T "5 Fr(Oax.x).
By [3| Proposition 1.4.15], f*¢.(Ox) = ¢,f*(Ox) = ¢.(Ox) and
F1(Ocxsx) = m(le X [)*(Oaxsx) = Ti(Ogxgxr). Then we obtain
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the following commutative diagram:

0 — f*(|(|9y) = feu(0x) TS (Ogux)
= 1=

0 = Oy = O TE (Oaex)

Since ¢’ is a geometric quotient, the complex 0 — Oy — ¢, (OY) M
TH(Ogxsx7) is exact, and hence so is 0 = f*Oy — f*¢.(Ox) ey

F7(Oaxsx). Because f is faithfully flat, 0 — Oy — ¢.(Ox) 7=
T:(Ogxsx) 1s also exact. Thus we have proved the statement. O

Now we can prove Theorem [6.13] by another approach.

Theorem 7.21 (Theorem[6.13)). The morphism 7/, o : Repy(I)w/mya —
Chy(I")u/rya 35 a universal geometric quotient by PGLy ®z Fy for each
acel.

Proof. The statement follows from Proposition [7.14], Theorem [7.19]
and Lemma [7.201 0

By the same discussion in §6, we can construct Chy(I"),/r, by gluing
{Cha(I')y/ks0taer- Then we have Corollary [6.14] which states that
Tru/m, @ Repo(I)um, — Cho(I')y/r, is a universal geometric quotient

—_—

by PGLy ®z Fo. Similarly, we have a morphism ¢ : Chy(I), F,

—_—

Ch?(r)u/Fz by glulng {QQ : Ch2(r)u/ﬂi‘27a — Ch2(r)u/F27a}a€F-
Remark 7.22. By Remark [7.16, we see that ¢ : Cﬁ;\(—fl)umwo —
Chy(Y1)u/Fy,a0 is described as SpecFs[x] — SpecF;[D], where D is

mapped to x?. We also see that p : Rep,y(11),, /g, 9 — REP2(T1)u/Fs,00
is described as Spec Fyla, b, ¢, X|/(X? + a* + bc) D D(b) U D(c) —
D(b) U D(c) C SpecFsa, b, c]. Hence p and ¢ are faithfully flat finite
morphisms of finite presentation, but not smooth morphisms.

For a € T', the monoid homomorphism ¢ : T; — I' by ay — «
induces the following commutative diagrams:

Rep, (F>u/]F2,a —  Rep, (F)u/JFz,a
I

s 3

R‘ep2(T1>u/]F2,ao - R’ep2(T1)u/F27OCO
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and

—_—

Chg(r)uﬂ&’a — Chg(r)u/ﬁ?%a

+
Chg(Tl) — Ch2(T1)u/F2,ao-
We can show that the diagrams above give fibre products in the same
way as Lemma [T.18
From the discussions above, we obtain the following commutative
diagram which gives a fibre product:

u/Fa,a0

N R’epZ(F)u/Fz = Rep, (I')u/r,
T u/Fo { { T u/Fy

—_——

Chy(T), s, — Cha(D)usm,.

All morphisms are PGLy ®7 Fo-equivariant, and p and ¢ are faithfully
flat finite morphisms of finite presentation. Note that p and ¢ are not
smooth in general.

e~

Recall that Rep,(I'), , can be regarded as a Rep;(I')r,-scheme by

—~—

At Repy(l), g, = Repi(I')r,. Let r be the corresponding character

—~— —~—

on Rep,(I'), 5, to A, and let A epa(l), x, = Repi(D)r, be the
morphism induced by the character 72. Denote by det : Rep,(I'),/r, —

Rep, (I')r, the morphism corresponding to the character det(or ./, (-)))-
Then det o p = A2

By Definition [Z.9, Cha(I'),, 5, is a Rep; (I')r,-scheme. Let us denote

by r : Chy(I'), s, — Repy(I')r, the canonical morphism. We also

—_—

denote by the same symbol 7 the corresponding character on Cha(I'),, p,

—_—

to r. We define 72 : Chy(I"), sr, — Repy (D), as the morphism induced

——~—

by the character 72 on Chy(T'), /5, By Remark 615, Cha(I')y/r, is also
a Rep, (I')g,-scheme by d : Chy(T),/r, — Rep;(I')r,. Then do g =r2.

Remark 7.23. The morphism 7ry/r, : Repy(l), 5, = Cha(L), 5, is
smooth and surjective for each group or monoid I'. Indeed, 7 /f, .o :

e~

Repy(I'),,/ky.0 — Cha(T'), g, . 18 obtained by base change of the pro-

totype by Lemma [[.T8 The prototype Ty, u/ry.ao : Repa(Y1) —

u/Fa,a0
—_ —

Cha(T1),/k, o, 15 sSmooth and surjective because it is obtained by base

change of 7 : Repy(Y1)k2 — Chy(T1) and 7 is smooth and surjective
by Proposition [4.9]
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Example 7.24. Let us describe Ch/2(\T/m)u /Fs for the free monoid Y,,, =

(a1,..., o) of rank m. Put C(m) := Chy(Tp), 5, Let Ai(m)g,
denote the coordinate ring Ay (Y,,)r, of Repy(Y,,)r,. We can write
Ai(m)p, = Fo[x(a1), ..., x(am)], where x(aq),...,x(,) are indeter-
minates. It is easy to see that the A;(m)g,-module Qy, /r, is isomorphic

to the free module ®2, A; (m)g, - doy;. Hence C(m) = Proj S(Qvy,, v, ) is
isomorphic to Al x P~'. The projection 6_(;1/) — Rep,(T,,)r, can be
described by the first projection py : Aft x PR — AZ = Repy (1o )p -

