# SPECIAL CLASSES OF IRREDUCIBLE REPRESENTATIONS I

#### KAZUNORI NAKAMOTO AND YASUHIRO OMODA

ABSTRACT. We introduce special classes of irreducible representations of groups: thick representations and dense representations. Denseness implies thickness, and thickness implies irreducibility. We show that absolute thickness and absolute denseness are open conditions for representations. Thereby, we can construct the moduli schemes of absolutely thick representations and absolutely dense representations. We also describe several results and several examples on thick representations for developing theory of thick representations.

### 1. Introduction

In this article, we deal with special classes of irreducible representations of groups. First, we introduce the notion of thick representations. Let G be a group. Let V be an n-dimensional vector space over a field k. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is m-thick if for any subspaces  $V_1$  and  $V_2$  of V with dim  $V_1 = m$  and dim  $V_2 = n - m$  there exists  $g \in G$  such that  $(\rho(g)V_1) \oplus V_2 = V$ . We also say that a representation  $\rho: G \to \operatorname{GL}(V)$  is thick if  $\rho$  is m-thick for each 0 < m < n (Definition 2.1).

It may be expected that any irreducible representations are thick. Indeed, each irreducible representations of dimension at most 3 is thick. However, it is not true for the case of dimension n for  $n \geq 4$ . For example, the standard 4-dimensional representation  $\mathbb{C}^4$  of  $SO_4(\mathbb{C})$  is not thick. Hence it is a natural question when irreducible representations of dimension n for  $n \geq 4$  are thick.

Next, we introduce another type of irreducible representations. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is m-dense if the induced representation  $(\wedge^m \rho): G \to \operatorname{GL}(\wedge^m V)$  is irreducible. We also say that a representation  $\rho: G \to \operatorname{GL}(V)$  is dense if  $\rho$  is m-dense for each 0 < m < n (Definition 2.3). We can prove that denseness implies thickness and that thickness implies irreducibility (Corollary 2.8). For example, the standard representation  $\mathbb{C}^n$  of  $\operatorname{GL}_n(\mathbb{C})$  is dense, and hence thick.

The reason why we call such irreducible representations "thick" or "dense" is because the image of  $\rho: G \to \mathrm{GL}(V)$  is thick or dense in  $\mathrm{GL}(V)$ , respectively. We

<sup>2010</sup> Mathematics Subject Classification. Primary 20C99; Secondary 17B10, 14D22, 14D20.

Key words and phrases. thick representation, dense representation, irreducible representation, realizable subspace.

The first author was partially supported by JSPS KAKENHI Grant Number 23540044, 15K04814.

imagine that if the image  $\rho(G)$  gets larger in  $\mathrm{GL}(V)$ , then  $\rho$  may become thick or dense. Our purpose is to develop theory of thick representations. Thickness is a simple, natural and essential concept in representation theory. In the case of finite-dimensional representations of complex simple Lie groups, thick representations are equivalent to weight multiplicity free representations whose weight poset is a totally ordered set ([4, Theorem 1.1]). By this result, we have classified thick representations for complex simple Lie groups in [4]. This is one of the characterization of weight multiplicity free representations whose weight poset is a totally ordered set.

We will divide "Special classes of irreducible representations" into two parts: Part I and Part II, because it will be long. In Part I, we introduce thickness, denseness, realizable subspaces, and another notions on irreducible representations. We show basic results on thick representations and dense representations. For describing thickness, we need to introduce "realizable subspaces". We say that a subspace W of  $\wedge^m V$  is realizable if there exist  $v_1, v_2, \ldots, v_m \in V$  such that  $0 \neq v_1 \wedge v_2 \wedge \cdots \wedge v_m \in W$  (Definition 2.10). The notion of realizable subspaces is essential for describing criteria of thickness and the moduli of absolutely thick representations. Roughly speaking, thickness lives not in the world that Linear Algebra controls, but in the world that Grassmann Algebra (or Variety) controls. "Realizable subspaces" is one of keywords in Grassmann Algebra.

The main theorem of Part I is the following:

**Theorem 1.1** (Theorem 3.8). Let  $\operatorname{Rep}_n(G)$  be the representation variety of degree n for a group G over  $\mathbb{Z}$ . For 0 < m < n, the absolutely m-thick representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ . In particular, the absolutely thick representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ .

Here we say that a representation  $\rho: G \to \operatorname{GL}(V)$  is absolutely m-thick (resp. absolutely thick) if  $\rho \otimes_k \overline{k}: G \to \operatorname{GL}(V \otimes_k \overline{k})$  is m-thick (resp. thick) for an algebraic closure  $\overline{k}$  of k. As a corollary of the main theorem, we can construct the moduli of absolutely thick representations (Theorems 3.9).

In Part II, we will introduce (i, j)-thickness, (i, j)-denseness, and m-irreducibility as generalizations of m-thickness, m-denseness, and irreducibility, respectively. We will also describe the moduli of 4-dimensional non-thick absolutely irreducible representations of the free group  $F_2$  of rank 2.

The organization of this article is as follows: In §2, we introduce the notions of thickness and denseness. We describe fundamental properties of thickness and denseness, and a criterion for thickness. In §3, we state the main theorem and prove the existence of the moduli schemes of absolutely thick representations and of absolutely dense representations. In §4, we investigate several results on realizable subspaces. We define the r-number  $r(\wedge^m(n))$  and calculate them for small m and n. In §5, we describe useful criteria for thickness of 4-dimensional and 5-dimensional representations. In §6, we introduce several examples of thick representations and dense representations for Lie groups.

#### 2. m-THICKNESS AND m-DENSENESS

In this section, we introduce thickness and denseness. We describe fundamental properties of thickness and denseness, and a criterion for thickness. Proposition 2.11 is useful for verifying thickness of representations.

**Definition 2.1.** Let G be a group. Let V be an n-dimensional vector space over a field k. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is m-thick if for any subspaces  $V_1$  and  $V_2$  of V with dim  $V_1 = m$  and dim  $V_2 = n - m$  there exists  $g \in G$  such that  $(\rho(g)V_1) \oplus V_2 = V$ . We also say that a representation  $\rho: G \to \operatorname{GL}(V)$  is thick if  $\rho$  is m-thick for each 0 < m < n.

**Remark 2.2.** From the definition, any *n*-dimensional representations  $\rho$  are always 0-thick and *n*-thick. In particular,  $\rho$  is thick if and only if  $\rho$  is *m*-thick for each  $0 \le m \le n$ .

**Definition 2.3.** Let G be a group. Let V be an n-dimensional vector space over a field k. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is m-dense if the induced representation  $(\wedge^m \rho): G \to \operatorname{GL}(\wedge^m V)$  is irreducible. We also say that a representation  $\rho: G \to \operatorname{GL}(V)$  is dense if  $\rho$  is m-dense for each 0 < m < n.

**Remark 2.4.** For an *n*-dimensional representation  $\rho: G \to \operatorname{GL}(V)$  over a field k,  $\rho$  is always 0-dense and *n*-dense because  $\wedge^0 V \cong k$  and  $\wedge^n V \cong k$ . In particular,  $\rho$  is dense if and only if  $\rho$  is *m*-dense for each  $0 \leq m \leq n$ .

**Lemma 2.5.** Let  $\rho: G \to \operatorname{GL}(V)$  be an n-dimensional representation of a group G. For positive integers i and j with i+j=n, let us consider the G-equivariant perfect pairing  $\wedge^i V \otimes \wedge^j V \xrightarrow{\wedge} \wedge^n V \cong k$ . For a G-invariant subspace W of  $\wedge^i V$ , put  $W^{\perp} := \{y \in \wedge^j V \mid x \wedge y = 0 \text{ for any } x \in W\}$ . Then  $W^{\perp}$  is a G-invariant subspace of  $\wedge^j V$ . In particular,  $\wedge^i V$  is irreducible if and only if so is  $\wedge^j V$ .

*Proof.* For  $y \in W^{\perp}$ , we have  $x \wedge gy = g(g^{-1}x \wedge y) = 0$  for  $x \in W$  and  $g \in G$ . Hence  $W^{\perp}$  is G-invariant. The correspondence  $W \mapsto W^{\perp}$  gives a bijection between the G-invariant subspaces of  $\wedge^i V$  and  $\wedge^j V$ . Therefore  $\wedge^i V$  is irreducible if and only if so is  $\wedge^j V$ .

**Proposition 2.6.** Let  $\rho: G \to \operatorname{GL}(V)$  be an n-dimensional representation of a group G. For each 0 < m < n,  $\rho$  is m-thick (m-dense) if and only if  $\rho$  is (n-m)-thick (resp. (n-m)-dense).

*Proof.* It is obvious that m-thickness and (n-m)-thickness are equivalent. By using Lemma 2.5, we see that m-denseness and (n-m)-denseness are equivalent.  $\square$ 

**Proposition 2.7.** For any n-dimensional representations  $\rho: G \to GL(V)$ , the following implications hold for 0 < m < n:

 $m\text{-}dense \Longrightarrow m\text{-}thick \Longrightarrow 1\text{-}dense \Longleftrightarrow 1\text{-}thick \Longleftrightarrow irreducible.$ 

Proof. First, we show that m-denseness implies m-thickness. Assume that  $\rho: G \to GL(V)$  is m-dense. Let  $V_1$  and  $V_2$  be vector subspaces of V with dim  $V_1 = m$  and dim  $V_2 = n - m$ . The canonical homomorphism  $\wedge^m V \otimes \wedge^{n-m} V \to \wedge^n V \cong k$  is a perfect pairing and G-equivariant. Let us take a basis  $\{e_1, e_2, \ldots, e_m\}$  of  $V_1$  and a basis of  $\{f_1, f_2, \ldots, f_{n-m}\}$  of  $V_2$ . Because of irreducibility of  $\wedge^m V$ , the vectors  $\{(\wedge^m \rho)(g)(e_1 \wedge e_2 \wedge \cdots \wedge e_m) \mid g \in G\}$  span the vector space  $\wedge^m V$ . Hence there exists  $g \in G$  such that  $(\wedge^m \rho)(g)(e_1 \wedge e_2 \wedge \cdots \wedge e_m) \wedge (f_1 \wedge f_2 \wedge \cdots \wedge f_{n-m}) \neq 0$ . This implies that  $(\rho(g)V_1) \oplus V_2 = V$ . Therefore  $\rho$  is m-thick.

Next, we show that 1-denseness, 1-thickness, and irreducibility are equivalent. It follows from the discussion above that 1-denseness implies 1-thickness. By the definition we also see that irreducibility implies 1-denseness. So we show that 1-thickness implies irreducibility. If  $\rho$  is not irreducible, then there exists a non-trivial G-invariant subspace V' of V. Let us take a 1-dimensional subspace  $V_1$  of V' and an (n-1)-dimensional subspace  $V_2$  of V such that  $V' \subseteq V_2$ . Then for any  $g \in G$  the intersection  $(\rho(g)V_1) \cap V_2 \supseteq (\rho(g)V_1) \cap V' = \rho(g)V_1 \neq 0$ . Hence  $(\rho(g)V_1) + V_2 \neq V$ . Therefore  $\rho$  is not 1-thick, which shows that 1-thickness implies irreducibility.

Finally, we show that m-thickness implies irreducibility. Assume that  $\rho$  is not irreducible. There exists a non-trivial G-invariant subspace V' of V. Set  $\ell := \dim V'$ . Then we only need to choose suitable subspaces  $V_1, V_2$  of V such that  $\dim V_1 = m$ ,  $\dim V_2 = n - m$  and  $(\rho(g)V_1) + V_2 \neq V$  for any  $g \in G$ . This implies  $\rho$  is not m-thick, which completes the proof. When  $\ell \leq \min(m, n - m)$ , let us take subspaces  $V_1, V_2$  of V such that  $V' \subseteq V_1$  and  $V' \subseteq V_2$ . Since  $\rho(g)V_1 \supseteq \rho(g)V' = V'$  and  $V_2 \supseteq V'$ ,  $(\rho(g)V_1) \cap V_2 \supseteq V'$  for each  $g \in G$ . Then  $(\rho(g)V_1) + V_2 \neq V$  for any  $g \in G$ . In this case  $\rho$  can not be m-thick.

Suppose that  $\ell > m$  or  $\ell > n-m$ . Because m-thickness and (n-m)-thickness are equivalent, we may assume that  $n-m \geq m$ . If  $m \leq \ell \leq n-m$ , then let us take subspaces  $V_1, V_2$  of V such that  $V_1 \subseteq V' \subseteq V_2$ . Since  $\rho(g)V_1 \subseteq V' \subseteq V_2$ ,  $(\rho(g)V_1) \cap V_2 = \rho(g)V_1 \neq 0$ . Hence  $(\rho(g)V_1) + V_2 \neq V$  for each  $g \in G$ , which implies  $\rho$  is not m-thick. If  $m \leq n-m \leq \ell$ , then let us take subspaces  $V_1, V_2$  of V such that  $V_1 \subseteq V'$  and  $V_2 \subseteq V'$ . Since  $(\rho(g)V_1) + V_2 \subseteq V' \neq V$ ,  $\rho$  is not m-thick.  $\square$ 

Corollary 2.8. For any finite dimensional representation of a group G, the following implications hold:

 $dense \Rightarrow thick \Rightarrow irreducible$ .

Corollary 2.9. Assume that dim  $V \leq 3$ . Then for a representation  $\rho: G \to \mathrm{GL}(V)$ , the following conditions are equivalent:

- (1)  $\rho$  is irreducible.
- (2)  $\rho$  is thick.
- (3)  $\rho$  is dense.

*Proof.* The statement follows from that three conditions above are equivalent to 1-dense (1-thick, or irreducible) when  $\dim V < 3$ .

Now we consider a criterion for a representation to be m-thick. This criterion of m-thickness will be used for describing the moduli of absolutely thick representations. Before introducing it, we need the following definition.

**Definition 2.10.** Let V be an n-dimensional vector space over a field k. For a vector subspace  $W \subseteq \wedge^m V$ , we say that W is realizable over k if there exist  $v_1, v_2, \ldots, v_m \in V$  such that  $0 \neq v_1 \wedge v_2 \wedge \cdots \wedge v_m \in W$ . For an m-dimensional subspace V' of V with 0 < m < n, we can consider a point  $[\wedge^m V'] \in \mathbb{P}_*(\wedge^m V)$ . In the sequel, we identify  $[\wedge^m V']$  with a non-zero vector  $\wedge^m V' \in \wedge^m V$  (which is determined by  $[\wedge^m V']$  up to scalar) for simplicity. It is obvious that W is realizable if and only if W contains a non-zero vector  $\wedge^m V'$  obtained by an m-dimensional subspace V' of V over k.

