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THICK REPRESENTATIONS AND DENSE REPRESENTATIONS I

KAZUNORI NAKAMOTO AND YASUHIRO OMODA

Abstract. We introduce special classes of irreducible representations of groups:
thick representations and dense representations. Denseness implies thickness, and
thickness implies irreducibility. We show that absolute thickness and absolute
denseness are open conditions for representations. Thereby, we can construct the
moduli schemes of absolutely thick representations and absolutely dense represen-
tations. We also describe several results and several examples on thick represen-
tations for developing a theory of thick representations.

1. Introduction

We deal with special classes of irreducible representations of groups. First, we
introduce the notion of thick representations. Let G be a group. Let V be an n-
dimensional vector space over a field k. We say that a representation ρ : G→ GL(V )
is m-thick if for any subspaces V1 and V2 of V with dimV1 = m and dimV2 = n−m
there exists g ∈ G such that (ρ(g)V1) ⊕ V2 = V . We also say that a representation
ρ : G→ GL(V ) is thick if ρ is m-thick for each 0 < m < n (Definition 2.1).

It may be expected that any irreducible representation is thick. Indeed, each
irreducible representation of dimension at most 3 is thick. However, it is not true
for the case of dimension n for n ≥ 4. For example, the standard 4-dimensional
representation C

4 of SO4(C) is not thick (Proposition 6.10). Hence it is a natural
question when irreducible representations of dimension n for n ≥ 4 are thick.

Next, we introduce another type of irreducible representations. We say that a
representation ρ : G → GL(V ) is m-dense if the induced representation (∧mρ) :
G → GL(∧mV ) is irreducible. We also say that a representation ρ : G → GL(V )
is dense if ρ is m-dense for each 0 < m < n (Definition 2.3). We can prove that
denseness implies thickness and that thickness implies irreducibility (Corollary 2.8).
For example, the standard representation Cn of GLn(C) is dense, and hence thick.

The reason why we call such irreducible representations “thick” or “dense” is
because the image of ρ : G → GL(V ) is thick or dense in GL(V ), respectively. We
imagine that if the image ρ(G) gets larger in GL(V ), then ρ may become thick or
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dense. Our purpose is to develop a theory of thick representations. Thickness is a
simple, natural and essential concept in representation theory. In the case of finite-
dimensional representations of complex simple Lie groups, thick representations are
equivalent to weight multiplicity free representations whose weight poset is a totally
ordered set ([4, Theorem 1.1]). By this result, we will classify thick representations
for complex simple Lie groups in [4]. This is one of the characterization of weight
multiplicity free representations whose weight poset is a totally ordered set.

We will divide “Thick representations and dense representations” into two parts:
Part I and Part II, because it will be long. In Part I, we introduce thickness,
denseness, realizable subspaces, and other notions on irreducible representations. We
show basic results on thick representations and dense representations. For describing
thickness, we introduce “realizable subspaces”. We say that a subspace W of ∧mV
is realizable if there exist v1, v2, . . . , vm ∈ V such that 0 6= v1 ∧ v2 ∧ · · · ∧ vm ∈
W (Definition 2.10). The notion of realizable subspaces is essential for describing
criteria of thickness and the moduli of absolutely thick representations. Roughly
speaking, thickness lives not in the world that linear algebra controls, but in the
world that Grassmann algebra (or variety) controls. “Realizable subspaces” is one
of keyphrases in Grassmann algebra.

The main theorem of Part I is the following:

Theorem 1.1 (Theorem 3.9). Let Repn(G) be the representation variety of degree
n for a group G over Z. For 0 < m < n, the absolutely m-thick representations in
Repn(G) form an open subscheme of Repn(G). In particular, the absolutely thick
representations in Repn(G) form an open subscheme of Repn(G).

Here we say that a representation ρ : G → GL(V ) is absolutely m-thick (resp.
absolutely thick) if ρ⊗k k : G→ GL(V ⊗k k) is m-thick (resp. thick) for an algebraic
closure k of k. As a corollary of the main theorem, we can construct the moduli of
absolutely thick representations (Theorems 3.10).

In Part II, we will introduce (i, j)-thickness, (i, j)-denseness, and m-irreducibility
as generalizations of m-thickness, m-denseness, and irreducibility, respectively. We
will also describe the moduli of 4-dimensional non-thick absolutely irreducible rep-
resentations of the free group F2 of rank 2.