Put E(\nj)z = {da; # 0} C 6(\771/) for 1 < ¢ < m. Note that
E(;z/)i = AR XA]ITZ_l C AR XIP’]B’?Z_l. In Example[6.2], we have described
C(m) = Chy(Yp,)um, and C(m); = Chy(Yp)u/mye, for 1 < i < m.
The morphism ¢ : E(;%/) — C(m) can be described as follows: Let
qi 5(;1/)Z — C(m); be the restriction of ¢ to C/’(;z/)z for 1 <i < m.
For (r,8) € C(m),, ¢;(r,0) = (a,b) € C(m); is given by a(y) = r(v) —
@5(7) and b(y) = () for v € T,,. Recall that the isomorphisms

C(m); = AF"" and C(m); = AZ""" are given by

(r,0) = (r(ay), ..., r(am), 0(c1)/0(ay), ..., 6(ai—1)/0(a),
0(cit1)/0(ci), ..., 6(am)/0(0s))

and

(i, biyd) — (a;(0q), ..., ai(i—1), (i), - . . ai(a), bi(aq), . . .,
bi(Oéi_1>, bi(ai-i-l); Cey bi(Oém>, d(Oél)),

respectively. By these isomorphisms, g; : A]%;”_l — A]%;”_l is described
by

qi(rh to 7rm7517 .. '75i—176i+17 ... 75m) ==

(7”1—7“1'517---,7”2‘—1—Ti5i—177’i+1 _Ti5i+17---7rm_ri5ma

< < < < 2
517 s a(si—la(si-i-la .- 'a(smari)'
—_ — —_ —

Set R(m) := Repy(Ty)p, and R(m) := Repy(Ty)r,. For 1 < i <

m, put R(m), := Repy(T,,) and R(m); := Repy(Yin)rya;- Let

J E(;z/)l — R(m); be the restriction of p : E(;z/) — R(m) to ﬁ(;@/)l
for 1 < i < m. We can describe p; : R(m), = {(A1,...,An, Xi) |
(Al, A ,Am> S R(m)l and X22 = det Az} — R(m)l = {(Al, .. ,Am) ‘
(Ay, ..., An)

2

Fa,0;

= (4;) is a unipotent mold over Fo} by (Ai,..., Am, Xi)
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— (Ay, ..., Ap), where A; := p(a;) for 1 < j < m and for each repre-

e~

sentation p. Let 7; and m; denote the restrictions of 7y, ./m, : R(m) —

—_—

C(m) and 7y, uw, : R(m) — C(m) to R(m); and R(m);, respectively.
For (Al, cey Am) c R(m)l, we can write Aj = Eijfg + EjAZ for 1 < j <

m. Then 7, : E_(;’l/)l — 6’(;@/)@ is described by (A, ..., A, Xi) — (@ +
ElXia s 7aim+BmXi>Ela s agi—laBH—l? s agm) and T R(m)l__> C(n})l
is describfd by (Al, R Am) — (Gil, e ,divi_l,@,iﬂ, ey Qim, b1> RN bi—1>

bit1, .-, by, det A;). Remark that

gives a fibre product.

Definition 7.25. Let X be an Fy-scheme. By a tilde representation
with unipotent mold over Fy for I' on X, we understand a pair (p, \)
of a representation p of with unipotent mold over 5 for I' on X and a
character A : I' = Ox (X) satisfying the following conditions:

(i) det(p(y)) = A(7)? for each v € T.
(i) {p(y) = A(7)I2 | v € I'} spans a sub-line bundle of Ox[p(I')].

Remark 7.26. Let (p, A) be a tilde representation with unipotent mold
over [Fy for I' on an Fy-scheme X. For each point x € X, choose a, € '
and a neighbourhood U, of z such that Oy, [p(I')] = Oy, - 1280y, -p(a).
The condition (@) in Definition means that for each v € T" there
exists ¢ € O, (U,) such that p(y) = A(7)]2 = c(p(az) — A(az)I2). Since
p(7) = (A(y) — eA(aw)) ]2 + ep(aw), the (a,b)-coefficients of p(y) with
respect to p(a,) are given by a,, (7) = A7) — e\(ay) and b, (7) = c.
Then A(y) = @a, (7) + ba, (7)A(ay) for each v € T'. Note that (p|y,
;A(ag)) gives a Uz-valued point of Rep,(I'), /p, .. Considering the

—_——

definition of Rep,(T'), /F,» We see that we can obtain an X-valued point

of Rep,(I'),,/s, by gluing {(plu,, Maz))}eex-

By Remark [.26] we have:
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—_—

Proposition 7.27. The following functor is representable by Rep,(I'),, y, -

Repy(I'),r, : (Sch/F3)” — (Sets)
tilde rep. with unipotent
X — { mold over Fy for I' on X } ’

Remark 7.28. The condition (i) in Definition is necessary for
Proposition [[.27 Indeed, in the case of the free monoid Yy = (o, ) of
rank 2, let p: Ty — My (k[e]/(¢?)) be the representation defined by

= (9 0) =1 7).

where k is a field. Let A\ : Ty — kl[e]/(€?) be the character defined
by A(a) = € and A(8) = 1. Then p is a representation with unipo-
tent mold over Fy for Ty. For each v € Ty, det p(y) = A(y)%. How-
ever, the condition () in Definition fails. The (a, b)-coefficients
of p(B) with respect to p(«) is given by a,(8) = 1 and b,(5) = 1. The
equality A(8) = aa(B) + ba(B)A(«) does not hold. Hence (p, A(a)) €

RepQ(F)u/Fg,a(k[e]/(€2)) and (p, A(B)) € RepZ(F)u/FQ,B(k[e]/(E2)) induce

—_—

different morphisms from kle]/(e?) to Rep,(I'), /v~ This means that

(p, A) does not canonically induce a morphism to Rep,(T'), r, without
the condition ().