The following proposition gives a criterion of m-thickness.

**Proposition 2.11.** Let  $\rho: G \to \operatorname{GL}(V)$  be an n-dimensional representation of a group G. For 0 < m < n,  $\rho$  is not m-thick if and only if there exist G-invariant realizable vector subspaces  $W_1 \subset \wedge^m V$  and  $W_2 \subset \wedge^{n-m} V$  such that  $W_1^{\perp} = W_2$ .

Proof. Suppose that  $\rho$  is not m-thick. Then there exist vector subspaces  $V_1, V_2$  of V with dim  $V_1 = m$  and dim  $V_2 = n - m$  such that  $(\rho(g)V_1) + V_2 \neq V$  for any  $g \in G$ . Let us consider the vector  $\wedge^m V_1 \in \wedge^m V$  determined by  $V_1$  up to scalar multiplication. The condition implies that vectors  $\{(\wedge^m \rho)(g)(\wedge^m V_1) \mid g \in G\}$  span a non-trivial G-invariant subspace  $W_1 \subset \wedge^m V$ . Of course,  $W_1$  is realizable. Set  $W_2 := W_1^{\perp} \subset \wedge^{n-m} V$ . Note that  $\wedge^{n-m} V_2 \in W_2$ . The subspace  $W_2$  is a non-trivial G-invariant realizable subspace. Hence we have proved the "only if" part.

Conversely, suppose that there exist G-invariant realizable vector subspaces  $W_1 \subseteq \wedge^m V$  and  $W_2 \subseteq \wedge^{n-m} V$  such that  $W_1^{\perp} = W_2$ . Since  $W_1$  and  $W_2$  are realizable, there exist an m-dimensional subspace  $V_1 \subseteq V$  and an (n-m)-dimensional subspace  $V_2 \subseteq V$  such that  $\wedge^m V_1 \in W_1$  and  $\wedge^{n-m} V_2 \in W_2$ . For each  $g \in G$ , the vector  $(\wedge^m \rho)(g)(\wedge^m V_1)$  is contained in  $W_1$ , and hence  $(\wedge^m \rho)(g)(\wedge^m V_1) \wedge (\wedge^{n-m} V_2) = 0$ . This implies that  $(\rho(g)V_1) + V_2 \neq V$  for each  $g \in G$ . Therefore  $\rho$  is not m-thick.  $\square$ 

**Remark 2.12.** Furthermore, we also see that  $\rho$  is not m-thick if and only if there exist a non-zero G-invariant realizable subspace  $W_1 \subset \wedge^m V$  and an (n-m)-dimensional subspace V' of V such that  $\wedge^{n-m}V' \in W_1^{\perp}$ .

Let us define absolute thickness and absolute denseness. We will construct the moduli spaces of absolutely thick representations and absolutely dense representations in the next section.

**Definition 2.13.** Let G be a group. Let V be an n-dimensional vector space over a field k. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is absolutely m-thick if  $\rho \otimes \overline{k}: G \to \operatorname{GL}(V \otimes \overline{k})$  is m-thick, where  $\overline{k}$  is an algebraic closure of k. We also say that  $\rho$  is absolutely thick if  $\rho$  is absolutely m-thick for each 0 < m < n.

**Definition 2.14.** Let G be a group. Let V be an n-dimensional vector space over a field k. We say that a representation  $\rho: G \to \operatorname{GL}(V)$  is absolutely m-dense if  $\rho \otimes \overline{k}: G \to \operatorname{GL}(V \otimes \overline{k})$  is m-dense, where  $\overline{k}$  is an algebraic closure of k. We also say that  $\rho$  is absolutely dense if  $\rho$  is absolutely m-dense for each 0 < m < n.

**Remark 2.15.** Let K be an extension field of k. If  $\rho \otimes_k K : G \to \operatorname{GL}(V \otimes_k K)$  is m-thick (m-dense), then  $\rho$  is also m-thick (resp. m-dense). In particular, if  $\rho$  is absolutely m-thick (absolutely m-dense), then  $\rho$  is m-thick (resp. m-dense).

**Proposition 2.16.** For an n-dimensional group representation  $\rho: G \to GL(V)$ , the following conditions are equivalent:

- (1)  $\rho$  is absolutely m-dense, in other words,  $(\wedge^m \rho) \otimes_k \overline{k} : G \to GL(\wedge^m V \otimes_k \overline{k})$  is irreducible, where  $\overline{k}$  is an algebraically closure of k.
- (2)  $(\wedge^m \rho) \otimes_k K : G \to GL(\wedge^m V \otimes_k K)$  is irreducible for some algebraically closed field K containing k.
- (3)  $(\wedge^m \rho) \otimes_k K : G \to GL(\wedge^m V \otimes_k K)$  is irreducible for any algebraically closed field K containing k.

*Proof.* The statement follows from that all conditions above are equivalent to the condition that  $\wedge^m \rho$  is absolutely irreducible.

In Theorem 3.7, we will obtain the same result on absolute m-thickness as Proposition 2.16.

### 3. The moduli of absolutely thick representations

In this section, we show that absolute thickness is an open condition in the representation variety. (For representation varieties, see [3] )

Let  $\operatorname{Rep}_n(G)$  be the representation variety of degree n for a group G over  $\mathbb{Z}$ . The representation variety represents the following contravariant functor from the category of schemes to the category of sets:

where  $\Gamma(X, \mathcal{O}_X)$  is the ring of global sections on X. The representation variety  $\operatorname{Rep}_n(G)$  has the universal n-dimensional representation  $\tilde{\rho}$  of G. Let  $\operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$  be the Grassmann scheme over  $\mathbb{Z}$  representing the contravariant functor

$$\begin{array}{cccc} \operatorname{Gr}(d,\mathbb{A}^n_{\mathbb{Z}}): & (\mathbf{Sch})^{op} & \to & (\mathbf{Sets}) \\ & X & \mapsto & \left\{W \,\middle|\, W \subseteq \mathcal{O}_X^{\oplus n} \text{ is a subbundle of rank } d \right. \right\}. \end{array}$$

Let us define a subfunctor X(d, n; G) of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$  for 0 < d < n by

$$X(d, n; G) : (\mathbf{Sch})^{op} \to (\mathbf{Sets})$$

$$X \mapsto \left\{ (\rho, W) \middle| \begin{array}{l} \rho : G \to \mathrm{GL}_n(\Gamma(X, \mathcal{O}_X)), \\ W \subseteq \mathcal{O}_X^{\oplus n} \text{ is a subbundle of rank } d, \\ \text{and } \rho(G)W \subseteq W \end{array} \right\}.$$

We show that X(d, n; G) is a closed subscheme of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ .

**Lemma 3.1.** For d = 1, X(d, n; G) is a closed subscheme of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ .

*Proof.* The Grassmann scheme  $Gr(1, \mathbb{A}^n_{\mathbb{Z}})$  can be regarded as  $\mathbb{P}_*(\mathbb{A}^n_{\mathbb{Z}}) := \{[w] \mid w \text{ is a non-zero "vector" of } \mathbb{A}^n_{\mathbb{Z}}\}$ . Then

$$X(1, n; G) = \{(\rho, [w]) \mid w \text{ is a non-zero } \rho(G)\text{-eigenvector }\}$$
  
=  $\bigcap_{g \in G} \{(\rho, [w]) \mid w \text{ is a non-zero } \rho(g)\text{-eigenvector }\}.$ 

The condition that  $w \in \mathbb{A}^n$  is a  $\rho(g)$ -eigenvector can be written by the equations that all 2-minors of the  $n \times 2$  matrix  $(\rho(g)w, w)$  are 0. Hence the subfunctor X(1, n; G) is a closed subscheme of  $\text{Rep}_n(G) \times \text{Gr}(1, \mathbb{A}^n_{\mathbb{Z}})$ .

**Proposition 3.2.** For 0 < d < n, X(d, n; G) is a closed subscheme of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ .

*Proof.* The statement is true for d=1 by Lemma 3.1. For 0 < d < n, by taking the exterior, we get the morphism

$$\Phi: \operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}}) \to \operatorname{Rep}_{\binom{n}{d}}(G) \times \operatorname{Gr}(1, \wedge^d \mathbb{A}^n_{\mathbb{Z}})$$
$$(\rho, W) \mapsto (\wedge^d \rho, \wedge^d W).$$

The subfunctor X(d, n; G) can be obtained by taking the pull-back of the closed subscheme  $X(1, \binom{n}{d}; G)$  of  $\operatorname{Rep}_{\binom{n}{d}}(G) \times \operatorname{Gr}(1, \wedge^d \mathbb{A}^n_{\mathbb{Z}})$  by  $\Phi$ . Hence X(d, n; G) is a closed subscheme of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ .

Let 0 < m < n. The universal representation  $\tilde{\rho}$  on  $\operatorname{Rep}_n(G)$  induces an  $\binom{n}{m}$ -dimensional representation  $\wedge^m \tilde{\rho}$  on  $\operatorname{Rep}_{\binom{n}{m}}(G)$ . This correspondence gives us the canonical morphism  $\wedge^m : \operatorname{Rep}_n(G) \to \operatorname{Rep}_{\binom{n}{m}}(G)$  by  $\rho \mapsto \wedge^m \rho$ . For  $0 < d < \binom{n}{m}$ , we define the subfunctor  $Y(d, \wedge^m(n); G)$  of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$  by

$$Y(d, \wedge^m(n); G) : (\mathbf{Sch})^{op} \to (\mathbf{Sets})$$

$$X \mapsto \left\{ (\rho, W) \middle| \begin{array}{l} W \subseteq \wedge^m \mathcal{O}_X^{\oplus n} \text{ is a } (\wedge^m \rho)(G)\text{-invariant} \\ \text{subbundle of rank } d \end{array} \right\}.$$

Let us define  $\phi := \wedge^m \times id : \operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \to \operatorname{Rep}_{\binom{n}{m}}(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$  by  $(\rho, W) \mapsto (\wedge^m \rho, W)$ . The subfunctor  $Y(d, \wedge^m(n); G)$  is obtained by taking the pull-back of the closed subscheme  $X(d, \binom{n}{m}; G)$  of  $\operatorname{Rep}_{\binom{n}{m}}(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$  by  $\phi$ . Hence the subfunctor  $Y(d, \wedge^m(n); G)$  is a closed subscheme of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$ .

We define the subfunctor  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)$  of  $\operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})$  by

$$Y(d, \wedge^{m}(n), \wedge^{n-m}(n); G) : (\mathbf{Sch})^{op} \to (\mathbf{Sets})$$

$$X \mapsto \left\{ (\rho, W_1, W_2) \middle| \begin{array}{l} W_1 \subseteq \wedge^m \mathcal{O}_X^{\oplus n} \text{ is a } (\wedge^m \rho)(G)\text{-invariant} \\ \text{subbundle of rank } d, \text{ and} \\ W_2 \subseteq \wedge^{n-m} \mathcal{O}_X^{\oplus n} \text{ is a } (\wedge^{n-m} \rho)(G)\text{-invariant} \\ \text{subbundle of rank } \binom{n}{m} - d \end{array} \right\}.$$

Set  $X_{n,m,d}(G) := \operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})$ . Let us consider the two projections

$$\phi_1 : X_{n,m,d}(G) \to \operatorname{Rep}_n(G) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) 
\phi_2 : X_{n,m,d}(G) \to \operatorname{Rep}_n(G) \times \operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}}).$$

Take the pull-backs  $\phi_1^{-1}(Y(d, \wedge^m(n); G))$  and  $\phi_2^{-1}(Y(\binom{n}{m}) - d, \wedge^{n-m}(n); G))$ . The subfunctor  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)$  can be obtained as the intersection of these two pull-backs. Therefore  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)$  is a closed subscheme of  $X_{n,m,d}(G)$ .

Set  $\operatorname{Gr}_{n,m,d} := \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})$ . Let us consider the perfect pairing on  $\operatorname{Gr}_{n,m,d}$ :

$$\langle\;,\;\rangle: \left(\wedge^m \mathcal{O}_{\mathrm{Gr}_{n,m,d}}^{\oplus n}\right) \otimes_{\mathcal{O}_{\mathrm{Gr}_{n,m,d}}} \left(\wedge^{n-m} \mathcal{O}_{\mathrm{Gr}_{n,m,d}}^{\oplus n}\right) \to \wedge^n \mathcal{O}_{\mathrm{Gr}_{n,m,d}}^{\oplus n} \cong \mathcal{O}_{\mathrm{Gr}_{n,m,d}}$$

defined by  $\langle x,y\rangle:=x\wedge y$ . We define the subfunctor  $\mathrm{Gr}_{n,m,d}^{\perp}$  of  $\mathrm{Gr}_{n,m,d}$  by

$$\operatorname{Gr}_{n,m,d}^{\perp} := \{ (W_1, W_2) \in \operatorname{Gr}_{n,m,d} \mid W_1^{\perp} = W_2 \}.$$

For each point  $p = (W_1, W_2) \in Gr_{n,m,d}$ , choose a neighbourhood U of p and sections  $\{e_i\}, \{f_j\}$  on U such that  $\langle e_1, e_2, \dots, e_d \rangle$  is the universal subbundle of  $\wedge^m \mathcal{O}_{Gr_{n,m,d}}^{\oplus n}$  of rank d on U and  $W_2 = \langle f_1, f_2, \dots, f_{\binom{n}{m}-d} \rangle$  is the universal subbundle of  $\wedge^{n-m} \mathcal{O}_{Gr_{n,m,d}}^{\oplus n}$  of rank  $\binom{n}{m}-d$  on U. The equations  $\langle e_i, f_j \rangle = 0$  define a closed subscheme structure on  $Gr_{n,m,d}^{\perp}$ . Hence  $Gr_{n,m,d}^{\perp}$  is a closed subscheme of  $Gr_{n,m,d}$ .

Let us denote by  $\phi_3: X_{n,m,d}(G) \to \operatorname{Gr}_{n,m,d}$  the canonical projection. Taking the intersection of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)$  with the pull-back  $\phi_3^{-1}(\operatorname{Gr}_{n,m,d}^{\perp})$ , we obtain a closed subscheme  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$  of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)$ . The closed subscheme  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$  represents the contravariant functor

For proving openness of absolute m-thickness, we show that realizable subspaces form a closed subset in the Grassmann scheme. We set

$$\operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real} := \{ W \in \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \mid W \text{ is realizable } \}.$$

More precisely, for a point  $x \in Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$ ,  $x \in Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$  if and only if there exists an extension field K of the residue field k(x) of x such that the d-dimensional subspace  $W \subset \wedge^m K^n$  associated to x is realizable over K.

**Proposition 3.3.** The subset  $Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$  can be regarded as a closed subscheme of  $Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$ .