The organization of this article is as follows: In §2, we introduce the notions
of thickness and denseness. We describe fundamental properties of thickness and
denseness, and a criterion for thickness. In §3, we state the main theorem and
prove the existence of the moduli schemes of absolutely thick representations and of
absolutely dense representations. In §4, we investigate several results on realizable
subspaces. We define the r-number r(∧m(n)) and calculate them for small m and n.
In §5, we describe useful criteria for thickness of 4-dimensional and 5-dimensional
representations. In §6, we introduce several examples of thick representations and
dense representations for Lie groups.
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The authors would like to express their gratitude to the referee for suggesting
several important points. The referee suggested Remarks 4.12 and 5.4, Proposition
5.8, and so on.

2. m-thickness and m-denseness

In this section, we introduce thickness and denseness. We describe fundamental
properties of thickness and denseness, and a criterion for thickness. Proposition 2.11
is useful for verifying thickness of representations.

Definition 2.1. Let G be a group. Let V be an n-dimensional vector space over a
field k. We say that a representation ρ : G→ GL(V ) is m-thick if for any subspaces
V1 and V2 of V with dimV1 = m and dimV2 = n − m there exists g ∈ G such
that (ρ(g)V1) ⊕ V2 = V (or equivalently, (ρ(g)V1) ∩ V2 = {0}). We also say that a
representation ρ : G→ GL(V ) is thick if ρ is m-thick for each 0 < m < n.

Remark 2.2. From the definition, any n-dimensional representations ρ are always
0-thick and n-thick. In particular, ρ is thick if and only if ρ is m-thick for each
0 ≤ m ≤ n.

Definition 2.3. Let G be a group. Let V be an n-dimensional vector space over a
field k. We say that a representation ρ : G→ GL(V ) is m-dense if the induced rep-
resentation (∧mρ) : G→ GL(∧mV ) is irreducible. We also say that a representation
ρ : G→ GL(V ) is dense if ρ is m-dense for each 0 < m < n.

Remark 2.4. For an n-dimensional representation ρ : G → GL(V ) over a field k,
ρ is always 0-dense and n-dense because ∧0V ∼= k and ∧nV ∼= k. In particular, ρ is
dense if and only if ρ is m-dense for each 0 ≤ m ≤ n.

Lemma 2.5. Let ρ : G → GL(V ) be an n-dimensional representation of a group
G. For positive integers i and j with i + j = n, let us consider the G-equivariant

perfect pairing ∧iV ⊗∧jV
∧

−→ ∧nV ∼= k. For a G-invariant subspace W of ∧iV , put
W⊥ := {y ∈ ∧jV | x ∧ y = 0 for any x ∈ W}. Then W⊥ is a G-invariant subspace
of ∧jV . In particular, ∧iV is irreducible if and only if so is ∧jV .

Proof. For y ∈ W⊥, we have x ∧ gy = g(g−1x ∧ y) = 0 for x ∈ W and g ∈ G.
Hence W⊥ is G-invariant. The correspondence W 7→ W⊥ gives a bijection between
the G-invariant subspaces of ∧iV and ∧jV . Therefore ∧iV is irreducible if and only
if so is ∧jV . �

Proposition 2.6. Let ρ : G → GL(V ) be an n-dimensional representation of a
group G. For each 0 < m < n, ρ is m-thick (resp. m-dense) if and only if ρ is
(n−m)-thick (resp. (n−m)-dense).

Proof. It is obvious that m-thickness and (n − m)-thickness are equivalent. By
using Lemma 2.5, we see thatm-denseness and (n−m)-denseness are equivalent. �
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Proposition 2.7. For any n-dimensional representations ρ : G → GL(V ), the
following implications hold for 0 < m < n:

m-dense =⇒ m-thick
⇓

1-dense ⇐⇒ 1-thick ⇐⇒ irreducible.
(1)

Proof. It suffices to prove “m-dense ⇒ m-thick”, “irreducible ⇒ 1-dense”, and
“m-thick ⇒ irreducible”. First, we show “m-dense ⇒ m-thick”. Assume that
ρ : G→ GL(V ) ism-dense. Let V1 and V2 be vector subspaces of V with dim V1 = m
and dimV2 = n−m. The canonical homomorphism ∧mV ⊗ ∧n−mV → ∧nV ∼= k is
a perfect pairing and G-equivariant. Let us take a basis {e1, e2, . . . , em} of V1 and
a basis of {f1, f2, . . . , fn−m} of V2. Because of irreducibility of ∧mV , the vectors
{(∧mρ)(g)(e1 ∧ e2 ∧ · · · ∧ em) | g ∈ G} span the vector space ∧mV . Hence there
exists g ∈ G such that (∧mρ)(g)(e1∧ e2 ∧ · · · ∧ em)∧ (f1 ∧ f2 ∧ · · · ∧ fn−m) 6= 0. This
implies that (ρ(g)V1)⊕ V2 = V . Therefore ρ is m-thick.