—_—

Remark 7.29. For each point z € Chs(I'), p,, there exists a local

——~—

section s, : Vi — Repy(I'), /p, on a neighbourhood V, of x such that

Tru/F, © Sz = idy,. Indeed, take a € I' such that z € Chy(T'),, , .- By

Proposition [TT4, 71 ,/m,.0 @ Repy(T), Epe — Cha(D), g, , is obtained
by base change of 7m0 @ Repy(I)u/ms,a = Cha(l)y/pye. Remark
6.18 follows that 7 ,/r,. has a section sp,. Hence 7r ./, has a

section sro. We can take Chy(I'), y, , as a neighbourhood V, of z. It

is easy to see that (p,\) = sp.(r,0) is described by p(v) = a(y)ly +
()2

) (775" ) and A) = rla) for 3 € T where ) = (1) -

r()d(y) and b(y) = 6(7).
Lemma 7.30. Let (p1, A1), (p2, A2) be tilde representations with unipo-
tent mold over Fy for a group (or a monoid) I' on a scheme X over

Fy. Let fi : X — Repy(l), g, be the morphism associated to (p;, Ai)

—_——

fOT’i = 1,2 [f %Ru/Fz O f1 = %Ru/Fz O f2 . X — Ch2<r>u/]F2f then fOT
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each v € X there exists P, € GLy(I'(V,, Ox)) on a neighbourhood V,
of x such that P 1p1 Py = py and A\ = Ay on V.

Proof. In the same way as Lemma [6.19] we can prove the statement.
U

By a generalized tilde representation with unipotent mold over Fy for
I’ on X, we understand triples {(U;, p;, Ai) }ier of an open set U; and
a tilde representation (p;, A;) with unipotent mold over Fy for I" on U;

satisfying the following three conditions:

(i) UierUs = X,
(ii) for each x € U; N Uj, there exists P, € GLy(I'(V,, Ox)) on a
neighbourhood V,, C U; N U; of x such that P;lpiPm = pj on
V..

(iii) A\; = A; on U; N U;j for each i, j.
Generalized tilde representations { (U;, pi, Ai) bier and {(V}, 0, 115) }ies
with unipotent mold over Fy are called equivalent if {(U;, pi, \i) }ier U
{(V;,04,1;) }jes is a generalized tilde representation with unipotent

mold over Fy again. Let us define the contravariant functor £q Us(I')g,:

——~—

EqUsr(T)g, : (Sch/F2)? — (Sets)

gen. tilde rep. with unip. /
X ~ { mold over Fy for I' on X ’

—_—

Theorem 7.31. The scheme Chy(l'), g, is a fine moduli scheme as-

—_—

sociated to the functor EqUs(T')g, for a group or a monoid I'. In

——~—

other words, Chy(I'),, , represents the functor EqUs(I')y,. The moduli

—~—

Chy(T'),r, @s separated over Fa; if I' is a finitely generated group or

—~—

monoid, then Cha(I'),, x, is of finite type over Fs.

—~—

Proof. In the same way as Theorem [6.20], we can prove that Chy(I"),, /P

——~—

represents the functor £q Us(I")p, by using Lemma .30 Tt follows from

—_——

Definition[Z.91that Chy(T"), , is separated over Fp. If I' is finitely gener-
ated, then Qr p, is a finitely generated module over A;(I")r, by Remark

Hence Chy(I'),, , is of finite type over Fs. O

Remark 7.32. For an associative algebra A over a commutative ring

——~—— e~

R over IFy, we can construct Ta.ur, : Repy(A), 5, — Cha(A), g, in the

same way as group or monoid cases. Indeed, for ¢ € A, Rep,(A4), Fac
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—_——

is defined as in Definition [Il By gluing {Rep,(A), g, .}cea, we have

an R-scheme Rep,(A), g, such that p : Rep,y(A), 5, = Repy(A)usr, is
a faithfully flat finite morphism. Let A;(A) be the coordinate ring of
Rep,(A). As in Remark (.25 we can construct A;(A)-module Qy4/p
such that Der(A, M) = Homa, (4)(24/r, M) for any A;(A)-module M.

—_—

Set Cha(A), p, = ProjS(Q4/r). Then we can construct a Rep,(A)-

—_—

morphism 74 ./r, @ Repy(A), 5, = Cha(A), /5, which is a universal
geometric quotient by PGLy®z R. By a tilde representation with unipo-
tent mold over Fy for A on an R-scheme X | we understand a pair (p, \)
of a representation p of with unipotent mold over Fs for A on X and an
R-homomorphism A : A — Ox(X) satisfying the following conditions:

(i) det(p(c)) = A(c)? for each ¢ € A.
(ii) {p(c) — A(c)Iy | ¢ € A} spans a sub-line bundle of Ox[p(A)].

As in Proposition[T.27], we see that Repy(A), r, represents the following
contravariant functor:
(Sch/R)? — (Sets)
¥ N tilde rep. with unipotent
mold over Fy for Aon X [~

In a similar way as group or monoid cases, we can define general-
ized tilde representations with unipotent mold over Fy for A on an

R-scheme X. The contravariant functor £q Uy (A), from the category
of R-schemes to the category of sets is defined as

—~—

EqUy(A)g, : (Sch/R)? — (Sets)

gen. tilde rep. with unip. /
X = { mold over F, for A on X '

—_—— —_——

We can prove that Chy(A), p, is the fine moduli associated to £q Us(A)y,

—_——

in the same way as Theorem [Z.31l The moduli Chy(A),, p, is separated

over [t; if A is a finitely generated algebra over R, then Chy(A), p, is
of finite type over R.

Example 7.33. Let k be a field of characteristic 2. Let K = k(a)
be a purely inseparable extension of k of degree 2 with 8 = o? € k.
Regarding K as a k-vector space of dimension 2, we have a k-algebra
homomorphism p : K — Endg(K) = My(k) by ¢ — (¢ — ¢), which
is a representation with unipotent mold over Fy. The matrix p(a) €
My (k) has no eigenvalue in k, but has an eigenvalue after base change
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k — K. This example is an interesting case of representations with
unipotent mold over 5.