*Proof.* Let us consider the closed subscheme

$$\operatorname{Flag}(1, d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) := \{([v], W) \in \mathbb{P}_*(\wedge^m \mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}}) \mid v \in W\}$$

of  $\mathbb{P}_*(\wedge^m\mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(d, \wedge^m\mathbb{A}^n_{\mathbb{Z}}) = \operatorname{Gr}(1, \wedge^m\mathbb{A}^n_{\mathbb{Z}}) \times \operatorname{Gr}(d, \wedge^m\mathbb{A}^n_{\mathbb{Z}})$ . The scheme  $\mathbb{P}_*(\wedge^m\mathbb{A}^n_{\mathbb{Z}})$  has a closed subscheme  $\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}})$ . Then we obtain the pull-back  $p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}}))$  of  $\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}})$  by the first projection  $p_1 : \operatorname{Flag}(1, d, \wedge^m\mathbb{A}^n_{\mathbb{Z}}) \to \mathbb{P}_*(\wedge^m\mathbb{A}^n_{\mathbb{Z}})$ . The subset  $\operatorname{Gr}(d, \wedge^m\mathbb{A}^n_{\mathbb{Z}})_{real}$  is the image  $p_2(p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}})))$  of the closed subscheme  $p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}}))$  by the second projection  $p_2 : \operatorname{Flag}(1, d, \wedge^m\mathbb{A}^n_{\mathbb{Z}}) \to \operatorname{Gr}(d, \wedge^m\mathbb{A}^n_{\mathbb{Z}})$ . The projection  $p_2$  is proper, and hence we can define a closed subscheme structure on  $\operatorname{Gr}(d, \wedge^m\mathbb{A}^n_{\mathbb{Z}})_{real}$ .

The following proposition gives a characterization of  $Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$ .

**Proposition 3.4.** Let  $x \in Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$ . Let  $\overline{k(x)}$  be an algebraic closure of the residue field k(x) of x. Then  $x \in Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$  if and only if the corresponding d-dimensional subspace  $W \otimes_{k(x)} \overline{k(x)} \subseteq \wedge^m \overline{k(x)}^n$  to x is realizable over  $\overline{k(x)}$ .

Proof. Let  $x \in \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$ . If the corresponding d-dimensional subspace  $W \otimes_{k(x)} \overline{k(x)} \subseteq \wedge^m \overline{k(x)}^n$  is realizable over  $\overline{k(x)}$ , then there exists a  $\overline{k(x)}$ -rational point of  $p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}})) \subseteq \operatorname{Flag}(1, d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$  whose image by  $p_2$  corresponds to  $W \otimes_{k(x)} \overline{k(x)}$ . Then  $x \in p_2(p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}}))) = \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$ .

Conversely, suppose that  $x \in \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$ . Setting  $\phi := p_2|_{p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}}))}$ , we have the following commutative diagram which is a fibre product:

$$p_1^{-1}(\operatorname{Gr}(m, \mathbb{A}^n_{\mathbb{Z}})) \stackrel{\phi}{\to} \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\phi^{-1}(x) \longrightarrow \operatorname{Spec} k(x).$$

Since  $\phi$  is of finite type, so is  $\phi^{-1}(x) \to \operatorname{Spec} k(\underline{x})$ . Note that  $\phi^{-1}(x) \neq \emptyset$  by the definition of  $\operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$ . Then there exists a  $\overline{k(x)}$ -rational point of  $\phi^{-1}(\underline{x})$ . This implies that the corresponding d-dimensional subspace  $W \otimes_{k(x)} \overline{k(x)} \subseteq \wedge^m \overline{k(x)}^n$  is realizable over  $\overline{k(x)}$ .

Let  $q_2: X_{n,m,d}(G) \to \operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})$  and  $q_3: X_{n,m,d}(G) \to \operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})$  be the second and the third projections. We denote by  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$  the intersection of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$  with  $q_2^{-1}(\operatorname{Gr}(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}) \cap q_3^{-1}(\operatorname{Gr}(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})_{real})$ . By Proposition 3.3,  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$  can be regarded as a closed subscheme of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$ .

**Proposition 3.5.** Let  $x = (\rho, W_1, W_2) \in Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}$ . Let  $\overline{k(x)}$  be an algebraic closure of the residue field k(x) of x. Then  $x \in Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real}$  if and only if  $W_1 \otimes_{k(x)} \overline{k(x)}$  and  $W_2 \otimes_{k(x)} \overline{k(x)}$  are realizable over  $\overline{k(x)}$ .

Proof. By the definition,  $x \in Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real}$  if and only if  $q_2(x) \in Gr(d, \wedge^m \mathbb{A}^n_{\mathbb{Z}})_{real}$  and  $q_3(x) \in Gr(\binom{n}{m} - d, \wedge^{n-m} \mathbb{A}^n_{\mathbb{Z}})_{real}$ . It follows from Proposition 3.4 that this condition is equivalent to that  $W_1 \otimes_{k(x)} \overline{k(x)}$  and  $W_2 \otimes_{k(x)} \overline{k(x)}$  are realizable over  $\overline{k(x)}$ .

Let  $q_1: X_{n,m,d}(G) \to \operatorname{Rep}_n(G)$  be the first projection. Since  $q_1$  is proper and  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp}$  is a closed subscheme of  $X_{n,m,d}(G)$ ,  $\operatorname{Rep}_n(G)$  has a closed subscheme  $q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp})$ .

**Proposition 3.6.** Let  $x \in \operatorname{Rep}_n(G)$ . Then  $x \in q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp})$  if and only if there exist G-invariant realizable subspaces  $W_1 \subseteq \wedge^m \overline{k(x)}^n$  and  $W_2 \subseteq \wedge^{n-m} \overline{k(x)}^n$  with respect to the corresponding representation  $\rho_x \otimes_{k(x)} \overline{k(x)} : G \to \operatorname{GL}_n(\overline{k(x)})$  such that  $\dim W_1 = d$ ,  $\dim W_2 = \binom{n}{m} - d$ , and  $W_1^{\perp} = W_2$ .

*Proof.* First, we prove the "if" part. Suppose that there exist such  $W_1$  and  $W_2$ . Then we have a  $\overline{k(x)}$ -rational point of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real}$  whose image by  $q_1$  corresponds to x. Hence  $x \in q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real})$ .

Next, we prove the "only if" part. Let  $x \in q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp})$ . Set  $\psi = q_1|_{Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp}} : Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp} \to \operatorname{Rep}_n(G)$ . Since  $\psi$  is of finite type, so is  $\psi^{-1}(x) \to \operatorname{Spec} k(x)$ . The fibre  $\psi^{-1}(x)$  is not empty, and hence there exist  $W_1$  and  $W_2$  with the desired property by Proposition 3.5.

We can prove the following theorem on absolute m-thickness by Proposition 3.6.

**Theorem 3.7.** Let  $\rho: G \to \operatorname{GL}_n(k)$  be an n-dimensional representation of G over a field k. For 0 < m < n, the following conditions are equivalent:

- (1)  $\rho$  is absolutely m-thick, in other words,  $\rho \otimes_k \overline{k}$  is m-thick for an algebraic closure  $\overline{k}$  of k.
- (2)  $\rho \otimes_k K$  is m-thick for some algebraically closed field K over k.
- (3)  $\rho \otimes_k K$  is m-thick for any algebraically closed field K over k.

Proof. It is obvious that  $(3) \Rightarrow (1)$  and that  $(1) \Rightarrow (2)$ . Let us show that  $(2) \Rightarrow (3)$ . Assume that  $\rho \otimes_k K$  is m-thick for some algebraically closed field K over k. Note that  $\rho \otimes_k \overline{k}$  is also m-thick by Remark 2.15. Suppose that  $\rho \otimes_k K'$  is not m-thick for some algebraically closed field K' over k. Let x be the k-rational point of  $\operatorname{Rep}_n(G)$  associated to  $\rho$ . By Proposition 2.11, there exists a K'-rational point of  $Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real}$  for some d whose image by  $q_1$  corresponds to  $\rho \otimes_k K'$ . Hence  $x \in q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)^{\perp}_{real})$ . Then  $\rho \otimes_k \overline{k}$  is not m-thick by Proposition 3.6, which is a contradiction. Hence  $\rho \otimes_k K'$  is m-thick for any algebraically closed field K' over k. Therefore we have shown that  $(2) \Rightarrow (3)$ .  $\square$ 

Now we show the openness of absolute m-thickness.

**Theorem 3.8.** Let  $\operatorname{Rep}_n(G)$  be the representation variety of degree n for a group G over  $\mathbb{Z}$ . For 0 < m < n, the absolutely m-thick representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ . In particular, the absolutely thick representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ .

*Proof.* The absolutely m-thick representations form the complement of

$$\bigcup_{0 < d < \binom{n}{m}} q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp})$$

in  $\operatorname{Rep}_n(G)$  by Propositions 2.11 and 3.6. Since  $q_1(Y(d, \wedge^m(n), \wedge^{n-m}(n); G)_{real}^{\perp})$  is closed for each d, we can verify the openness of absolute m-thickness. We can also prove the openness of absolute thickness by considering all m.

Let  $\operatorname{Rep}_n(G)_{m\text{-}\operatorname{thick}}$  be the open subscheme consisting of absolutely  $m\text{-}\operatorname{thick}$  representations of  $\operatorname{Rep}_n(G)$ . Let  $\operatorname{Rep}_n(G)_{\operatorname{thick}}$  be the open subscheme consisting of absolutely thick representations of  $\operatorname{Rep}_n(G)$ . The open subschemes  $\operatorname{Rep}_n(G)_{m\text{-}\operatorname{thick}}$  and  $\operatorname{Rep}_n(G)_{\operatorname{thick}}$  are contained in the representation variety of absolutely irreducible representations  $\operatorname{Rep}_n(G)_{\operatorname{air}}$ . We have group actions of the group scheme  $\operatorname{PGL}_n$  on these scheme by the conjugation  $\rho \mapsto P^{-1}\rho P$ . By [3, Theorem 1.3], there exists a universal geometric quotient  $\operatorname{Ch}_n(G)_{\operatorname{air}}$  of  $\operatorname{Rep}_n(G)_{\operatorname{air}}$  by  $\operatorname{PGL}_n$  and the quotient morphism  $\operatorname{Rep}_n(G)_{\operatorname{air}} \to \operatorname{Ch}_n(G)_{\operatorname{air}}$  is a  $\operatorname{PGL}_n$ -principal fibre bundle. Hence we have the following theorem:

**Theorem 3.9.** For each 0 < m < n, there exists a universal geometric quotient  $\operatorname{Ch}_n(G)_{m\text{-thick}}$  of  $\operatorname{Rep}_n(G)_{m\text{-thick}}$  by  $\operatorname{PGL}_n$ . Moreover, there exists a universal geometric quotient  $\operatorname{Ch}_n(G)_{\operatorname{thick}}$  of  $\operatorname{Rep}_n(G)_{\operatorname{thick}}$  by  $\operatorname{PGL}_n$ . The quotient morphisms  $\operatorname{Rep}_n(G)_{m\text{-thick}} \to \operatorname{Ch}_n(G)_{m\text{-thick}}$  and  $\operatorname{Rep}_n(G)_{\operatorname{thick}} \to \operatorname{Ch}_n(G)_{\operatorname{thick}}$  are  $\operatorname{PGL}_n$ -principal fibre bundles.

We also have the same results on absolutely dense representations as absolutely thick representations.

**Proposition 3.10.** For 0 < m < n, the absolutely m-dense representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ . In particular, the absolutely dense representations in  $\operatorname{Rep}_n(G)$  form an open subscheme of  $\operatorname{Rep}_n(G)$ .

*Proof.* We define the morphism  $\wedge^m : \operatorname{Rep}_n(G) \to \operatorname{Rep}_{\binom{n}{m}}(G)$  by  $\rho \mapsto \wedge^m \rho$ . The inverse image of the open subscheme  $\operatorname{Rep}_{\binom{n}{m}}(G)_{\operatorname{air}}$  by  $\wedge^m$  coincides with the absolutely m-dense representations in  $\operatorname{Rep}_n(G)$ . Hence it is open. Considering all m, we see that the absolutely dense representations in  $\operatorname{Rep}_n(G)$  is also open.  $\square$ 

Let  $\operatorname{Rep}_n(G)_{m\text{-}dense}$  be the open subscheme consisting of absolutely m-dense representations of  $\operatorname{Rep}_n(G)$ . Let  $\operatorname{Rep}_n(G)_{dense}$  be the open subscheme consisting of absolutely dense representations of  $\operatorname{Rep}_n(G)$ . The open subschemes  $\operatorname{Rep}_n(G)_{m\text{-}dense}$  and  $\operatorname{Rep}_n(G)_{dense}$  are contained in the representation variety of absolutely irreducible representations  $\operatorname{Rep}_n(G)_{air}$ . In the same way as absolutely thick representations, we have the following theorem:

**Theorem 3.11.** For each 0 < m < n, there exists a universal geometric quotient  $\operatorname{Ch}_n(G)_{m\text{-dense}}$  of  $\operatorname{Rep}_n(G)_{m\text{-dense}}$  by  $\operatorname{PGL}_n$ . Moreover, there exists a universal geometric quotient  $\operatorname{Ch}_n(G)_{\operatorname{dense}}$  of  $\operatorname{Rep}_n(G)_{\operatorname{dense}}$  by  $\operatorname{PGL}_n$ . The quotient morphisms  $\operatorname{Rep}_n(G)_{m\text{-dense}} \to \operatorname{Ch}_n(G)_{m\text{-dense}}$  and  $\operatorname{Rep}_n(G)_{\operatorname{dense}} \to \operatorname{Ch}_n(G)_{\operatorname{dense}}$  are  $\operatorname{PGL}_n$ -principal fibre bundles.

Summarizing the results above, we have the following diagrams:

and

Remark 3.12. For a representation  $\rho: G \to \operatorname{GL}_n(\Gamma(X, \mathcal{O}_X))$  of a group G on a scheme X,  $\rho$  is called absolutely m-thick (resp. absolutely thick) if the induced representation  $\rho \otimes k(x): G \to \operatorname{GL}_n(k(x))$  is absolutely m-thick (resp. absolutely thick) for each  $x \in X$ , where k(x) is the residue field of x. Similarly,  $\rho$  is called absolutely m-dense (resp. absolutely dense) if the induced representation  $\rho \otimes k(x): G \to \operatorname{GL}_n(k(x))$  is absolutely m-dense (resp. absolutely dense) for each  $x \in X$ . The scheme  $\operatorname{Rep}_n(G)_{m$ -thick (resp.  $\operatorname{Rep}_n(G)_{\text{thick}}$ ,  $\operatorname{Rep}_n(G)_{m$ -dense,  $\operatorname{Rep}_n(G)_{\text{dense}}$ ) represents the contravariant functor from the category of schemes to the category of sets which maps each scheme to the set of n-dimensional absolutely m-thick (resp. absolutely thick, absolutely m-dense, absolutely dense) representations of G on X.