Next, we show “irreducible ⇒ 1-dense”. This follows easily from the definition.
Finally, we show “m-thick ⇒ irreducible”. Assume that ρ is not irreducible. There
exists a non-trivial G-invariant subspace V ′ of V . Set ℓ := dimV ′. Then we only
need to choose suitable subspaces V1, V2 of V such that dimV1 = m, dimV2 = n−m
and (ρ(g)V1)+V2 6= V for any g ∈ G. This implies ρ is not m-thick, which completes
the proof. For the proof, we consider the following three cases: ℓ ≤ min(m,n−m),
ℓ ≥ max(m,n−m), and min(m,n−m) < ℓ < max(m,n−m). If ℓ ≤ min(m,n−m),
then let us take subspaces V1, V2 of V such that V ′ ⊆ V1 and V ′ ⊆ V2. Since
ρ(g)V1 ⊇ ρ(g)V ′ = V ′ and V2 ⊇ V ′, (ρ(g)V1) ∩ V2 ⊇ V ′ 6= 0 for each g ∈ G.
In this case, (ρ(g)V1) + V2 6= V for any g ∈ G, and hence ρ can not be m-thick.
If ℓ ≥ max(m,n − m), then let us take subspaces V1, V2 of V such that V1 ⊆ V ′

and V2 ⊆ V ′. Since (ρ(g)V1) + V2 ⊆ V ′ 6= V , ρ is not m-thick. In the case
min(m,n − m) < ℓ < max(m,n − m), we may assume that n − m ≥ m because
m-thickness and (n−m)-thickness are equivalent. Then let us take subspaces V1, V2
of V such that V1 ⊆ V ′ ⊆ V2. Since ρ(g)V1 ⊆ V ′ ⊆ V2, (ρ(g)V1) ∩ V2 = ρ(g)V1 6= 0.
Hence (ρ(g)V1) + V2 6= V for each g ∈ G, which implies ρ is not m-thick. �

Corollary 2.8. For any finite-dimensional representation of a group G, the follow-
ing implications hold:

dense ⇒ thick ⇒ irreducible.(2)

Corollary 2.9. Assume that dimV ≤ 3. Then for a representation ρ : G→ GL(V ),
the following implications hold:

dense ⇔ thick ⇔ irreducible.(3)

Proof. The statement follows from that the three conditions above are equivalent
to 1-dense (1-thick, or irreducible) when dimV ≤ 3. ✷
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Now we consider a criterion for a representation to bem-thick. This criterion ofm-
thickness will be used for describing the moduli of absolutely thick representations.
Before introducing it, we need the following definition.

Definition 2.10. Let V be a finite-dimensional vector space over a field k. For
a vector subspace W ⊆ ∧mV , we say that W is realizable over k if there exist
v1, v2, . . . , vm ∈ V such that 0 6= v1 ∧ v2 ∧ · · · ∧ vm ∈ W . For an m-dimensional
subspace V ′ of V with 0 < m < n, we can consider a point [∧mV ′] ∈ P∗(∧

mV ).
In the sequel, we identify [∧mV ′] with a non-zero vector ∧mV ′ ∈ ∧mV (which is
determined by [∧mV ′] up to scalar) for simplicity. It is obvious that W is realizable
if and only if W contains a non-zero vector ∧mV ′ obtained by an m-dimensional
subspace V ′ of V over k.

The following proposition gives a criterion of m-thickness.

Proposition 2.11. Let ρ : G → GL(V ) be an n-dimensional representation of a
group G. For 0 < m < n, ρ is not m-thick if and only if there exist G-invariant
realizable vector subspaces W1 ⊂ ∧mV and W2 ⊂ ∧n−mV such that W⊥

1 = W2.