The universal representation og ,/r, With unipotent mold over [, on
Rep, (K )y, is characterized by ok . r, (o) because it is a k-algebra ho-
momorphism and K = k(«). Since tr(og /m, () = 0 and ok /5, (a)* =
B1,, we can write Repy (K ),/r, = D(b)UD(c) C Speckla, b, c|/(a®+bc+

a b -

B) and g /r, () = ( . a ) Then Rep,y(K), z, = D(b) U D(c) C
Speckla, b, ¢, X]/(a*+bc+ [, X?—3). Identifying K with k[X]/(X?—4),

—_——

we have Rep,(K),p, = D(b) U D(c) C Spec Kla,b, /(a* + be +
B). In particular, Rep,(K),p, = Repy(K)u/r, @ K. Remark that

—~— e~

Rep, (K)u/r, = Repy(K)usr,,o and that Rep,(K), p, = Repy(K),, r, o-

Let us use the same notation in Remark [6.23] The universal charac-
ter dy on Rep](K) is characterized by d’ (), and it satisfies dy (o) =
3%. Hence we can write Rep)(K) = Speck[z]/(z* — %) and d(a) = .
The universal (a, b)-coefficients with respect to (o, d) on Chy(K)y/k,.a
satisfies a(1) = 1,b(1) = 0,a(a) = 0, and b(«) = 1. By the condition
B =a(B) = ala?) = a(a)? + b(a)?dy(a), we have z = 3. Thus, we see
that Cha(K)y/m,,« = Spec k[z]/(x — B) = Spec k. On the other hand,
Rep; (K) = Speck[z]/(xz?—3) = SpecK because the universal character
dx on Rep, (K) satisfies dx (o) = 5. The A;(K)-module Qg intro-
duced in Remark is isomorphic to the free module A;(K)da =

Kda. Hence C?l_g?l/()u/yz = Proj S(A;(K)da) = Rep,(K) = Spec K.
Therefore, the commutative diagram
Rep2(K)u/IF2 = Rep, (K)u/r,
%K,uﬁF_z\:l// Uy K,u/Fa
Chy(K), m, =  Chy(K)um,

is identified with

Repy(K)ur, @k K = Repy(K)u/m,

1 \J
Spec K — Spec k,

which gives a fibre product. The representation p : K — Endy(K)
gives the only equivalence class of 2-dimensional representations of K
over k which have unipotent molds over Fs.

Remark 7.34. For understanding the difference between the mod-

—_——

uli schemes Chy(T'), x, and Cha(I'),/r,, let us pay attention to the
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—_—

morphism ¢ : Cha(l'),p, — Chy(I')yr,. Assume that a point

—_——

of Chy(I'), 5, 1s mapped to a point z of Chy(I')y/r,. We can write
T = [(p,\)] and x = [p], where p : I' — Ma(k(z)) is a representa-
tion with unipotent mold over Fy on the residue field k(x) of z and
A T' = k(Z) is a character on the residue field k(Z) of = such that
(p, A) is a tilde representation with unipotent mold over Fy. It is easy to

see that Cha(I'), g, (K) — Cha(I')yw,(K) is injective for any field K.
Hence ¢ is universally injective (or radical) (see [2], Definition 3.5.4]).
Then k() is a purely inseparable extension of k(z). In that meaning,

q is a generalization of purely inseparable extension of fields and it is
globally defined.

—_— —_—

Although g : Chy(I'),, g, = Cha(I")yr, is surjective, Chy (L), g, (K) —
Chy(I")y/r, (/) is not surjective in general. In the free monoid case,

q : C(m) — C(m) is described in Example [[24. When m = 1,
q : Ay, — Ay, is given by r; — 77, where r; = r(a;) and oy is the
generator of the free monoid T; = («ay). Let 8 be an element of a field
k of characteristic 2 such that a = /B8 ¢ k. Let x be the k-rational
point of C(1) = Aj, given by r{ = r(w)® = § € k, and let T be the

k(a)-rational point of 6’\(1/) =~ A, given by r = r(a1) = a € k(w).
Then T corresponds to z and k(«) is a purely inseparable extension of

degree 2 over k (cf. Example [[33)). In particular, C'(1)(k) — C(1)(k)
is not surjective, since x is not contained in the image. Remark that if
[ is finitely generated, then the residue field k(z) of a closed point z
of Chy(I"),/r, is a finite field. In this case, k(Z) = k(x) for the unique

point Z lying over x. Note that ¢ : C'(m) — C(m) induces a bijection
of sets C'(m)(K) = C(m)(K) if K is an algebraically closed field of

characteristic 2 and that ¢ induces a purely inseparable extension of
the function fields of degree 2 (see also [13, Remark 3.3]).

Remark 7.35. We have introduced the notion of generalized tilde
representations with unipotent mold over 5 for describing the moduli

functors EqUs(T)p, and Eqlhs(A)g,. However, the moduli functors can

—_—

also be described as EqUy(I')y, and Eqly(A)y, by using the notion of
tilde representations generating sheaves of algebras which define unipo-
tent molds over Fy. More precisely, see §8.
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8. REPRESENTATIONS IN SHEAVES OF ALGEBRAS

For describing the moduli functor £¢SS»(I") (EqUs(T), or EqUs(T)g, ),
we introduced the notion of generalized representations with semi-
simple mold (unipotent mold, unipotent mold over Fs, respectively)
in §4-§6. However, we can also formulate these moduli functors by
using representations generating sheaves of Ox-algebras which define
molds of rank 2 on a scheme X. In this section, we discuss this formula-

tion for describing the moduli schemes. We also reformulate €qlty(T')g,
in §7 by using tilde representations generating sheaves of Ox-algebras
which define unipotent molds over Fy. The author needs to say that
this section was inspired by the referee.