# 4. Realizable subspaces

In this section, we discuss realizable subspaces in detail. We introduce the r-number  $r(\wedge^m(n))$  which is closely related to thickness. In some cases, we can calculate  $r(\wedge^m(n))$ .

**Lemma 4.1.** Let V be an n-dimensional vector space over an algebraically closed field k. Let W be a vector subspace of  $\wedge^m V$  with 0 < m < n. If  $\operatorname{codim} W \le m(n-m)$ , then W is realizable, in other words, there exists an m-dimensional vector subspace  $V_1$  of V such that  $\wedge^m V_1 \in W$ .

*Proof.* Remark that  $\wedge^m V_1 \in \wedge^m V$  can be defined up to scalar multiplication. The Grassmann variety  $\operatorname{Gr}(m,V) \subset \mathbb{P}_*(\wedge^m V)$  has dimension m(n-m). Since the subspace  $\mathbb{P}_*(W) \subset \mathbb{P}_*(\wedge^m V)$  has codimension  $\leq m(n-m)$ , the intersection  $\mathbb{P}_*(W) \cap \operatorname{Gr}(m,V)$  is not empty. Hence there exists an m-dimensional subspace  $V_1$  such that  $\wedge^m V_1 \in W$ .

**Proposition 4.2.** Let V be an n-dimensional vector space over an algebraically closed field k. Let  $\rho: G \to \operatorname{GL}(V)$  be a representation of a group G. If  $\wedge^m V$  has a  $(\wedge^m \rho)(G)$ -invariant realizable subspace W of dim  $W \le m(n-m)$ , then  $\rho$  is not m-thick.

*Proof.* Let us consider  $W^{\perp} \subseteq \wedge^{n-m}V$ . Since dim  $W \leq m(n-m)$ , codim $W^{\perp} \leq m(n-m)$ . By Lemma 4.1,  $W^{\perp}$  is realizable. Hence  $\rho$  is not m-thick because of Proposition 2.11.

**Definition 4.3.** For 0 < m < n, we define the r-number  $r(\wedge^m(n))$  by

$$r(\wedge^m(n)) := \min \left\{ \dim W \middle| \begin{array}{l} \text{there exists an $n$-dimensional irreducible} \\ \text{representation $\rho:G \to \operatorname{GL}(V)$ of a group $G$} \\ \text{over a field $k$ such that $W$ is a $G$-invariant} \\ \text{realizable subspace of $\wedge^m V$} \end{array} \right\}.$$

For convenience, we set  $r(\wedge^0(n)) = 1$  and  $r(\wedge^n(n)) = 1$  for each positive integer n.

**Proposition 4.4.** For 0 < m < n,  $r(\wedge^m(n)) \ge \left[\frac{n-1}{m}\right] + 1$ .

Proof. Let  $\rho: G \to \operatorname{GL}(V)$  be an n-dimensional irreducible representation of a group G. Let  $W \subseteq \wedge^m V$  be a G-invariant realizable subspace. We show that  $\dim W \geq \left[\frac{n-1}{m}\right] + 1$ . Since W is realizable, there exists a basis  $e_1, e_2, \ldots, e_n$  of V such that  $x := e_1 \wedge e_2 \wedge \cdots \wedge e_m \in W$ . Let  $g_1 := e \in G$ . Let us define  $g_i \in G$  for  $1 \leq i \leq \left[\frac{n}{m}\right]$  in the following way: If  $g_i \in G$  is determined for  $i \leq k$ , choose  $g_{k+1} \in G$  such that  $\rho(g_{k+1})e_1$  is not contained in the subspace spanned by  $\{\rho(g_i)e_j \mid 1 \leq i \leq k, 1 \leq j \leq m\}$  of V. This procedure is possible because  $\rho$  is irreducible and hence the set  $\{\rho(g)e_1 \mid g \in G\}$  spans V. In this way,  $g_1, g_2, \ldots, g_{\left[\frac{n}{m}\right]}$  can be chosen. If m does not divide n, then we can also choose  $g_{\left[\frac{n}{m}\right]+1} \in G$  such that  $\rho(g_{\left[\frac{n}{m}\right]+1})e_1$  is not contained in the subspace spanned by  $\{\rho(g_i)e_j \mid 1 \leq i \leq \left[\frac{n}{m}\right], 1 \leq j \leq m\}$ .

Note that if m divides n, then  $\left[\frac{n-1}{m}\right]+1=\frac{n}{m}$  and that if m does not divide n, then  $\left[\frac{n-1}{m}\right]+1=\left[\frac{n}{m}\right]+1$ . In any cases,  $(\wedge^m\rho)(g_1)x, (\wedge^m\rho)(g_2)x, \ldots, (\wedge^m\rho)(g_{\lfloor\frac{n-1}{m}\rfloor+1})x \in W$  are linearly independent. Indeed, let  $\sum a_i(\wedge^m\rho)(g_i)x=0$  for  $a_i \in k$ . By using

$$(\wedge^{m}\rho)(g_{i})x \wedge \rho(g_{i+1})e_{1} \wedge \rho(g_{i+2})e_{1} \wedge \cdots \wedge \rho(g_{\lfloor \frac{n-1}{m} \rfloor+1})e_{1} \neq 0 \text{ and}$$
  
$$(\wedge^{m}\rho)(g_{i})x \wedge \rho(g_{i})e_{1} \wedge \rho(g_{i+1})e_{1} \wedge \rho(g_{i+2})e_{1} \wedge \cdots \wedge \rho(g_{\lfloor \frac{n-1}{m} \rfloor+1})e_{1} = 0,$$

we see that  $a_i = 0$  for each i. Hence dim  $W \ge \left[\frac{n-1}{m}\right] + 1$ .

Corollary 4.5. If 0 < m < n, then  $r(\wedge^m(n)) \ge 2$ . In particular, if  $\rho$  is an n-dimensional irreducible representation, then  $\wedge^m \rho$  has no 1-dimensional G-invariant realizable subspace.

*Proof.* The statement follows from that 
$$r(\wedge^m(n)) = [\frac{n-1}{m}] + 1 \ge 2$$
.

If m divides n, then we can prove that  $r(\wedge^m(n)) = \frac{n}{m}$ . For proving this, we need to make some preparations.

**Lemma 4.6.** Let  $f: V \to V$  be a linear endomorphism on an n-dimensional vector space V over a field k. Suppose that f has n distinct eigenvalues  $\alpha_1, \ldots, \alpha_n \in k$ . Let  $e_1, \ldots, e_n \in V$  be eigenvectors associated to  $\alpha_1, \ldots, \alpha_n$ , respectively. Then for any f-invariant subspace W of V, there exists a subset I of  $\{1, 2, \ldots, n\}$  such that  $W = \bigoplus_{i \in I} k \cdot e_i$ .

*Proof.* For an f-invariant subspace W, we define a subset I of  $\{1,2,\ldots,n\}$  by  $I:=\{i\mid \text{there exists }\sum_{j=1}^n a_je_j\in W \text{ such that }a_i\neq 0\}$ . It is clear that  $W\subseteq \oplus_{i\in I}k\cdot e_i$ . We show that  $W\supseteq \oplus_{i\in I}k\cdot e_i$ . For each  $i\in I$ , there exists a vector  $x=\sum_{j=1}^n a_je_j\in W$  such that  $a_i\neq 0$ . Set  $J:=\{j\mid a_j\neq 0\}=\{j_1,j_2,\ldots,j_m\}$  and  $m:=\sharp J$ . Note that  $i\in J$ . Since  $f(x)=\sum_{j\in J}\alpha_ja_je_j,f^2(x)=\sum_{j\in J}\alpha_j^2a_je_j,\ldots,f^{m-1}(x)=\sum_{i\in J}\alpha_i^{m-1}a_je_j$ , we have

$$\begin{pmatrix} x \\ f(x) \\ f^{2}(x) \\ \vdots \\ f^{m-1}(x) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{j_{1}} & \alpha_{j_{2}} & \cdots & \alpha_{j_{m}} \\ \alpha_{j_{1}}^{2} & \alpha_{j_{2}}^{2} & \cdots & \alpha_{j_{m}}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{j_{1}}^{m-1} & \alpha_{j_{2}}^{m-1} & \cdots & \alpha_{j_{m}}^{m-1} \end{pmatrix} \begin{pmatrix} a_{j_{1}}e_{j_{1}} \\ a_{j_{2}}e_{j_{2}} \\ a_{j_{3}}e_{j_{3}} \\ \vdots \\ a_{j_{m}}e_{j_{m}} \end{pmatrix}.$$

The matrix  $(\alpha_{j_t}^{s-1})_{1 \leq s,t \leq m}$  is invertible, and hence the vector  $a_{j_s}e_{j_s}$  can be written as a linear combination of  $x, f(x), f^2(x), \ldots, f^{m-1}(x)$  for each  $1 \leq s \leq m$ . In particular,  $e_i \in W$ . This implies that  $W \supseteq \bigoplus_{i \in I} k \cdot e_i$ . So we have proved the lemma.  $\square$ 

**Lemma 4.7.** Let V be a vector space over an infinite field k. For any non-zero vector  $v \in V$  and a finite subset  $S \subset k^{\times}$ , there exists  $f \in GL(V)$  satisfying the following conditions:

- (1) There exists a basis  $\{v_1, v_2, \dots, v_n\}$  of V such that  $v_i$  is an eigenvector of f with eigenvalues  $\beta_i \in k^{\times} \setminus S$  for  $1 \leq i \leq n$ .
- (2)  $\beta_1, \beta_2, \dots, \beta_n$  are distinct.
- (3)  $v = v_1 + v_2 + \cdots + v_n$ .

In particular, v is not contained in any proper f-invariant subspaces.

*Proof.* Let us take vectors  $v_1, v_2, \ldots, v_{n-1} \in V$  such that  $\{v, v_1, v_2, \ldots, v_{n-1}\}$  is a basis of V. Put  $v_n := v - v_1 - v_2 - \cdots - v_{n-1}$ . Then  $\{v_1, v_2, \ldots, v_n\}$  is a basis of V and  $v = v_1 + v_2 + \cdots + v_n$ . We define  $f \in GL(V)$  by  $f(v_i) = \beta_i v_i$  for  $1 \le i \le n$ ,

where  $\beta_i \in k^{\times} \setminus S$  are distinct. By Lemma 4.6, for any proper f-invariant subspace W, there exists a proper subset I of  $\{1, 2, \ldots, n\}$  such that  $W = \bigoplus_{i \in I} k \cdot v_i$ . Hence  $v = v_1 + v_2 + \cdots + v_n$  is not contained in W. This completes the proof.

**Lemma 4.8.** Let k be a field. Let  $A_1, A_2, \ldots, A_\ell \in GL_m(k)$ . Set  $C := A_\ell A_{\ell-1} \cdots A_2 A_1$  and

$$X = \begin{pmatrix} 0_m & 0_m & 0_m & \cdots & 0_m & A_{\ell} \\ A_1 & 0_m & 0_m & \cdots & 0_m & 0_m \\ 0_m & A_2 & 0_m & \cdots & 0_m & 0_m \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0_m & 0_m & 0_m & \cdots & A_{\ell-1} & 0_m \end{pmatrix} \in GL_n(k),$$

where  $n = \ell m$  with  $\ell \geq 2$ . Suppose that the eigenvalues  $\alpha_1, \ldots, \alpha_m$  of C are distinct and that  $\sharp \{z \in k \mid z^{\ell} = \alpha_i\} = \ell$  for each  $1 \leq i \leq m$ . Then for each  $\ell$ -th root  $\xi_{i,j}$  of  $\alpha_i$   $(1 \leq i \leq m, 1 \leq j \leq \ell)$  and for each eigenvector  $v_i$  of C with respect to  $\alpha_i$ , the vector

$$w_{i,j} :=$$

$${}^{t}(\xi_{i,j}^{\ell-1}v_{i},\ \xi_{i,j}^{\ell-2}A_{1}v_{i},\ \xi_{i,j}^{\ell-3}(A_{2}A_{1})v_{i},\ldots,\ \xi_{i,j}(A_{\ell-2}\cdots A_{2}A_{1})v_{i},(A_{\ell-1}A_{\ell-2}\cdots A_{2}A_{1})v_{i})$$

is an eigenvector of X with respect to the eigenvalue  $\xi_{i,j}$ . Conversely, all eigenvectors of X can be obtained in this way (up to scalar multiplication).

*Proof.* It is easy to check that  $Xw_{i,j} = \xi_{i,j}w_{i,j}$ . The statement follows from that  $\{\xi_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq \ell\}$  forms the set of n distinct eigenvalues of X.

Let  $F_1 = \langle \alpha \rangle$  be the free group of rank 1. By Proposition 3.2,  $X(d, n; F_1)$  is a closed subscheme of  $\operatorname{Rep}_n(F_1) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ . Here recall that  $X(d, n; F_1) = \{(\rho, W) \mid W \text{ is a } d\text{-dimensional } \rho(G)\text{-invariant subbundle of } \mathbb{A}^n\}$ . Let  $U(d, n) := U(d, n; F_1)$  be the complement of  $X(d, n; F_1)$  in  $\operatorname{Rep}_n(F_1) \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ . Note that  $\operatorname{Rep}_n(F_1) = \operatorname{GL}_n$  and that  $U(d, n) = \{(A, W) \mid W \text{ is not } A\text{-invariant}\} \subseteq \operatorname{GL}_n \times \operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$ . For a X-valued point  $\phi$  of  $\operatorname{Gr}(d, \mathbb{A}^n_{\mathbb{Z}})$  with a scheme X, denote by  $\phi^*(W) \subset \mathcal{O}_X^{\oplus n}$  the subbundle of rank d induced by  $\phi$  on X. Then we have the following diagram

$$\operatorname{GL}_{n,\phi} := \{ (A,x) \in \operatorname{GL}_n \times X \mid \phi^*(W)_x \text{ is not } A\text{-invariant} \} \quad \to \quad U(d,n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{GL}_n \times X \quad \stackrel{id \times \phi}{\to} \quad \operatorname{GL}_n \times \operatorname{Gr}(d,\mathbb{A}^n_{\mathbb{Z}}),$$

which is a fibre product. Hence  $\mathrm{GL}_{n,\phi}$  is an open subscheme of  $\mathrm{GL}_n \times X$ . In particular, for a geometric point W of  $\mathrm{Gr}(d,\mathbb{A}^n_{\mathbb{Z}})$ , we have:

**Proposition 4.9.** Let k be an algebraically closed field. Let W be a k-rational point of  $Gr(d, \mathbb{A}^n_{\mathbb{Z}})$ . Then the subset  $\{A \in GL_n(k) \mid W \text{ is not } A\text{-invariant }\}$  is an open subscheme of  $GL_n(k)$ .