Proof. Suppose that ρ is not m-thick. Then there exist vector subspaces V1, V2
of V with dimV1 = m and dimV2 = n − m such that (ρ(g)V1) + V2 6= V for any
g ∈ G. Let us consider the vector ∧mV1 ∈ ∧mV determined by V1 up to scalar
multiplication. The condition implies that vectors {(∧mρ)(g)(∧mV1) | g ∈ G} span
a non-trivial G-invariant subspace W1 ⊂ ∧mV . Of course, W1 is realizable. Set
W2 := W⊥

1 ⊂ ∧n−mV . Note that ∧n−mV2 ∈ W2. The subspace W2 is a non-trivial
G-invariant realizable subspace. Hence we have proved the “only if” part.

Conversely, suppose that there exist G-invariant realizable vector subspaces W1 ⊆
∧mV and W2 ⊆ ∧n−mV such that W⊥

1 = W2. Since W1 and W2 are realizable, there
exist an m-dimensional subspace V1 ⊆ V and an (n − m)-dimensional subspace
V2 ⊆ V such that ∧mV1 ∈ W1 and ∧n−mV2 ∈ W2. For each g ∈ G, the vector
(∧mρ)(g)(∧mV1) is contained in W1, and hence (∧mρ)(g)(∧mV1) ∧ (∧n−mV2) = 0.
This implies that (ρ(g)V1) + V2 6= V for each g ∈ G. Therefore ρ is not m-thick. ✷

Remark 2.12. Furthermore, we also see that ρ is notm-thick if and only if there ex-
ist a non-zeroG-invariant realizable subspaceW1 ⊂ ∧mV and an (n−m)-dimensional
subspace V ′ of V such that ∧n−mV ′ ∈ W⊥

1 .

Let us define absolute thickness and absolute denseness. We will construct the
moduli spaces of absolutely thick representations and absolutely dense representa-
tions in the next section.

Definition 2.13. Let G be a group. Let V be an n-dimensional vector space over
a field k. We say that a representation ρ : G → GL(V ) is absolutely m-thick if
ρ⊗ k : G→ GL(V ⊗ k) is m-thick, where k is an algebraic closure of k. We also say
that ρ is absolutely thick if ρ is absolutely m-thick for each 0 < m < n.
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Definition 2.14. Let G be a group. Let V be an n-dimensional vector space over
a field k. We say that a representation ρ : G → GL(V ) is absolutely m-dense if
ρ ⊗ k : G → GL(V ⊗ k) is m-dense, where k is an algebraic closure of k. We also
say that ρ is absolutely dense if ρ is absolutely m-dense for each 0 < m < n.

Remark 2.15. Let K be an extension field of k. If ρ ⊗k K : G → GL(V ⊗k K) is
m-thick (resp. m-dense), then ρ is also m-thick (resp. m-dense). In particular, if ρ
is absolutely m-thick (resp. absolutely m-dense), then ρ is m-thick (resp. m-dense).

Proposition 2.16. For an n-dimensional group representation ρ : G→ GL(V ), the
following conditions are equivalent:

(1) ρ is absolutely m-dense, in other words, (∧mρ) ⊗k k : G → GL(∧mV ⊗k k)
is irreducible, where k is an algebraically closure of k.

(2) (∧mρ)⊗kK : G→ GL(∧mV ⊗kK) is irreducible for some algebraically closed
field K containing k.

(3) (∧mρ)⊗kK : G→ GL(∧mV ⊗kK) is irreducible for any algebraically closed
field K containing k.

Proof. The statement follows from that all conditions above are equivalent to the
condition that ∧mρ is absolutely irreducible. �

In Theorem 3.8, we will obtain the same result on absolute m-thickness as Propo-
sition 2.16.

3. The moduli of absolutely thick representations

In this section, we show that absolute thickness is an open condition in the rep-
resentation variety. (For representation varieties, see [3] )

Let Repn(G) be the representation variety of degree n for a group G over Z.
The representation variety represents the following contravariant functor from the
category of schemes to the category of sets:

Repn(G) : (Sch)op → (Sets)
X 7→ { a group representation ρ : G→ GLn(Γ(X,OX))} ,

where Γ(X,OX) is the ring of global sections on X . The representation variety
Repn(G) has the universal n-dimensional representation ρ̃ of G. Let Gr(d,An

Z
) be

the Grassmann scheme over Z representing the contravariant functor

Gr(d,An
Z
) : (Sch)op → (Sets)

X 7→
{

W W ⊆ O⊕n
X is a subbundle of rank d

}

.