Definition 8.1. Let I' be a group or a monoid. Let A be a sheaf of Ox-
algebras on a scheme X. We say that a homomorphism p : I' — A(X)
is a representation in A of I'. For two representations p; : I' — A;(X)
and py : I' = Ay (X), we say that p; and py are equivalent if there exists
an isomorphism ¢ : A; — A, as sheaves of Ox-algebras such that
¢ opr = pa. We call a representation p : I' — A(X) a representation
generating A if Ox[p(I')] = A.

Let A be a sheaf of Ox-algebras on a scheme X which is locally free
of rank 2. We define &4 : A — Endp, (A) by a — (b — ab) for each
open subset U of X and for each a,b € A(U). Then ®4 is injective.
Remark that A(U) is a commutative ring since A is locally free of rank
2and 1 € A(X). For each z € X, choose a neighbourhood U, of = such
that A |y, = OF”. By considering the inclusion A |y, 2 @4 |v,(Alv,) C
Endo, (Alv,) = My(Oy,), we obtain a mold of rank 2 on U,.

Definition 8.2. If ® 4|y, (A|v,) is a semi-simple mold (unipotent mold,
or unipotent mold over Fy) for each x € X, we say that A defines a
semi-simple mold (unipotent mold, or unipotent mold over Fy, respec-
tively). This definition does not depend on choices of neighbourhoods
U, of z and isomorphisms Ay, = OF>.

For a generalized representation {(U;, p;)}ier with semi-simple mold
(unipotent mold, unipotent mold over Fy, respectively) of I' on a scheme
X, we define a sheaf A of Ox-algebras which is a locally free sheaf of
rank 2 as follows: Set A; := Oy, [pi(I')]. Let us define an isomorphism
vij + Ai lvinv,— Aj luino; by pi(y) = pj(y) for each v € T Tt is
easy to check that pu = ;0 i © Ailv.nu,nu,— Ak lu.nu,nu, and that
i = %’71 and @;; = id. Hence by using [6, Chap. 1T, Ex.1.22], we obtain
a unique sheaf A of Ox-algebras on X (up to isomorphism), together
with isomorphisms ; : A |y, — A; such that ¢; = ¢;; 0 ¢; on U; N Uj
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for each i, 7. Obviously, A is locally free of rank 2. If {(U;, p;) }ier is a
generalized representation with semi-simple mold (unipotent mold, or
unipotent mold over Fs), then A defines a semi-simple mold (unipotent
mold, or unipotent mold over Fy, respectively). By gluing {p; : I' —
Ms(Oy, (U;)) }ier, we have a representation p : ' — A(X) in A of
I' such that I & A(X) 8 AU, ¥ A;(U;) coincides with p; for
each ¢ € I. Then p is a representation generating A. Thus each

generalized representation {(U;, p;) }ies corresponds to a representation
p:I'— A(X) of " generating A on X.

Definition 8.3. Let us define the contravariant functor £¢SS,(T") from
the category of schemes to the category of sets as follows:

EqSSL(T) : (Sch)? — (Sets)

a representation of I generating
a sheaf of Ox-algebras A which

is locally free of rank 2 and / e
defines a semi-simple mold on X

X

We also define the contravariant functors EqUs(I') : (Sch/Z[1/2])P —
(Sets) and EqUy (1), : (Sch/Fy)? — (Sets) in the same way.

By the correspondence above, we obtain natural transformations
Oss. 1 £qSSH(T) — £¢SS5(T), 0y = Eqh(T') — EqUs(T), and oy p, :
EqUr(T)r, = EqUy (L),

Let us define natural transformations 7, : £¢SS5(I") = £¢SSa(T),
Ty + EqUy(T) = Eqs(T), and 7k, : EqUs(D)r, — EqUo(I)g, in the
following way. Let p be a representation of I' generating A on a
scheme. Assume that A defines a semi-simple mold, unipotent mold,
or unipotent mold over Fy on X. For each z € X, choose a neigh-
bourhood U, such that A|y,~ OF?. Then by considering A |y,
D4 v, (A |v,) C Ende,, (A ly,) = My(Op,), we have a representa-
tion p, : I' = My(Oyp,) with the corresponding mold on U,. It is easy
to check that {(Us,, p;) }zex is a generalized representation with the cor-
responding mold on X and that the equivalence class of {(Us,, pz)}rex
is well-defined. The equivalence class of {(U,, p.)}zex does not depend
on choosing a representative of the equivalence class of p : X — A(X).
This correspondence defines 7,5, 7, and 7/, .

It is straightforward to verify that 7,, o 0y, = lggss,r) and oy 0
Tss. = legssyry and so on. Hence we can obtain the following:
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Proposition 8.4. There are canonical isomorphisms:

EqSSy(T) =2 £¢SSL(T),
Eqr(T) = EqUy(TD),
gqu2(F)F2 = 5(][/{5(1—‘)&72.

In particular, Chy(T),., Cha(T)., and Chy(T),r, represent EgSS5(T),
EqUy(T), and EqU)(T)g,, respectively.