**Proposition 4.10.** Let  $\ell$  and m be positive integers with  $\ell$ ,  $m \geq 2$ . Set  $n = \ell m$ . Let k be an algebraically closed field such that  $\operatorname{ch} k$  does not divide  $\ell$ . Then there exists an irreducible representation  $\rho: F_2 \to \operatorname{GL}_n(k)$  of the free group  $F_2$  of rank 2 such that  $\rho$  is neither m-thick nor  $\ell$ -thick.

*Proof.* Let  $F_2 = \langle \alpha, \beta \rangle$ . For constructing  $\rho$ , we need to determine  $A := \rho(\alpha), B := \rho(\beta) \in GL_n(k)$ . The group  $GL_n(k)$  acts canonically on  $k^n$ . Let  $e_1, e_2, \ldots, e_n$  be the canonical basis of  $k^n$ . Set

$$A = \begin{pmatrix} 0_{m} & 0_{m} & 0_{m} & \cdots & 0_{m} & A' \\ I_{m} & 0_{m} & 0_{m} & \cdots & 0_{m} & 0_{m} \\ 0_{m} & I_{m} & 0_{m} & \cdots & 0_{m} & 0_{m} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0_{m} & 0_{m} & 0_{m} & \cdots & I_{m} & 0_{m} \end{pmatrix}, B = \begin{pmatrix} 0_{m} & 0_{m} & 0_{m} & \cdots & 0_{m} & B_{\ell} \\ B_{1} & 0_{m} & 0_{m} & \cdots & 0_{m} & 0_{m} \\ 0_{m} & B_{2} & 0_{m} & \cdots & 0_{m} & 0_{m} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0_{m} & 0_{m} & 0_{m} & \cdots & B_{\ell-1} & 0_{m} \end{pmatrix},$$

where  $A', B_1, \ldots, B_\ell \in GL_m(k)$  will be suitably chosen. Let us define  $\Phi : GL_m(k) \times \cdots \times GL_m(k) = GL_m(k)^\ell \to GL_n(k)$  by  $(B_1, B_2, \ldots, B_\ell) \mapsto B$ .

First, we show that  $\rho$  is not m-thick. Let  $W := \langle e_1 \wedge e_2 \wedge \cdots \wedge e_m, e_{m+1} \wedge \cdots \wedge e_{2m}, e_{2m+1} \wedge \cdots \wedge e_{3m}, \ldots, e_{(\ell-1)m+1} \wedge \cdots \wedge e_n \rangle \subseteq \wedge^m V$ . Note that W is an  $\ell$ -dimensional  $(\wedge^m \rho)(F_2)$ -invariant realizable subspace of  $\wedge^m V$ . Since  $\ell \leq m(n-m)$ ,  $\rho$  is not m-thick by Proposition 4.2.

Second, we show that  $\rho$  is not  $\ell$ -thick. For  $1 \leq i \leq \ell$ , put  $J_i := \{(i-1)m+1, (i-1)m+2, \ldots, im\}$ . Then  $J_1 \sqcup J_2 \sqcup \cdots \sqcup J_\ell = \{1, 2, \ldots, n\}$ . Let Y be the subspace of  $\wedge^\ell V$  generated by  $\{e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_\ell} \mid i_1 \in J_1, i_2 \in J_2, \ldots, i_\ell \in J_\ell\}$ . Note that Y is an  $m^\ell$ -dimensional  $(\wedge^\ell \rho)(F_2)$ -invariant realizable subspace of  $\wedge^\ell V$ . The subspace  $Y^\perp$  of  $\wedge^{n-\ell} V$  contains  $e_1 \wedge e_2 \wedge \cdots \wedge e_m \wedge v'$  for any  $v' \in \wedge^{n-\ell-m} V$ . In particular,  $Y^\perp$  is realizable. By Proposition 2.11,  $\rho$  is not  $\ell$ -thick.

Finally, we show that  $\rho$  is irreducible if  $A', B_1, \ldots, B_\ell$  are suitably chosen. Let  $A' = \operatorname{diag}(\alpha_1, \alpha_2, \ldots, \alpha_m)$ , where  $\alpha_1, \ldots, \alpha_m \in k^{\times}$  are distinct. For each  $\ell$ -th root  $\xi_{i,j}$  of  $\alpha_i$   $(1 \leq i \leq m, 1 \leq j \leq \ell)$ , we define  $w_{i,j} := {}^t(\xi_{i,j}^{\ell-1}e'_i, \xi_{i,j}^{\ell-2}e'_i, \ldots, e'_i)$  as in Lemma 4.8, where  $A_1 = A_2 = \cdots A_{\ell-1} = I_m$  and  $A_\ell = A'$ . Here we use  $e'_1, \ldots, e'_m$  as the canonical basis of  $k^m$  in the sequel. Then  $w_{i,j}$  is an eigenvector of A.

By Lemma 4.6, for any A-invariant subspace W of  $k^n$ , there exists a subset I of  $\{(i,j) \mid 1 \leq i \leq m, 1 \leq j \leq \ell\}$  such that  $W = W_I := \bigoplus_{(i,j) \in I} k \cdot w_{i,j}$ . For proving  $\rho$  is irreducible, it suffices to show that B does not keep any non-trivial A-invariant subspace  $W_I$  invariant. For each non-trivial A-invariant subspace  $W_I$ , we set  $\mathrm{GL}_n(k)_I := \{B \in \mathrm{GL}_n(k) \mid W_I \text{ is not } B\text{-invariant }\}$ . By Proposition 4.9,  $\mathrm{GL}_n(k)_I$  is an open subscheme of  $\mathrm{GL}_n(k)$ . Let us prove the claim that the open subset  $\Phi^{-1}(\mathrm{GL}_n(k)_I) \subseteq \mathrm{GL}_m(k)^\ell$  is not empty for each non-empty proper subset I of  $\{(i,j) \mid 1 \leq i \leq m, 1 \leq j \leq \ell\}$ . If  $\Phi^{-1}(\mathrm{GL}_n(k)_I) \neq \emptyset$  for each I, then  $\cap_I \Phi^{-1}(\mathrm{GL}_n(k)_I) \neq \emptyset$  because  $\mathrm{GL}_m(k)^\ell$  is irreducible. Then by taking  $(B_1, \ldots, B_\ell) \in$ 

 $\cap_I \Phi^{-1}(\mathrm{GL}_n(k)_I)$ , we obtain an irreducible representation  $\rho$ , which completes the proof.

For proving the claim that  $\Phi^{-1}(\operatorname{GL}_n(k)_I) \neq \emptyset$ , take some  $(i_0, j_0) \in I$ . By Lemma 4.7, there exist a basis  $\{v_1, v_2, \ldots, v_m\}$  of  $k^m$  and  $f: k^m \to k^m$  such that  $f(v_i) = \beta_i v_i$   $(1 \leq i \leq m)$  and  $e'_{i_0} = v_1 + \cdots + v_m$ . Here  $\beta_1, \ldots, \beta_m$  are distinct elements in  $k^{\times} \setminus \{\alpha_i \mid 1 \leq i \leq m\}$ . Let  $B_{\ell} \in \operatorname{GL}_m(k)$  be the corresponding matrix to f. Set  $B_1 = B_2 = \cdots = B_{\ell-1} = I_m$  and  $B = \Phi(B_1, \ldots, B_{\ell})$ . For each  $\ell$ -th root  $\eta_{ij}$  of  $\beta_i$   $(1 \leq i \leq m, 1 \leq j \leq \ell)$ , put  $w'_{i,j} := {}^t(\eta_{i,j}^{\ell-1}v_i, \eta_{i,j}^{\ell-2}v_i, \ldots, v_i) \in k^n$ . By Lemma 4.8,  $Bw'_{i,j} = \eta_{i,j}w'_{i,j}$  for each i,j. Since  $\{w'_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq \ell\}$  is a basis of  $k^n$ , we can write  $w_{i_0,j_0} = \sum c_{i,j}w'_{i,j}$  for  $c_{i,j} \in k$ . If  $c_{i,j} \neq 0$  for all i,j, then  $w_{i_0,j_0} \in W_I$  is not contained in any non-trivial B-invariant subspaces by Lemma 4.6. In particular,  $W_I$  is not B-invariant and  $(B_1, \ldots, B_\ell) \in \Phi^{-1}(\operatorname{GL}_n(k)_I)$ , which implies the claim. Hence we only need to show that  $c_{i,j} \neq 0$  for all i,j.

Let us show that  $c_{i,j} \neq 0$ . For each  $1 \leq i \leq m$ , we define the  $\ell$ -dimensional subspace  $U_i := \langle {}^t(v_i, 0, 0, \dots, 0), {}^t(0, v_i, 0, \dots, 0), \dots, {}^t(0, 0, 0, \dots, v_i) \rangle \subset k^n$ . Let  $p_i : k^n = U_1 \oplus \cdots \oplus U_m \to U_i$  be the projection onto  $U_i$ . Since  $U_i = \bigoplus_{1 \leq j \leq \ell} k \cdot w'_{i,j}$ ,

$$p_i(w_{i_0,j_0}) = p_i({}^t(\xi_{i_0,j_0}^{\ell-1}e'_{i_0},\xi_{i_0,j_0}^{\ell-2}e'_{i_0},\ldots,e'_{i_0})) = \sum_{1 < j < \ell} c_{i,j}w'_{i,j}.$$

On the other hand,  $e'_{i_0} = v_1 + \cdots + v_m$  and hence

$${}^{t}(\xi_{i_0,j_0}^{\ell-1}v_i,\xi_{i_0,j_0}^{\ell-2}v_i,\ldots,v_i) = \sum_{1 \le i \le \ell} c_{i,j}w'_{i,j}.$$

Then we have

$$\begin{pmatrix} \eta_{i1}^{\ell-1} & \eta_{i2}^{\ell-1} & \cdots & \eta_{i\ell}^{\ell-1} \\ \eta_{i1}^{\ell-2} & \eta_{i2}^{\ell-2} & \cdots & \eta_{i\ell}^{\ell-2} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} c_{i1} \\ c_{i2} \\ \vdots \\ c_{i\ell} \end{pmatrix} = \begin{pmatrix} \xi_{i_0j_0}^{\ell-1} \\ \xi_{i_0j_0}^{\ell-2} \\ \vdots \\ 1 \end{pmatrix}.$$

By Cramer's rule,

$$c_{ij} = \det \begin{pmatrix} \eta_{i1}^{\ell-1} & \eta_{i2}^{\ell-1} & \cdots & \xi_{i_0,j_0}^{j} & \cdots & \eta_{i\ell}^{\ell-1} \\ \eta_{i1}^{\ell-2} & \eta_{i2}^{\ell-2} & \cdots & \xi_{i_0,j_0}^{\ell-2} & \cdots & \eta_{i\ell}^{\ell-2} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1 & \cdots & 1 \end{pmatrix} \cdot \det \begin{pmatrix} \eta_{i1}^{\ell-1} & \eta_{i2}^{\ell-1} & \cdots & \eta_{i\ell}^{\ell-1} \\ \eta_{i1}^{\ell-2} & \eta_{i2}^{\ell-2} & \cdots & \eta_{i\ell}^{\ell-2} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}^{-1}.$$

The Vandermonde determinant is not 0 because  $\eta_{i,j}$  and  $\xi_{i_0,j_0}$  are distinct. Hence  $c_{ij} \neq 0$ . Therefore we have completed the proof.

Corollary 4.11. If m divides n, then  $r(\wedge^m(n)) = \left[\frac{n-1}{m}\right] + 1 = \frac{n}{m}$ .

*Proof.* If m=1 or n=m, then the statement is trivial. Let  $n>m\geq 2$ . As in the proof of Lemma 4.8, there exists an n-dimensional irreducible representation  $\rho$  of  $F_2$  such that  $\wedge^m \rho$  has a realizable invariant subspace of dimension n/m. Hence we have  $r(\wedge^m(n)) = n/m$  by Proposition 4.4.

By the definition, it is obvious that  $r(\wedge^m(n)) \leq \binom{n}{m}$ . The following proposition gives us a non-trivial upper bound of  $r(\wedge^m(n))$ .

**Proposition 4.12.** For 0 < m < n,  $r(\wedge^m(n)) < n$ .

*Proof.* Let a and b are distinct non-zero elements of a field k. Assume that  $\sharp\{c \in k \mid c^n = a\} = \sharp\{c \in k \mid c^n = b\} = n$ . Let us define an n-dimensional representation  $\rho$  of the free group  $F_2 = \langle \alpha, \beta \rangle$  by

$$\rho(\alpha) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & a \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & b \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

In a similar way as the last part of the proof of Proposition 4.10, we can prove that  $\rho: F_2 \to \operatorname{GL}_n(k)$  is irreducible. Let  $e_1, e_2, \ldots, e_n$  be the canonical basis of  $k^n$ . For 0 < m < n, define an n-dimensional subspace  $W_m$  of  $\wedge^m k^n$  by

$$W_m := \langle e_1 \wedge e_2 \wedge \cdots \wedge e_m, e_2 \wedge e_3 \wedge \cdots \wedge e_{m+1}, \dots, e_n \wedge e_1 \wedge \cdots \wedge e_{m-1} \rangle \subset \wedge^m k^n.$$

Then  $W_m$  is an  $F_2$ -invariant realizable subspace of  $\wedge^m k^n$ . Hence  $r(\wedge^m(n)) \leq \dim W_m = n$ . This completes the proof.

We prepare some basic results on perfect pairings for determining some  $r(\wedge^m(n))$ . In the sequel, by a G-module we understand a finite dimensional left G-module over a field k for a group G. For a G-module W, the dual  $W^*$  is defined as  $W^* := \{f: W \to k \mid k\text{-linear}\}$ , where  $(g \cdot f)(*) := f(g^{-1}*)$  for  $g \in G$  and  $f \in W^*$ . For G-modules W, W', we define the G-module  $W \otimes_k W'$  by  $g \cdot (u \otimes v) := gu \otimes gv$  for  $g \in G$ ,  $u \in W$ , and  $v \in W'$ .

**Lemma 4.13.** Let W, W' be finite dimensional G-modules over a field k. Let L be a one-dimensional G-module. Suppose that  $f: W \times W' \to L$  is a G-equivariant perfect pairing. In other words, the bilinear map f satisfies

- (1) f(u,v) = 0 for all  $v \in W' \Rightarrow u = 0$ ,
- (2) f(u,v) = 0 for all  $u \in W \Rightarrow v = 0$ ,
- (3) f(gu, gv) = g(f(u, v)) for all  $g \in G, u \in W, v \in W'$ .