Let us define a subfunctor X(d, n;G) of Repn(G)×Gr(d,An
Z
) for 0 < d < n by

X(d, n;G) : (Sch)op → (Sets)

X 7→







(ρ,W )
ρ : G→ GLn(Γ(X,OX)),
W ⊆ O⊕n

X is a subbundle of rank d,
and ρ(G)W ⊆W







.
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We show that X(d, n;G) is a closed subscheme of Repn(G)×Gr(d,An
Z
).

Lemma 3.1. For d = 1, X(d, n;G) is a closed subscheme of Repn(G)×Gr(d,An
Z
).

Proof. The Grassmann scheme Gr(1,An
Z
) can be regarded as P∗(A

n
Z
) := {[w] |

w is a non-zero “vector” of An
Z
}. Then

X(1, n;G) = {(ρ, [w]) | w is a non-zero ρ(G)-eigenvector }

= ∩g∈G{(ρ, [w]) | w is a non-zero ρ(g)-eigenvector }.

The condition that w ∈ An is a ρ(g)-eigenvector can be written by the equations that
all 2-minors of the n× 2 matrix (ρ(g)w,w) are 0. Hence the subfunctor X(1, n;G)
is a closed subscheme of Repn(G)×Gr(1,An

Z
). �

Proposition 3.2. For 0 < d < n, X(d, n;G) is a closed subscheme of Repn(G) ×
Gr(d,An

Z
).

Proof. The statement is true for d = 1 by Lemma 3.1. For 0 < d < n, by taking
the exterior, we get the morphism

Φ : Repn(G)×Gr(d,An
Z
) → Rep(nd)

(G)×Gr(1,∧dAn
Z
)

(ρ,W ) 7→ (∧dρ,∧dW ).

The subfunctor X(d, n;G) can be obtained by taking the pull-back of the closed
subscheme X(1,

(

n
d

)

;G) of Rep(nd)
(G) × Gr(1,∧dAn

Z
) by Φ. Hence X(d, n;G) is a

closed subscheme of Repn(G)×Gr(d,An
Z
). ✷

Let 0 < m < n. The universal representation ρ̃ on Repn(G) induces an
(

n
m

)

-
dimensional representation ∧mρ̃ on Rep(n

m)
(G). This correspondence gives us the

canonical morphism ∧m : Repn(G) → Rep(n

m)
(G) by ρ 7→ ∧mρ. For 0 < d <

(

n
m

)

,

we define the subfunctor Y (d,∧m(n);G) of Repn(G)×Gr(d,∧mAn
Z
) by

Y (d,∧m(n);G) : (Sch)op → (Sets)

X 7→

{

(ρ,W )
W ⊆ ∧mO⊕n

X is a (∧mρ)(G)-invariant
subbundle of rank d

}

.

Let us define φ := ∧m×id : Repn(G)×Gr(d,∧mAn
Z
) → Rep(n

m)
(G)×Gr(d,∧mAn

Z
) by

(ρ,W ) 7→ (∧mρ,W ). The subfunctor Y (d,∧m(n);G) is obtained by taking the pull-
back of the closed subscheme X(d,

(

n
m

)

;G) of Rep(n

m)
(G)×Gr(d,∧mAn

Z
) by φ. Hence

the subfunctor Y (d,∧m(n);G) is a closed subscheme of Repn(G)×Gr(d,∧m
A

n
Z
).
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We define the subfunctor Y (d,∧m(n),∧n−m(n);G) of Repn(G) × Gr(d,∧mAn
Z
) ×

Gr(
(

n
m

)

− d,∧n−m
A

n
Z
) by

Y (d,∧m(n),∧n−m(n);G) : (Sch)op → (Sets)

X 7→















(ρ,W1,W2)

W1 ⊆ ∧mO⊕n
X is a (∧mρ)(G)-invariant

subbundle of rank d, and
W2 ⊆ ∧n−mO⊕n

X is a (∧n−mρ)(G)-invariant
subbundle of rank

(

n
m

)

− d















.

Set Xn,m,d(G) := Repn(G)× Gr(d,∧mAn
Z
)× Gr(

(

n
m

)

− d,∧n−mAn
Z
). Let us consider

the two projections

φ1 : Xn,m,d(G) → Repn(G)×Gr(d,∧m
A

n
Z
)

φ2 : Xn,m,d(G) → Repn(G)×Gr(
(

n
m

)

− d,∧n−mAn
Z
).