In the case of unipotent molds over F5, we can define another functor
EqUy (D),

Definition 8.5. Let A be a sheaf of Ox-algebras which is locally free
of rank 2 on a scheme X over Fy. We say that a € A(X) is scalar if
there exists f € Ox(X) such that a = f - 14. We define EqU (I')r, by

EqUy(T)p, : (Sch/Fy)? — (Sets)

( a representation p of I’ )
generating a sheaf of
Ox-algebras A which is
locally free of rank 2 on X / -
such that p(v)? is scalar

( foreach y €T’ )

Proposition 8.6. There are canonical isomorphisms
Eqlo(D)r, = EqUy(D)r, = EqUy (D),

Proof. 1t suffices to prove that EqUs(T)p, = EqU(T)g,. For [p: ' —
A(X)] € EqU(T)r,(X) with a scheme X over Fo, p(7)? = det(p(7)) 14
is scalar for each v € I'. Hence [p : ' — A(X)] € EqUy(D)p,(X).
Conversely, let [p : I' = A(X)] € EqU)(T)p,(X). For x € X, there
exist v € I and a neighbourhood U of x such that A|y= Oy - 1y ®
Oy - p(7y). Since p(7y)? is scalar, p(y)? = ¢+ 14 for some ¢ € Oy (U). By
the Cayley-Hamilton theorem, p(v)* — tr(p(v))p(v) + det(p(y)) Iz = 0
on U. Thus we have tr(p(y)) = 0 and det(p(v)) = ¢ on U. For any
v €T, p(v) = aly+ bp(y) on U for some a,b € Oy(U). This implies
that tr(p(y')) = atr(lz) + btr(p(y)) = 0. Hence A defines a unipotent
mold over Fy and that [p: ' — A(X)] € EqU(T)p,(X). Therefore we
have proved that EqUs(T)r, = EqU(T)p,. O

Let A be a sheaf of Ox-algebras which is locally free of rank 2 on
a scheme X over Fo. Let p : I' — A(X) be a representation of I’
generating A, and let y : I' = Ox(X) be a character. We say that a
pair (p, x) is a tilde representation with unipotent mold over Fy for T’
generating A on X if {p(v) — x(7) - La}er spans a sub-line bundle of
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A and (p(v) — x(7) - 14)? = 0 for any v € I". (Then we can prove that
A defines a unipotent mold over Fy as in the proof of Proposition B.8.)
For two tilde representations (pi, x1) and (pa, x2) with unipotent mold
over Fy for I' on X, we say that they are equivalent if x; = x2 and
there exists an isomorphism ¢ : A; — As as sheaves of Ox-algebras
such that ¢ o p; = pg, where p; is a homomorphism p; : I' — A;(X) for
i=1,2.

Definition 8.7.

EqUy(T)r, : (Sch/Fy)? — (Sets)
(p, x) is a tilde representation
with unipotent mold over Iy / N

for I' generating a sheaf of
Ox-algebras A

X = 4 (P, X)

Proposition 8.8. There is a canonical isomorphism

EQUQ(F)F2 = EqZ/{é(F)FQ
Proof. Let {(Ui, pi; \i) ier € EqUa(T)g,(X) be a generalized tilde
representation with unipotent mold over 5 for I' on a scheme X over
Fy. Since {(Ui, pi) bier € EqUa(T)p,(X), we have [p : I' = A(X)] €
EqU(D), (X) by Eqllo(T)ey (X) = EqUS(T)e, (X). By ahuing {(Us A ber,
we can define a character y : I' = Ox(X) such that x|y,= A\; for
i € I. Note that det p;(7) = x(v)* on U;. Tt is easy to see that

(p;x) € EqUs(T)g,(X). This correspondence induces a natural trans-
formation &,/r, : EqUs(T)p, — EqUs(T)y, .

—_——

Conversely, let (p, x) € EqUy(T)g,(X). For each point x € X, there
exist o, € I" and a neighbourhood U, of = such that A|y,~= Oy, - 14 ®
Ou, - plag). Denote I' & Ay, @4 |y, (A |r,) C Endo,, (Aly,) =
My(Op,) by p.. By the assumption, (p.(ca,) — x(as)l2)? = 0. Then
pr(a)? = X(a2)* Lz = tr(ps(aq))pa(as) — det(pa(aw)) o — x(a)* Ly =
0. Hence tr(p.(a,)) = 0 and det(p,(a.)) = x(az)?. Since {p(vy) —
X(7) - 1a}~er spans a sub-line bundle of A, for each v € I' there exists
¢ € Ox(U;) such that p(v) — x(7) - La = c(p(az) — x(az) - 14) on
Uy. We have p;(7) = (x(7) — ex(aw)) 2 + cpu(as). Putting a(y) =
X(7) —ex(az) and b(y) = ¢, we obtain p,(v) = a(y)L2+b(v)p.(a;) and

X(7) = a(7) +b(7)x(s). Thereby tr(p;(7)) = 0 and det p,(7) = x(7)*
for each v € I'. It is easy to check that A defines a unipotent mold

—~—

over Fy and that {(Us, pz, X|v,) beex € Eqla(T)g,(X). Therefore this
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—_—

correspondence induces a natural transformation 7, : EqUs(T)g, —

——~—

qu/IQ (F)Fg .

It is easy to see that 7, /r, 0 Ty m, = 1 and that o,/r, 0 T, F, =

EqUtz (F)]F2

1 &@TF)FQ’ This completes the proof. O

In the case of representations of an associative algebra over a com-
mutative ring, we have similar results as the group or monoid cases.

Definition 8.9. Let A be an associative algebra over a commutative
ring R. Let A be a sheaf of Ox-algebras on an R-scheme X. We say
that an R-homomorphism p : A — A(X) is a representation in A of
A. For two representations p; : A — A;(X) and py : A — Ay(X),
we say that p; and ps are equivalent if there exists an isomorphism
¢ : Ay — Ay as sheaves of Oyx-algebras such that ¢ o p; = ps. We
call a representation p : A — A(X) a representation generating A if

Ox[p(A)] = A.

In the same way as group or monoid cases, we define £¢SS5(A),
EqUs(A), and EqUs(A)g,. Similarly, we have

Proposition 8.10. There are canonical isomorphisms:

£qSSy(A) = £¢SSL(A),
EqUr(A) = EqUh(A),
EqUa(A)r, = EqUy(A),.

Hence we can conclude that Chy(A),,, Chy(A),, and Chy(A),/rk,
represent £qSS5(A), EqUs(A), and EqU(A)r,, respectively.