Then there exists a canonical isomorphism  $W' \cong W^* \otimes_k L$  as G-modules.

*Proof.* Let e be a non-zero vector of L. Let  $\phi_e: k \to L$  be the linear isomorphism defined by  $a \mapsto ae$  for  $a \in k$ . We define the linear map  $\Phi: W' \to W^* \otimes L$  by  $v \mapsto \phi_e^{-1}(f(*,v)) \otimes e$ . Note that the definition of  $\Phi$  is independent from the choice of e. We claim that  $\Phi$  is an isomorphism as G-modules.

First, we show that  $\Phi$  is G-equivariant. Let  $\chi: G \to \operatorname{GL}_1(k)$  be the character associated to L. In other words,  $g \cdot w = \chi(g)w$  for  $g \in G$  and  $w \in L$ . We see that

$$\Phi(gv) = \phi_e^{-1}(f(*,gv)) \otimes e = \phi_e^{-1}(g \cdot (f(g^{-1}*,v))) \otimes e = \phi_e^{-1}(\chi(g)f(g^{-1}*,v)) \otimes e 
= \phi_e^{-1}(f(g^{-1}*,v)) \otimes \chi(g)e = \phi_e^{-1}(f(g^{-1}*,v)) \otimes g \cdot e = g \cdot \Phi(v).$$

Hence  $\Phi$  is G-equivariant.

Next, suppose that  $\Phi(v)=0$ . The assumption implies that f(u,v)=0 for all  $u \in W$ . Because of perfectness, we have v=0. Thus we proved that  $\Phi$  is injective. On the other hand, we see that  $\dim W'=\dim(W^*\otimes L)$ , which implies that  $\Phi$  is surjective. Therefore  $\Phi$  is an isomorphism.

**Corollary 4.14.** Let W, W' be finite dimensional G-modules over a field k. Let L be a one-dimensional G-module. Suppose that a bilinear map  $f: W \times W' \to L$  satisfies:

- (1) f(u, v) = 0 for all  $v \in W' \Rightarrow u = 0$ .
- (2) f(gu, gv) = g(f(u, v)) for all  $g \in G, u \in W, v \in W'$ .

Then there exists a canonical surjection  $W' \to W^* \otimes_k L$  as G-modules.

*Proof.* Let  $W'^{\sharp} := \{v \in W' \mid f(u,v) = 0 \text{ for all } u \in W\}$ . The bilinear map  $f: W \times W' \to L$  induces a G-equivariant perfect pairing  $\overline{f}: W \times (W'/W'^{\sharp}) \to L$ . By Lemma 4.13 we have a canonical isomorphism  $\Phi: (W'/W'^{\sharp}) \cong W^* \otimes L$ . Composing  $\Phi$  and the projection  $W' \to (W'/W'^{\sharp})$ , we have a canonical surjection  $W' \to W^* \otimes_k L$ .  $\square$ 

**Corollary 4.15.** Let W, W' be finite dimensional G-modules over a field k. Let L be a one-dimensional G-module. Let Z be an irreducible G-submodule of W, and let Y be a G-submodule of W'. Suppose that any G-homomorphism  $\phi: Y \to Z^* \otimes L$  is not surjective. If  $f: W \times W' \to L$  is a G-equivariant perfect pairing, then f(z,y) = 0 for all  $z \in Z, y \in Y$ .

Proof. Let  $Y^{\sharp}:=\{y\in Y\mid f(z,y)=0 \text{ for all }z\in Z\}$ . If  $Y^{\sharp}=Y$ , then the statement is true. Suppose that  $Y^{\sharp}\neq Y$ . Then f induces  $\overline{f}:Z\times (Y/Y^{\sharp})\to L$  which has the property that  $\overline{f}(z,\overline{y})=0$  for all  $z\in Z$  implies  $\overline{y}=0$ . By Corollary 4.14, there exists a surjection  $\phi:Z\to (Y/Y^{\sharp})^*\otimes L$ . Since Z is irreducible,  $\phi$  is an isomorphism. Taking  $\phi\otimes L^*$  and the dual, we have  $Z^*\otimes L\cong (Y/Y^{\sharp})$ . Then we obtain a surjection  $Y\to (Y/Y^{\sharp})\cong Z^*\otimes L$ , which is a contradiction. Hence  $Y^{\sharp}=Y$ .  $\square$ 

**Proposition 4.16.** For 0 < m < n,  $r(\wedge^m(n)) = r(\wedge^{n-m}(n))$ .

*Proof.* Let  $\rho: G \to \operatorname{GL}(V)$  be an n-dimensional irreducible representation of a group G. Assume that  $\wedge^m V$  has a G-invariant realizable subspace W of dim d. We claim that  $\wedge^{n-m}(V^*)$  has a G-invariant realizable subspace of dim d. Since  $V^*$  is an n-dimensional irreducible G-module, we see that  $r(\wedge^m(n)) \geq r(\wedge^{n-m}(n))$  from this claim. By Changing m and n-m, we have  $r(\wedge^{n-m}(n)) \geq r(\wedge^m(n))$ , and we can conclude that  $r(\wedge^m(n)) = r(\wedge^{n-m}(n))$ .

Let us prove the claim. Considering the perfect pairing  $\wedge^m V \times \wedge^{n-m} V \to \wedge^n V$ , we have a canonical isomorphism  $\Phi: \wedge^m V \cong (\wedge^{n-m} V)^* \otimes \wedge^n V$  by Lemma 4.13. Let  $e_1, \ldots, e_n$  be a basis of V such that  $e_1 \wedge \cdots \wedge e_m \in W$ . Let  $f_1, \ldots, f_n$  be the dual basis for  $e_1, \ldots, e_n$ . Set  $W' := \Phi(W) \otimes (\wedge^n V)^*$ . Then W' is a d-dimensional G-invariant subspace of  $(\wedge^{n-m} V)^* \otimes \wedge^n V \otimes (\wedge^n V)^* \cong \wedge^{n-m} (V^*)$ . We easily see that W' contains  $(e_1 \wedge \cdots \wedge e_m) \wedge * = f_{m+1} \wedge \cdots \wedge f_n$ . This implies that  $\wedge^{n-m} (V^*)$  has a G-invariant realizable subspace W' of dim d. Therefore we have proved the statement.  $\square$ 

**Remark 4.17.** By the definition,  $r(\wedge^0(n)) = r(\wedge^n(n)) = 1$ . Hence  $r(\wedge^m(n)) = r(\wedge^{n-m}(n))$  for  $0 \le m \le n$ . We see that  $r(\wedge^1(n)) = r(\wedge^{n-1}(n)) = n$  for  $n \ge 2$ . By Proposition 4.12,  $2 \le r(\wedge^m(n)) \le n$  for 0 < m < n. It is not easy to calculate the r-number  $r(\wedge^m(n))$  in general.

**Proposition 4.18.**  $r(\wedge^2(5)) = r(\wedge^3(5)) \ge 4$ .

Proof. Since  $r(\wedge^2(5)) = r(\wedge^3(5))$  by Proposition 4.16, it suffices to prove that  $r(\wedge^2(5)) \geq 4$ . By Proposition 4.4 we have  $r(\wedge^2(5)) \geq 3$ . We claim that  $r(\wedge^2(5)) \neq 3$ . Suppose that there exists a 3-dimensional realizable invariant subspace W of  $\wedge^2 V$  for a 5-dimensional irreducible representation  $\rho: G \to \operatorname{GL}(V)$  of a group G. Since W is realizable, there exists linearly independent vectors  $e_1, e_2 \in V$  such that  $e_1 \wedge e_2 \in W$ . By irreducibility of  $\rho$ , there exists  $g \in G$  such that  $\rho(g)(e_1)$  can not be written as a linear combination of  $\{e_1, e_2\}$ . Similarly, there exists  $g' \in G$  such that  $\rho(g')(e_1)$  can not be written as a linear combination of  $\{e_1, e_2, \rho(g)e_1, \rho(g)e_2\}$ . Put  $v_1 := e_1 \wedge e_2$ ,  $v_2 := \rho(g)e_1 \wedge \rho(g)e_2$ , and  $v_3 := \rho(g')e_1 \wedge \rho(g')e_2$ . Note that  $\{e_1, e_2, \rho(g)e_1, \rho(g')e_1\}$  and  $\{\rho(g)e_1, \rho(g)e_2, \rho(g')e_1\}$  are linearly independent. Then  $v_1 \wedge \rho(g)e_1 \wedge \rho(g')e_1 \neq 0$  and  $v_2 \wedge \rho(g')e_1 \neq 0$ . We easily see that  $v_1, v_2, v_3 \in W$  are linearly independent. Hence  $W = \langle v_1, v_2, v_3 \rangle$ .

We define the subspace  $W \wedge W$  of  $\wedge^4 V$  as the subspace spanned by the vectors  $\{x \wedge y \in \wedge^4 V \mid x, y \in W\}$ . The vector space  $W \wedge W$  can be spanned by the vectors  $v_1 \wedge v_2, v_1 \wedge v_3$ , and  $v_2 \wedge v_3$ . Hence  $W \wedge W$  is a G-invariant subspace of  $\wedge^4 V$  and  $\dim W \wedge W \leq 3$ . Since V is irreducible,  $\wedge^4 V$  is also irreducible. Thus  $W \wedge W = 0$ . Then there exist  $g_1, g_2, g_3 \in G$  such that  $\{e_1, e_2, \rho(g_1)e_1, \rho(g_2)e_1, \rho(g_3)e_1\}$  is linearly independent and  $(e_1 \wedge e_2) \wedge (\rho(g_i)e_1 \wedge \rho(g_i)e_2) = 0$  for  $1 \leq i \leq 3$ . The vector  $\rho(g_i)e_2$  can be written as a linear combination of  $\{e_1, e_2, \rho(g_i)e_1\}$  for each i. So we easily see that  $e_1 \wedge e_2, \rho(g_1)e_1 \wedge \rho(g_1)e_2, \rho(g_2)e_1 \wedge \rho(g_2)e_2$ , and  $\rho(g_3)e_1 \wedge \rho(g_3)e_2$  are linearly independent. Thus dim  $W \geq 4$ . This is a contradiction. Therefore  $r(\wedge^2(5)) \geq 4$ .  $\square$ 

Later we will show that  $r(\wedge^2(5)) = r(\wedge^3(5)) = 4$  in Proposition 5.3.

**Proposition 4.19.**  $r(\wedge^2(6)) = r(\wedge^4(6)) = 3$  and  $r(\wedge^3(6)) = 2$ .

*Proof.* By Corollary 4.11 and Proposition 4.16, we can verify the statement.  $\Box$ 

### 5. Criterion for Thickness

In this section, we discuss criteria for thickness. First, we deal with 4-dimensional representations.

**Proposition 5.1.** Let V be a 4-dimensional vector space over an algebraically closed field k. For a representation  $\rho: G \to \operatorname{GL}(V)$ , the following statements are equivalent:

- (1)  $\rho$  is thick.
- (2)  $\rho$  is 2-thick.
- (3)  $\rho$  is irreducible and the induced representation  $\wedge^2 \rho: G \to \operatorname{GL}(\wedge^2 V)$  has no G-invariant subspace  $W \subset \wedge^2 V$  such that  $2 \leq \dim W \leq 4$ .
- (4)  $\rho$  is irreducible and the induced representation  $\wedge^2 \rho: G \to \operatorname{GL}(\wedge^2 V)$  has no G-invariant subspace  $W \subset \wedge^2 V$  such that  $\dim W = 2$  or 3.

*Proof.* It is trivial that  $(1) \Rightarrow (2)$  and  $(3) \Rightarrow (4)$ . If  $\rho$  is 2-thick, then  $\rho$  is irreducible by Proposition 2.7. Hence by Proposition 2.6,  $\rho$  is m-thick for  $1 \leq m \leq 4$ , which implies that  $(2) \Rightarrow (1)$ . Assume that  $\rho$  satisfies (4). Suppose that  $\wedge^2 \rho$  has a G-invariant subspace  $W \subset \wedge^2 V$  of dim W = 4. Then  $W^{\perp} \subset \wedge^2 V$  is a 2-dimensional G-invariant subspace. This is a contradiction. Hence  $(4) \Rightarrow (3)$ .

Next, we show that  $(2) \Rightarrow (3)$ . Assume that  $\rho$  is 2-thick. By Proposition 2.7,  $\rho$  is irreducible. Suppose that  $\wedge^2 \rho$  has a non-trivial G-invariant subspace  $W \subset \wedge^2 V$  such that  $2 \leq \dim W \leq 4$ . Put  $W_1 := W$  and  $W_2 := W^{\perp} \subset \wedge^2 V$ . Then  $2 \leq \dim W_2 \leq 4$ . By Lemma 4.1,  $W_1$  and  $W_2$  are realizable. Hence it follows from Proposition 2.11 that  $\rho$  is not 2-thick. This is a contradiction. Therefore  $\rho$  satisfies (3) and we have  $(2) \Rightarrow (3)$ .

Finally, we show that  $(3) \Rightarrow (2)$ . Assume that  $\rho$  satisfies (3). Suppose that  $\rho$  is not 2-thick. It follows from Proposition 2.11 that there exist realizable invariant subspaces  $W_1, W_2 \subset \wedge^2 V$  such that  $W_1^{\perp} = W_2$ . By Corollary 4.5 we have dim  $W_1 \geq 2$  and dim  $W_2 \geq 2$ . Hence  $W_1$  is a realizable invariant subspace such that  $2 \leq \dim W_1 \leq 4$ . This is a contradiction. Therefore  $(3) \Rightarrow (2)$ . We have completed the proof.

Next, we deal with 5-dimensional representations.

**Proposition 5.2.** Let V be a 5-dimensional vector space over an algebraically closed field k. For a representation  $\rho: G \to \operatorname{GL}(V)$ , the following are equivalent:

- (1)  $\rho$  is thick.
- (2)  $\rho$  is 2-thick.
- (3)  $\rho$  is irreducible and the induced representation  $\wedge^2 \rho: G \to \operatorname{GL}(\wedge^2 V)$  has no non-trivial G-invariant subspace  $W \subset \wedge^2 V$  with  $4 \leq \dim W \leq 6$ .