Take the pull-backs φ−1
1 (Y (d,∧m(n);G)) and φ−1

2 (Y (
(

n
m

)

− d,∧n−m(n);G)). The
subfunctor Y (d,∧m(n),∧n−m(n);G) can be obtained as the intersection of these two
pull-backs. Therefore Y (d,∧m(n),∧n−m(n);G) is a closed subscheme of Xn,m,d(G).

Set Grn,m,d := Gr(d,∧mAn
Z
) × Gr(

(

n
m

)

− d,∧n−mAn
Z
). Let us consider the perfect

pairing on Grn,m,d:

〈 , 〉 : (∧mO⊕n
Grn,m,d

)⊗OGrn,m,d
(∧n−mO⊕n

Grn,m,d
) → ∧nO⊕n

Grn,m,d

∼= OGrn,m,d

defined by 〈x, y〉 := x ∧ y. We define the subfunctor Gr⊥n,m,d of Grn,m,d by

Gr⊥n,m,d := {(W1,W2) ∈ Grn,m,d | W
⊥
1 = W2}.

For each point p = (W1,W2) ∈ Grn,m,d, choose a neighbourhood U of p and sections
{ei}, {fj} on U such that 〈e1, e2, . . . , ed〉 is the universal subbundle of ∧mO⊕n

Grn,m,d
of

rank d on U andW2 = 〈f1, f2, . . . , f(n

m)−d〉 is the universal subbundle of ∧
n−mO⊕n

Grn,m,d

of rank
(

n
m

)

−d on U . The equations 〈ei, fj〉 = 0 define a closed subscheme structure

on Gr⊥n,m,d. Hence Gr⊥n,m,d is a closed subscheme of Grn,m,d.
Let us denote by φ3 : Xn,m,d(G) → Grn,m,d the canonical projection. Taking the

intersection of Y (d,∧m(n),∧n−m(n);G) with the pull-back φ−1
3 (Gr⊥n,m,d), we obtain a

closed subscheme Y (d,∧m(n),∧n−m(n);G)⊥ of Y (d,∧m(n),∧n−m(n);G). The closed
subscheme Y (d,∧m(n),∧n−m(n);G)⊥ represents the contravariant functor

(Sch)op → (Sets)
X 7→

{

(ρ,W1,W2) ∈ Y (d,∧m(n),∧n−m(n);G)(X) W⊥
1 = W2

}

.

For proving openness of absolute m-thickness, we show that realizable subspaces
form a closed subset in the Grassmann scheme. We set

Gr(d,∧m
A

n
Z)real := {W ∈ Gr(d,∧m

A
n
Z) | W is realizable }.
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More precisely, for a point x ∈ Gr(d,∧mAn
Z
), x ∈ Gr(d,∧mAn

Z
)real if and only if there

exists an extension field K of the residue field k(x) of x such that the d-dimensional
subspace W ⊆ ∧mKn associated to x is realizable over K.

Proposition 3.3. The subset Gr(d,∧mAn
Z
)real can be regarded as a closed subscheme

of Gr(d,∧mAn
Z
).

Proof. Let us consider the closed subscheme

Flag(1, d,∧m
A

n
Z
) := {([v],W ) ∈ P∗(∧

m
A

n
Z
)×Gr(d,∧m

A
n
Z
) | v ∈ W}

of P∗(∧
mAn

Z
)×Gr(d,∧mAn

Z
) = Gr(1,∧mAn

Z
)×Gr(d,∧mAn

Z
). The scheme P∗(∧

mAn
Z
)

has a closed subscheme Gr(m,An
Z
). Then we obtain the pull-back p−1

1 (Gr(m,An
Z
))

of Gr(m,An
Z
) by the first projection p1 : Flag(1, d,∧mAn

Z
) → P∗(∧

mAn
Z
). The

subset Gr(d,∧mAn
Z
)real is the image p2(p

−1
1 (Gr(m,An

Z
))) of the closed subscheme

p−1
1 (Gr(m,An

Z
)) by the second projection p2 : Flag(1, d,∧mAn

Z
) → Gr(d,∧mAn

Z
).