Definition 8.11. Let A be a sheaf of Ox-algebras which is locally free
of rank 2 on an R-scheme X. Let p: A — A(X) be a representation
generating A4 on X, and let x : A — Ox(X) be an R-homomorphism.
We say that (p, x) is a tilde representation with unipotent mold over
Fy for A generating A on X if {p(c) — x(c) - L4}cea spans a sub-line
bundle of A and (p(c) — x(c) - 14)? = 0 for any c € A.

I

—_—

We can also define Eqldy(A)g,. Similarly, we have

Proposition 8.12. There are a canonical isomorphism:
EqUa(A)g, = EqUy(A)g,

In particular, Chy(A), 5, represents EqUs(A)g, .
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9. APPENDIX: DISCRIMINANTS

In this section we deal with the discriminant locus of the represen-
tation variety of degree 2. The discriminant locus is exactly the subset
consisting of representations which are not absolutely irreducible. We
describe the absolutely irreducible representation part of the represen-
tation variety of degree 2 explicitly (cf. [15] or [16]).

Definition 9.1 ([I5], [16]). Let R be a commutative ring. For A, B €
Ma(R) we define the discriminant A(A, B) by

A(A,B) = tr(A)?det(B) + tr(B)? det(A) + tr(AB)?
—tr(A)tr(B)tr(AB) — 4 det(A) det(B).
From the definition we see that A(A, B) = A(B, A). If A, B € GLy(R),
then A(A, B) = det(A) det(B)tr(ABA™'B™! — I).

Remark 9.2. The discriminant A(A, B) above is closely related to
the discriminant in [10]. For A;, Ay, A3, Ay € Mo(R) we define the
discriminant of degree 2 in [10] by

Q
Q
Q
Q

11 12 21 22

e o e
A(Al,AQ,Ag,A4) = det a(g)i CL(B)E a(3)zi a(?))zz ,
(41 a(d)1z a(d)a a(4)

where A; = a(z.)ll &(’%)12 for i =1,2,3,4. Then we have
a(i)ar  a(i)z2

A(A,B) = —A(L, A, B, AB).

Note that A(Ay, A, A3, Ay) € R* if and only if {A;, Ay, A3, Ay} is an
R-basis of My(R).

Lemma 9.3. Let k be a field. Assume that A C My (k) is a subalgebra
over k. Then A # Msy(k) if and only if A is commutative or there
exists a 1-dimensional A-invariant subspace of k2.

Proof. The “if” part is easy. We only need to prove the “only
if” part. Suppose that A # My(k). If A has no nontrivial invariant
subspace, then k2 is a simple A-module. Since the Jacobson radical
JacA is equal to Nz gimpreAnnM = 0, the algebra A is semi-simple.
From the Wedderburn Theorem we see that A is a product of the full
matrix rings over division algebras over k. Because A has a faithful 2-
dimensional simple module and dim A < 3, the algebra A is isomorphic
to a quadratic extension of k. Hence A is commutative. O
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Proposition 9.4. Let k be a field. Suppose that A, B € My(k) and A
is the k-subalgebra of My (k) generated by A and B. Then the following
conditions are equivalent:

(i) A(A,B) =0.
(i) A # My (k).
(iii) A and B are commutative or A and B have a common invari-
ant subspace of dimension 1.

Proof. The part () < (i) follows from Lemma The part (i)
= () follows from that {15, A, B, AB} is not a basis of My (k) and that
A(A,B) = —A(ly, A, B,AB) = 0 by Remark We only have to
prove ([{l) = ().

We assume that A(A,B) = 0. First, we show that AB and BA
can be expressed as linear combinations of {Iy, A, B}. Here let us
consider the case AB. From A(A, B) = 0, we see that {I5, A, B, AB}
is linearly dependent. Hence there exist ¢; € k (1 < ¢ < 4) such that
c1ly+coA+c3B+cyAB = 0 and some ¢; # 0. If ¢4 # 0, then the claim
is true. If ¢4 = 0, then either ¢y # 0 or ¢3 # 0 holds. When ¢y # 0, the
matrix A is expressed as a linear combination of I, and B, and hence
AB can be expressed as a polynomial of B. By the Cayley-Hamilton
Theorem, AB can be expressed as a linear combination of I, and B.
We can also prove the claim for the c¢3 # 0 case. Thus we have shown
that AB can be expressed as a linear combination of {Iy, A, B}. We
can also prove the BA case in the same way.

Next, we show that any monomial of A and B can be expressed as
a linear combination of {I5, A, B}. This implies that A # My(k). We
prove the claim by induction on the length of monomials. The length
0, 1 and 2 cases are true. Suppose that the length n — 1 case is true for
n > 3. Let X be a monomial whose length is n. If X has a subsequence
AB or BA, then X can be reduced to the the length n — 1 case from
the above claim. If X has a subsequence AA or BB, then from the
Cayley-Hamilton Theorem we also see that X can be reduced to the
length n — 1 case. This completes the proof. O

Corollary 9.5. Let k be a field. Suppose that A is a k-subalgebra of
My (k). Then the following conditions are equivalent:

(i) A(A,B) =0 for each A, B € A.
(i) A # My(k), or equivalently the A-module k* is not absolutely
irreductble.

(iii) A is commutative or A has an invariant subspace of dimension
1.
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Proof. The part (i) < (i) follows from Lemma Suppose that
(i) holds. For any A, B € A, the matrices A and B do not generate
the full matrix ring Ma(k), so A(A, B) = 0 from the above proposition.
This shows that (i) = (i) holds.

We now prove (i) = (). Assume that (i) holds. Suppose that
A = My(k). For

11 10
A:(O 1),B:<1 1)€A,

we have A(A, B) =1 # 0. This is a contradiction. Therefore we have
proved ({) = (@). O

Here we introduce another invariant.