*Proof.* It is easy to check that  $(1) \Leftrightarrow (2)$  by Propositions 2.6 and 2.7. Let us show that  $(1) \Rightarrow (3)$ . Assume that  $\rho$  is thick. Then  $\rho$  is irreducible by Proposition 2.7. Suppose that there exists a non-trivial G-invariant subspace  $W \subset \wedge^2 V$  with  $4 \leq \dim W \leq 6$ . Put  $W_1 := W$  and  $W_2 := W^{\perp} \subset \wedge^3 V$ . By Lemma 4.1,  $W_1$  and  $W_2$  are realizable. Hence Proposition 2.11 implies that  $\rho$  is not thick. This is a contradiction. Therefore we see that  $\rho$  satisfies (3) and that  $(1) \Rightarrow (3)$ .

Finally, we show that  $(3) \Rightarrow (2)$ . Assume that  $\rho$  satisfies (3). Suppose that  $\rho$  is not 2-thick. Then by Proposition 2.11 there exist realizable subspaces  $W_1 \subset \wedge^2 V$  and  $W_2 \subset \wedge^3 V$  such that  $W_1^{\perp} = W_2$ . Proposition 4.18 says that dim  $W_1 \geq 4$  and dim  $W_2 \geq 4$ . Hence  $4 \leq \dim W_1 \leq 6$ . This contradicts the assumption. Therefore  $\rho$  is 2-thick.

By using Proposition 5.2, we have the following proposition.

# **Proposition 5.3.** $r(\wedge^2(5)) = r(\wedge^3(5)) = 4$ .

Proof. For a partition  $\lambda = (\lambda_1, \dots, \lambda_n)$  of d, we denote by  $V_{\lambda}$  the irreducible representation of the symmetric group  $S_d$  over  $\mathbb C$  corresponding to  $\lambda$ . Let us consider the 5-dimensional irreducible representations  $V_{(3,2)}$  and  $V_{(2,2,1)}$  of  $S_5$ . By calculating characters, we see that  $\wedge^2 V_{(3,2)} = V_{(3,1,1)} \oplus V_{(2,1,1,1)}$  and  $\wedge^2 V_{(2,2,1)} = V_{(3,1,1)} \oplus V_{(2,1,1,1)}$ . Since dim  $V_{(3,1,1)} = 6$  and dim  $V_{(2,1,1,1)} = 4$ ,  $V_{(3,2)}$  and  $V_{(2,2,1)}$  are not 2-thick by Proposition 5.2. In particular,  $\wedge^2 V_{(3,2)}$  and  $\wedge^2 V_{(2,2,1)}$  have 4-dimensional  $S_5$ -invariant realizable subspaces  $V_{(2,1,1,1)}$ , respectively. This implies that  $r(\wedge^2(5)) = r(\wedge^3(5)) \leq 4$ . Using Proposition 4.18, we have  $r(\wedge^2(5)) = r(\wedge^3(5)) = 4$ .

For  $n \geq 6$ , it is difficult to check whether a given n-dimensional representation is thick or not. In the rest of this section, we show some results on thickness and denseness.

**Lemma 5.4.** Let  $\phi: G \to G'$  be a group homomorphism and  $\rho: G' \to GL(V)$  a finite-dimensional representation of G'. If  $\rho$  is not m-thick, then neither is  $\rho \circ \phi: G \to GL(V)$ .

Proof. Suppose that  $\rho \circ \phi$  is m-thick. Let  $V_1$  and  $V_2$  be subspaces of V such that  $\dim V_1 + \dim V_2 = \dim V$ . Then there exists  $g \in G$  such that  $(\rho \circ \phi)(g)V_1 \oplus V_2 = V$ . Putting  $g' := \phi(g) \in G'$ , we have  $\rho(g')V_1 \oplus V_2 = V$ . This implies m-thickness of  $\rho$ , which is a contradiction. Hence  $\rho \circ \phi$  is not m-thick.

**Proposition 5.5.** Let k be a field. Let  $V := \wedge^2 k^n$  be the exterior of the standard representation  $k^n$  of  $GL_n(k)$  with  $n \geq 4$ . Then V is not (n-1)-thick as a representation of  $GL_n(k)$ .

*Proof.* Let  $e_1, e_2, \ldots, e_n$  be the canonical basis of  $k^n$ . Let  $W := \langle e_1 \wedge e_2, e_1 \wedge e_3, \ldots, e_1 \wedge e_n \rangle \subset \wedge^2 k^n$ . Note that W is expressed as  $e_1 \wedge k^n := \{e_1 \wedge v \mid v \in k^n\}$ . For each  $g \in GL_n(k)$ ,  $gW = \langle ge_1 \wedge ge_2, \ldots, ge_1 \wedge ge_n \rangle = \langle ge_1 \rangle \wedge k^n$ . Put

 $ge_1 = a_1e_1 + a_2e_2 + \cdots + a_ne_n$ . We see that  $ge_1 \wedge e_1 \in gW$  and that  $ge_1 \wedge e_1 = -a_2e_1 \wedge e_2 - \cdots - a_ne_1 \wedge e_n \in W$ . If  $ge_1 \neq a_1e_1$ , then  $0 \neq ge_1 \wedge e_1 \in W \cap gW$ . If  $ge_1 = a_1e_1$ , then  $0 \neq ge_1 \wedge ge_2 = a_1e_1 \wedge ge_2 \in W \cap gW$ . Hence  $W \cap gW \neq 0$ . If we choose a subspace W' of dimension n(n-1)/2 - (n-1) such that  $W' \supset W$ , then  $gW \cap W' \neq 0$  for each  $g \in W$ . Hence V is not (n-1)-thick.  $\square$ 

**Corollary 5.6.** Let  $n \ge 4$ . For any n-dimensional representation V of an arbitrary group G, the exterior representation  $\wedge^2 V$  of G is not (n-1)-thick.

*Proof.* The statement follows from Lemma 5.4 and Proposition 5.5.  $\Box$ 

**Remark 5.7.** Denseness and thickness are independent from absolutely irreducibility. For example, the representation

$$\rho: \mathbb{R} \to \operatorname{GL}(2, \mathbb{R})$$

$$\theta \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is dense and thick, but not absolutely irreducible. Conversely, the representation  $V = \wedge^2 \mathbb{C}^4$  of  $GL(4, \mathbb{C})$  is not thick (and hence not dense) but absolutely irreducible.

The following proposition shows that there are many examples of representations which are not dense.

**Proposition 5.8.** Let  $n \geq 4$ . Let V be an n-dimensional irreducible representation of a group G. Assume that all irreducible representations of G have dimension  $\leq n$ . Then the representation V of G is not dense.

*Proof.* The dimension of  $\wedge^2 V$  is  $\binom{n}{2}(>n)$ . Hence  $\wedge^2 V$  can not be irreducible. This implies that V is not dense.

**Corollary 5.9.** Let G be a finite group. Assume that G has an irreducible representation of dimension n with  $n \geq 4$ . Then G has an irreducible representation which is not dense.

*Proof.* Let n be the maximum of the dimensions of irreducible representations of G. Since G is finite, there exists the maximum n. The assumption implies that  $n \geq 4$ . Let V be an irreducible representation of G of dimension n. The previous proposition shows that V is not dense.

**Remark 5.10.** Let G be a group. Let V be a representation of G of dimension n with  $n \geq 4$ . Then  $\wedge^m V$  is not thick for  $2 \leq m \leq n-2$ . This fact will be proven in [4].

## 6. Examples

In this section, we show several examples of representations for Lie groups. In [4], we will classify thick representations and dense representations for complex simple Lie groups. Here we show another approach to verify thickness and denseness.

6.1. Case:  $G = GL_2(\mathbb{C})$ . Let a and b be integers with  $a \geq 0$ . Let  $V_{(a+b,b)}$  be the irreducible representation of  $G = GL_2(\mathbb{C})$  with highest weight (a+b,b). Set  $\det^b := V_{(b,b)}$  for  $b \in \mathbb{Z}$ . Note that  $V_{(a+b,b)} = \det^b \otimes V_{(a,0)}$  and that  $\dim V_{(a+b,b)} = a+1$ .

**Lemma 6.1.** As representations of  $GL_2(\mathbb{C})$ , we have

$$\wedge^{2} V_{(a+b,b)} = \det^{2b} \otimes \left( \sum_{k=1}^{\left[\frac{a+1}{2}\right]} \det^{2k-1} \otimes V_{(2a-4k+2,0)} \right)$$
$$= \sum_{k=1}^{\left[\frac{a+1}{2}\right]} V_{(2a+2b-2k+1,2b+2k-1)}$$

*Proof.* Comparing characters, we can verify the statement.

Corollary 6.2. For  $a \geq 3$ , the representation  $V_{(a+b,b)}$  is not 2-dense. In particular, it is not dense.

*Proof.* Since  $\left[\frac{a+1}{2}\right] \ge 2$  if  $a \ge 3$ , the representation  $\wedge^2 V_{(a+b,b)}$  is not irreducible by Lemma 6.1. Hence  $V_{(a+b,b)}$  is not 2-dense.

Corollary 6.3. If a = 3 or 4, then the representation  $V_{(a+b,b)}$  is thick.

Proof. When a=3,  $\wedge^2 V_{(b+3,b)}=V_{(2b+5,2b+1)}\oplus V_{(2b+3,2b+3)}$  by Lemma 6.1. Hence  $\wedge^2 V_{(3+b,b)}$  has no  $\operatorname{GL}_2(\mathbb{C})$ -invariant subspace W such that  $2\leq \dim W\leq 4$  because  $\dim V_{(2b+5,2b+1)}=5$  and  $\dim V_{(2b+3,2b+3)}=1$ . By Proposition 5.1, the 4-dimensional representation  $V_{(b+3,b)}$  is thick. When a=4,  $\wedge^2 V_{(b+4,b)}=V_{(2b+7,2b+1)}\oplus V_{(2b+5,2b+3)}$  by Lemma 6.1. Hence  $\wedge^2 V_{(b+4,b)}$  has no  $\operatorname{GL}_2(\mathbb{C})$ -invariant subspace W such that  $4\leq \dim W\leq 6$  because  $\dim V_{(2b+7,2b+1)}=7$  and  $\dim V_{(2b+5,2b+3)}=3$ . By Proposition 5.2, the 5-dimensional representation  $V_{(b+4,b)}$  is thick. □

**Remark 6.4.** When a=1 or 2, the representation  $V_{(a+b,b)}$  is dense. When  $a \ge 3$ , we can verify that  $V_{(a+b,b)}$  is not dense, but thick by the classification of thick representations of simple Lie groups. Indeed, we will see that  $S^m SL_2$  is thick and not dense if  $m \ge 3$  in [4].

6.2. Case:  $G = GL_n(\mathbb{C})$ .

**Proposition 6.5.** Let  $V = \mathbb{C}^n$  be the standard representation of  $GL_n(\mathbb{C})$ . Then V is dense.

*Proof.* This assertion follows from the irreducibility of  $\wedge^i V$  for  $1 \leq i \leq n-1$ .  $\square$ 

For the standard representation  $V = \mathbb{C}^n$  of  $GL_n(\mathbb{C})$ , let us discuss thickness and denseness of  $S^2V$  and  $\wedge^2V$ .

**Lemma 6.6.** Put  $P_n(x) = \prod_{i=1}^n (1+x^i) = (1+x)(1+x^2) \cdots (1+x^n)$ . Let  $a_i$  be the coefficient of  $x^i$  in  $P_n(x)$ . Then if  $n \geq 3$ , then  $a_i \geq 1$  for any  $0 \leq i \leq \frac{n(n+1)}{2}$  and  $a_i \geq 2$  for any  $3 \leq i \leq \frac{n(n+1)}{2} - 3$ .

*Proof.* Let us prove the statement by induction on n. When n=3,  $P_3(x)=1+x+x^2+2x^3+x^4+x^5+x^6$  and hence the statement holds. Suppose that the statement is true for n. Since

$$P_{n+1}(x) = P_n(x)(1+x^{n+1})$$

$$= a_0 + a_1x + a_2x^2 + \dots + a_nx^n + (a_{n+1} + a_0)x^{n+1} + (a_{n+2} + a_1)x^{n+2}$$

$$+ \dots + (a_{n(n+1)/2} + a_{(n+1)(n-2)/2})x^{n(n+1)/2} + a_{n(n-1)/2}x^{(n^2+n+2)/2}$$

$$+ \dots + a_{n(n+1)/2}x^{(n+1)(n+2)/2},$$

the statement is also true for n+1. This completes the proof.

**Proposition 6.7.** Let  $V = \mathbb{C}^n$  be the standard representation of  $GL_n(\mathbb{C})$   $(n \geq 3)$ . Then the second symmetric tensor  $S^2V$  is irreducible, but not m-thick for  $3 \leq m \leq \frac{n(n+1)}{2} - 3$ .

Proof. It is well-known that  $S^2V$  is irreducible. By [1, Theorem 4.4.2], the number of irreducible components of  $\wedge^m(S^2V)$  is equal to the number of partitions of m into distinct parts of size at most n. This number is equal to the coefficient  $a_m$  of  $x^m$  in  $P_n(x)$  in Lemma 6.6. Since  $a_m \geq 2$  by Lemma 6.6,  $\wedge^m(S^2V)$  is not irreducible for any  $3 \leq m \leq \frac{n(n+1)}{2} - 3$ . We see that irreducible components of  $\wedge^m(S^2V)$  are all realizable by the proof of [1, Theorem 4.4.2]. Hence Proposition 2.11 implies that  $\wedge^m(S^2V)$  is not m-thick for any  $3 \leq m \leq \frac{n(n+1)}{2} - 3$ .

Proposition 5.5 shows that  $\wedge^2 \mathbb{C}^n$  is not (n-1)-thick for the standard representation  $\mathbb{C}^n$  of  $\mathrm{GL}_n(\mathbb{C})$  for  $n \geq 4$ . Moreover, we have the following proposition.

**Proposition 6.8.** Let  $V = \mathbb{C}^n$  be the standard representation of  $GL_n(\mathbb{C})$   $(n \geq 4)$ . Then the second alternating tensor  $\wedge^2 V$  is irreducible, but not m-thick for  $3 \leq m \leq \frac{n(n-1)}{2} - 3$ .

Proof. It is well-known that  $\wedge^2 V$  is irreducible. By [1, Theorem 4.4.4], the number of irreducible components of  $\wedge^m(\wedge^2 V)$  is equal to the the number of partitions of m into distinct parts of size at most n-1. This number is equal to the coefficient  $a_m$  of  $x^m$  in  $P_{n-1}(x)$  in Lemma 6.6. Since  $a_m \geq 2$  by Lemma 6.6,  $\wedge^m(\wedge^2 V)$  is not irreducible for any  $3 \leq m \leq \frac{n(n-1)}{2} - 3$ . We see that irreducible components of  $\wedge^m(\wedge^2 V)$  are all realizable by the proof of [1, Theorem 4.4.4]. Hence Proposition 2.11 implies that  $\wedge^m(\wedge^2 V)$  is not m-thick for any  $3 \leq m \leq \frac{n(n-1)}{2} - 3$ .