Definition 9.6. Let R be a commutative ring. For A, B,C € My(R)
we define 7(A, B, C) by
7(A, B,C) :=tr(ABC) — tr(ACB)
or equivalently,
7(A, B,C) = 2tr(ABC) — tr(A)tr(BC) — tr(B)tr(CA) — tr(C)tr(AB)
+tr(A)tr(B)tr(C).

Remark 9.7. The above 7 is closely related to the discriminant defined
in [10]. Indeed, 7(A, B,C) = A(A, B, C, I,) holds for A, B, C' € Ms(R).

Definition 9.8. Let k be a field. Pick # € k? — {0}. We denote
by T the equivalence class containing x in P} := (k* — {0})/k*. For
A € My(k) we say that T is an A-fized point if x is an eigenvector
of A. In particular if A € GLy(R), then A can be regarded as an
automorphism of Pi, and so T is an A-fixed point if and only if 7 is
fixed by A as a point of P}.

Remark 9.9. If A € My(k) is not a scalar matrix, then A has at most
two fixed points in Pj.

Proposition 9.10. Let k be a field. Suppose that A, B,C' € My(k)
and that A is a k-subalgebra of Ms(k) generated by A, B,C. Then the
following conditions are equivalent.

(i) A(A,B) =A(B,C)=A(C,A) =71(A,B,C) =0.

(i) A # My(k), or equivalently the A-module k* is not absolutely

wrreducible.

Furthermore, if A, B,C € GLy(k), then the following condition is also
equivalent to the above two conditions.

(i) A(A, B) = A(B,C) = A(C, A) = A(AB,C) = 0.
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Proof. Since we may replace k with an algebraic closure k of k, we
assume that k is an algebraic closed field from the beginning. Note
that A # My (k) if and only if the .A-module £? is not irreducible when
k=k.

@@ = (@ The A-module k? is not irreducible, so there exists P €
GLy(k) such that

-1 . ko ok 1 o * sk 1 _ * %
P AP-(O *),P BP-(0 *),P CP-(O *)

This immediately implies that tr(ABC) = tr(ACB). Hence we have
7(A, B,C) = 0. By Corollary @.5] A(A, B) = A(B,C) = A(C, A) = 0.

@) = () If one of A, B, C'is a scalar matrix, then (il) = (i) follows
from Proposition [9.4l Hence we may assume that none of A, B, are
scalar matrices. Note that if X € My(k) is not a scalar matrix, then
X has at most two fixed points in P}. Suppose that one of A, B,C
has exactly one fixed point in P;. Then the others have the same fixed
point in P} since it follows from A(A4,B) = A(B,C) = A(C, A) =
0 and Proposition that k% is not an irreducible module over the
subalgebras generated by any two of A, B, C. Hence the A-module k>
is not irreducible.

Now let us consider the case that each of A, B, C has exactly two
fixed points in P}. If A, B, C have a common fixed point, then we see
that () = (@). Suppose that A, B,C' have no common fixed point.
By A(A,B) = A(B,C) = A(C,A) = 0, we may assume that A has
eigenvectors u and v, B has v and w, and C' has w and u. With respect
to the basis {u, v}, the matrices A, B, C' have the following forms:

o aq 0 . bl 0 o C1 Co
A_<0 &4)’B_<bg 64)’0_(0 04).

Since A, B, C' have no common eigenvector, b3 # 0 and ¢y # 0. Hence
we have tr(ABC) = a1bicq + agbscs + agbscy and tr(ACB) = aibic; +
a1bsca + asbycy. Therefore 7(A, B,C) = (ag — aq)bgea # 0, since A is
not a scalar matrix. This is a contradiction. Therefore we have shown
that ({) = ().

() = (@) This follows from Corollary

() = (@) In the same way as the discussion above in the ({) =
(i) part, we only need to consider the case that A, B, C have exactly
two fixed points in P}. Suppose that A, B,C have no fixed point.
From the assumption that A(A, B) = A(B,C) = A(C, A) = 0 we may
assume that A has eigenvectors u and v, B has v and w, and C' has w
and u, where u, v, and w are distinct up to scalar multiplication. The
assumption that A(AB, C') = 0 implies that AB and C have a common
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eigenvector. It is w or w. If w is an eigenvector of AB, then it is also
an eigenvector of A because B € GlLy(k). This is a contradiction. If
u is an eigenvector of AB, then it is also an eigenvector of B because
A € GLy(k). This is also a contradiction. Hence the matrices A, B, C
have a common eigenvector, which implies that A # My (k). O

From the above proposition we obtain the following proposition.

Proposition 9.11. Let T" be a group with a subset G = {a; }ier gener-
ating I'. Assume that the index set I is a totally ordered set. The air
part Repy(D)air of the representation variety of degree 2 for I is equal
to

U D(A(or (), or(e)) U | D(r(or(as), or(ay), or(ax)))
1<J 1<j<k
or
U D(A(or(as), or(e)) U | D(A(or(aiey), or(ar))).
1<J 1<j<k
Here or is the universal representation and D(x) is the open subset
where * does not vanish.

Proof. Let k(z) be the residue field of a point x of Rep,(I'). Note
that © € Repy([).;, if and only if k(z)[or(T)] = My(k(z)). By the
Cayley-Hamilton theorem, we have p(a™!) € k(z)[p(a)] for a € T.
Since dimy,) Ma(k(z)) = 4, we see that € Repy(I')a if and only if
there exist al, as, a3 € G which generate My (k(z)) as a k(x)-algebra.
Hence we can verify the statement by Proposition O

In a similar way, we obtain the following proposition.

Proposition 9.12. Let " be a monoid with a subset G = {a;}ier
generating I'. Assume that the index set I is a totally ordered set. The
air part Repy(D)aie of the representation variety of degree 2 for T' is
equal to

UD(A(or (@), or(a)) U | Dir(or(a), or(ay), or(ar)))-

1<j 1<j<k
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