Then from Propositions 6.7 and 6.8, we have the following corollary.

**Corollary 6.9.** Let  $V = \mathbb{C}^n$  be an n-dimensional representation of any group G. If  $n \geq 3$ , then the second symmetric tensor  $S^2V$  is not thick. If  $n \geq 4$ , then the second alternating tensor  $\wedge^2V$  is not thick.

*Proof.* Using Lemma 5.4, we can prove the statement (the latter part has been proved in Corollary 5.6).  $\Box$ 

6.3. Case:  $G = SO_n(\mathbb{C})$ .

**Proposition 6.10.** Let V be the standard representation of  $G = SO_{2n}(\mathbb{C})$ . Then V is m-dense for each 0 < m < 2n with  $m \neq n$ , but not n-thick.

*Proof.* The first assertion follows from the irreducibility of  $\wedge^i V$  for  $1 \leq i \leq n-1$ . The proof of [2, Theorem 19.2] shows that the *n*-th alternating tensor  $\wedge^n V$  has exactly two irreducible factors and they are realizable. Then by Proposition 2.11 the representation V is not n-thick.

**Proposition 6.11.** Let V be the standard representation of  $G = SO_{2n+1}(\mathbb{C})$ . Then V is dense.

*Proof.* The m-th alternating tensor  $\wedge^m V$  is irreducible for each 0 < m < 2n + 1 (for example, see [2, Theorem 19.14]). This implies the statement.

6.4. Case:  $G = \operatorname{Sp}_{2n}(\mathbb{C})$ . Let V be a 2n-dimensional complex vector space,  $\{e_1, e_2, \ldots, e_{2n}\}$  a basis for V, and  $\{e_1^*, e_2^*, \ldots, e_{2n}^*\}$  its dual basis for the dual vector space  $V^*$ . We

use a non-degenerate skew-symmetric bilinear form  $\omega = \sum_{i=1}^{n} e_i^* \wedge e_{n+i}^*$  and the corre-

sponding symplectic Lie group  $\mathrm{Sp}_{2n}(\mathbb{C})$ . Then we have a contraction map by  $\omega$ :

$$f_m: \wedge^m V \to \wedge^{m-2} V.$$

If  $m \leq n$ ,  $\operatorname{Ker} f_m$  is the m-th fundamental representation of  $\operatorname{Sp}_{2n}(\mathbb{C})$ . We have the isotropic Grassmann variety of isotropic subspaces of dimension m as a unique minimal closed orbit in the projective space  $\mathbf{P}(\operatorname{Ker} f_m)$ . Since  $\operatorname{Ker} f_m$  contains  $\wedge^m L$  for any isotropic m-dimension subspace  $L \subset V$ ,  $\operatorname{Ker} f_m$  is realizable. For details see [2].

The following lemma is well-known.

**Lemma 6.12.** Let  $(V, \omega)$  be a 2n-dimensional symplectic vector space and  $W \subset V$  a subspace. Then there is a basis  $\{v_1, v_2, \ldots, v_{2n}\}$  of V such that  $\omega(v_i, v_{n+i}) = 1$ ,  $\omega(v_i, v_j) = 0$  if  $j \neq i \pm n$ , and for some non-negative integers l, k

$$W = \langle v_1, \dots, v_k, v_{k+1}, \dots, v_{n-l}, v_{n+1}, \dots, v_{n+k} \rangle.$$

**Lemma 6.13.** Let  $(V, \omega)$  be a 2n-dimensional symplectic vector space and  $W \subset V$  a subspace of codimension i  $(i \leq n)$ . Then there is a Lagrangian subspace  $L \subset V$  such that L + W = V.

*Proof.* It is enough to prove the case of i = n. By Lemma 6.12, there is a symplectic basis  $\{v_1, v_2, \ldots, v_{2n}\}$  of V such that for some non-negative integers  $k \leq \frac{n}{2}$ 

$$W = \langle v_1, \dots, v_k, v_{k+1}, \dots, v_{n-k}, v_{n+1}, \dots, v_{n+k} \rangle.$$

In the case of k = 0,  $W = \langle v_1, \dots, v_n \rangle$ . Then  $L = \langle v_{n+1}, \dots, v_{2n} \rangle$  satisfies the condition L + W = V. In the case of  $1 \le k \le \frac{n}{2}$ , we put as following,

$$L = \langle v_{n+k+1}, \dots, v_{n+k+i}, \dots, v_{2n-k}, \rangle$$

$$v_{n-k+1} + v_{n+1}, \dots, v_{n-k+i} + v_{n+i}, \dots, v_n + v_{n+k},$$
  
 $v_{2n-k+1} + v_1, \dots, v_{2n-k+i} + v_i, \dots, v_{2n} + v_k \rangle.$ 

Then L is a Lagrangian subspace and satisfies the condition L + W = V.

**Lemma 6.14.** Let  $(V, \omega)$  be a 2n-dimensional symplectic vector space and  $W \subset V$  a subspace of codimension i  $(i \leq n)$ . Then there is an isotropic subspace  $U \subset V$  of dimension i such that  $U \cap W = \{0\}$ .

*Proof.* By Lemma 6.13, there is a Lagrangian subspace  $L \subset V$  such that L+W=V. Since the dimension of  $L \cap W$  is n-i, there is a subspace  $U \subset L$  such that the dimension of U is i and  $U \cap W = \{0\}$ . Since U is a subspace of a Lagrangian subspace L, U is an isotropic subspace.

Then we have the following proposition.

**Proposition 6.15.** Let  $(V, \omega)$  be the standard representation of  $\operatorname{Sp}_{2n}(\mathbb{C})$ . For each  $1 < m \le n$ ,  $(\operatorname{Ker} f_m)^{\perp} \subset \wedge^{2n-m} V$  is not realizable.

Proof. If  $(\operatorname{Ker} f_m)^{\perp}$  is realizable, there is a subspace  $W \subset V$  of codimension m such that  $\wedge^{2n-m}W \in (\operatorname{Ker} f_m)^{\perp}$ . Then by Lemma 6.14 we have an isotropic subspace  $U \subset V$  of dimension m such that  $U \cap W = \{0\}$ . Because  $\operatorname{Ker} f_m$  contains  $\wedge^m L$  for any isotropic subspace  $L \subset V$  of dimension m, we have  $\wedge^m U \in \operatorname{Ker} f_m$ . But we have  $(\wedge^{2n-m}W) \wedge (\wedge^m U) \neq 0$ . This is a contradiction.

By the  $\mathrm{SL}_{2n}(\mathbb{C})$ -equivariant canonical pairing  $\wedge^{2n-k}V \times \wedge^k V \to \wedge^{2n}V \cong \mathbb{C}$ , we have the  $\mathrm{SL}_{2n}(\mathbb{C})$ -equivariant isomorphism

$$\wedge^{2n-k}V \to (\wedge^k V)^* \cong \wedge^k V^*.$$

Moreover by the correspondence  $e_{i_1}^* \wedge \cdots \wedge e_{i_k}^* \mapsto e_{i_1} \wedge \cdots \wedge e_{i_k}$  we have the isomorphism  $\wedge^k V^* \to \wedge^k V$  as vector spaces. The difference between these vector spaces as  $\mathrm{SL}_{2n}(\mathbb{C})$ -modules is described by the outer automorphism

$$\sigma : \operatorname{SL}_{2n}(\mathbb{C}) \to \operatorname{SL}_{2n}(\mathbb{C})$$
$$g \mapsto {}^{t}g^{-1}.$$

Then we obtain the isomorphism  $\phi$  as  $\mathrm{SL}_{2n}(\mathbb{C})$ -modules up to the outer automorphism  $\sigma$ , that is,

$$\phi: \wedge^{2n-k}V \to (\wedge^k V)^* \cong \wedge^k V^* \to \wedge^k V.$$

Thereby  $\phi$  induces the isomorphism  $\overline{\phi}$  as follows:

$$\overline{\phi}: \mathbb{P}(\wedge^{2n-k}V) \to \mathbb{P}(\wedge^kV)$$
 $\cup \qquad \cup$ 
 $\operatorname{Gr}(2n-k,V) \cong \operatorname{Gr}(k,V).$ 

Since  $\sigma(\operatorname{Sp}_{2n}(\mathbb{C})) = \operatorname{Sp}_{2n}(\mathbb{C})$  and  $\sigma$  is an inner automorphism of  $\operatorname{Sp}_{2n}(\mathbb{C})$ ,  $\phi$  gives an isomorphism between  $\wedge^{2n-k}V$  and  $\wedge^kV$  as  $\mathrm{Sp}_{2n}(\mathbb{C})$ -modules. When we consider  $\wedge^k V$  as a  $\operatorname{Sp}_{2n}(\mathbb{C})$ -module, it is well-known that each irreducible representation of  $\mathrm{Sp}_{2n}(\mathbb{C})$  occurs at most once in an irreducible decomposition of  $\wedge^k V$  (see [2, Chap.17]). Then we have several irreducible  $\mathrm{Sp}_{2n}(\mathbb{C})$ -invariant subspaces  $\{W_i\}_{i=1,\dots,s}$ in  $\wedge^k V$  such that we have a unique irreducible decomposition  $\wedge^k V = W_1 \oplus W_2 \oplus W_3 \oplus W_4 \oplus W_4$  $\cdots \oplus W_s$ , and  $W_i \cong W_i$  if and only if i = j. Since there exists some number i such that  $W_i = \operatorname{Ker} f_k$ , from now we put  $W_1 = \operatorname{Ker} f_k$ . Therefore under the isomorphism  $\phi$  we can obtain the unique irreducible decomposition of  $\wedge^{2n-k}V$ . Namely if we put  $W_i' := \phi^{-1}(W_i), \ \{W_i'\}_{i=1,\dots,s} \text{ are } \operatorname{Sp}_{2n}(\mathbb{C})\text{-invariant subspaces in } \wedge^{2n-k}V \text{ such that}$ we have the unique irreducible decomposition  $\wedge^{2n-k}V = W_1' \oplus W_2' \oplus \cdots \oplus W_s'$ , and  $W'_i \cong W'_i$  if and only if i = j. By the above construction we have the following lemma.

**Lemma 6.16.** For any subset  $\{j_1,\ldots,j_l\}\subset\{1,2,\ldots,s\}$ , the subset  $\mathbb{P}(W_{j_1}\oplus\cdots\oplus$  $W_{j_l}$ )  $\cap$  Gr(k, V) is empty if and only if the subset  $\mathbb{P}(W'_{j_1} \oplus \cdots \oplus W'_{j_l}) \cap Gr(2n-k, V)$ is empty.

**Proposition 6.17.** For any subset  $\{j_1,\ldots,j_l\}\subset\{1,2,\ldots,s\}$ , the following are

- (1)  $W_{j_1} \oplus \cdots \oplus W_{j_l}$  is a realizable subspace of  $\wedge^k V$ . (2)  $W'_{j_1} \oplus \cdots \oplus W'_{j_l}$  is a realizable subspace of  $\wedge^{2n-k} V$ .
- (3) There is some  $m \in \{1, ..., l\}$  such that  $j_m = 1$ .

*Proof.* Lemma 6.16 shows that (1) and (2) are equivalent. Note that  $W^* \cong W$ for any  $\operatorname{Sp}_{2n}(\mathbb{C})$ -modules W. For the perfect paring  $\wedge^k V \times \wedge^{2n-k} V \to \wedge^{2n} V \cong k$ , we see that  $(\operatorname{Ker} f_k)^{\perp} = W_2' \oplus W_3' \oplus \cdots \oplus W_s'$ . Indeed, any  $\operatorname{Sp}_{2n}(\mathbb{C})$ -homomorphism  $\phi: W_1 = \operatorname{Ker} f_k \to (W_2' \oplus W_3' \oplus \cdots \oplus W_s')^* \cong W_2' \oplus W_3' \oplus \cdots \oplus W_s'$  is zero. By Corollary 4.15, we have  $(\operatorname{Ker} f_k)^{\perp} \supseteq W_2' \oplus W_3' \oplus \cdots \oplus W_s'$ . Since  $W_1' \cong W_1$  is irreducible,  $(\operatorname{Ker} f_k)^{\perp} = W_2' \oplus W_3' \oplus \cdots \oplus W_s'$ . Then Proposition 6.15 shows that (2) and (3) are equivalent.

Then we have the following proposition.

**Proposition 6.18.** The standard representation of  $Sp_{2n}(\mathbb{C})$  is thick, but not mdense for each 1 < m < 2n - 1.

*Proof.* Since each irreducible representation occurs at most once in  $\wedge^k V$ , for any invariant subspace  $U \subset \wedge^k V$  there is a subset  $\{i_1, \ldots, i_{\alpha}\} \subset \{1, 2, \ldots, s\}$  such that  $U = W_{i_1} \oplus \cdots \oplus W_{i_{\alpha}}$ . Similarly for  $U^{\perp}$  there is a subset  $\{j_1, \ldots, j_{\beta}\} \subset \{1, 2, \ldots, s\}$ 

such that  $U^{\perp} = W'_{j_1} \oplus \cdots \oplus W'_{j_{\beta}}$ . Since  $(\operatorname{Ker} f_k)^{\perp} = W'_2 \oplus W'_3 \oplus \cdots \oplus W'_s$ ,  $1 \in \{i_1, \ldots, i_{\alpha}\}$  if and only if  $1 \notin \{j_1, \ldots, j_{\beta}\}$ . By Proposition 6.17, it is impossible that both U and  $U^{\perp}$  are realizable. This implies that V is thick. Since it is well-known that  $\wedge^m V$  is not irreducible for each 1 < m < 2n - 1, V is not m-dense for 1 < m < 2n - 1.  $\square$ 

#### References

- [1] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Piatetski-Shapiro, Ilya (ed.) et al., The Schur lectures (1992), Ramat-Gan: Bar-Ilan University, Isr. Math. Conf. Proc. 8, (1995) 1-182.
- [2] W. Fulton, J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, vol.129, Springer-Verlag (1991).
- [3] K. Nakamoto. Representation varieties and character varieties. Publ. Res. Inst. Math. **36** (2000), no. 2, 159–189.
- [4] K. Nakamoto and Y. Omoda. The classification of thick representations of simple Lie groups. In preparation.

CENTER FOR MEDICAL EDUCATION AND SCIENCES, FACULTY OF MEDICINE, UNIVERSITY OF YAMANASHI

E-mail address: nakamoto@yamanashi.ac.jp

DEPARTMENT OF ARTS AND SCIENCE, AKASHI NATIONAL COLLEGE OF TECHNOLOGY E-mail address: omoda@akashi.ac.jp