The projection p2 is proper, and hence we can define a closed subscheme structure
on Gr(d,∧mAn

Z
)real. ✷

Remark 3.4. In the proof of Proposition 3.3, we also see that

Gr(d,∧m
A

n
Z
)real = p2(p

−1
1 (Gr(m,An

Z
))).(4)

The following proposition gives a characterization of Gr(d,∧mAn
Z
)real.

Proposition 3.5. Let x ∈ Gr(d,∧mAn
Z
). Let k(x) be an algebraic closure of the

residue field k(x) of x. Then x ∈ Gr(d,∧mAn
Z
)real if and only if the corresponding

d-dimensional subspace W ⊗k(x) k(x) ⊆ ∧mk(x)
n
to x is realizable over k(x).

Proof. Let x ∈ Gr(d,∧m
A

n
Z
). If the corresponding d-dimensional subspaceW⊗k(x)

k(x) ⊆ ∧mk(x)
n
is realizable over k(x), then there exists a k(x)-rational point of

p−1
1 (Gr(m,An

Z
)) ⊆ Flag(1, d,∧mAn

Z
) whose image by p2 corresponds to W ⊗k(x) k(x).

Then x ∈ p2(p
−1
1 (Gr(m,An

Z
))) = Gr(d,∧mAn

Z
)real.

Conversely, suppose that x ∈ Gr(d,∧mAn
Z
)real. Setting φ := p2 |p−1

1
(Gr(m,An

Z
)), we

have the following commutative diagram which is a fibre product:

p−1
1 (Gr(m,An

Z
))

φ
→ Gr(d,∧mAn

Z
)real

↑ ↑
φ−1(x) → Spec k(x).

Since φ is of finite type, so is φ−1(x) → Spec k(x). Note that φ−1(x) 6= ∅ by the

definition of Gr(d,∧mAn
Z
)real. Then there exists a k(x)-rational point of φ−1(x). This

implies that the corresponding d-dimensional subspace W ⊗k(x) k(x) ⊆ ∧mk(x)
n
is

realizable over k(x). �

Let q2 : Xn,m,d(G) → Gr(d,∧mAn
Z
) and q3 : Xn,m,d(G) → Gr(

(

n
m

)

− d,∧n−mAn
Z
) be

the second and the third projections. We denote by Y (d,∧m(n),∧n−m(n);G)⊥real the
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intersection of Y (d,∧m(n),∧n−m(n);G)⊥ with q−1
2 (Gr(d,∧mAn

Z
)real)∩ q

−1
3 (Gr(

(

n
m

)

−
d,∧n−mAn

Z
)real). By Proposition 3.3, Y (d,∧m(n),∧n−m(n);G)⊥real can be regarded

as a closed subscheme of Y (d,∧m(n),∧n−m(n);G)⊥.

Proposition 3.6. Let x = (ρ,W1,W2) ∈ Y (d,∧m(n),∧n−m(n);G)⊥. Let k(x) be an
algebraic closure of the residue field k(x) of x. Then x ∈ Y (d,∧m(n),∧n−m(n);G)⊥real
if and only if W1 ⊗k(x) k(x) and W2 ⊗k(x) k(x) are realizable over k(x).

Proof. By the definition, x ∈ Y (d,∧m(n),∧n−m(n);G)⊥real if and only if q2(x) ∈
Gr(d,∧mAn

Z
)real and q3(x) ∈ Gr(

(

n
m

)

− d,∧n−mAn
Z
)real. It follows from Proposition

3.5 that this condition is equivalent to that W1 ⊗k(x) k(x) and W2 ⊗k(x) k(x) are

realizable over k(x). �

Let q1 : Xn,m,d(G) → Repn(G) be the first projection. Since q1 is proper and
Y (d,∧m(n),∧n−m(n);G)⊥real is a closed subscheme of Xn,m,d(G), Repn(G) has a
closed subscheme q1(Y (d,∧

m(n),∧n−m(n);G)⊥real).

Proposition 3.7. Let x ∈ Repn(G). Then x ∈ q1(Y (d,∧
m(n),∧n−m(n);G)⊥real) if

and only if there exist G-invariant realizable subspaces W1 ⊆ ∧mk(x)
n
and W2 ⊆

∧n−mk(x)
n
with respect to the corresponding representation ρx ⊗k(x) k(x) : G →

GLn(k(x)) such that dimW1 = d, dimW2 =
(

n
m

)

− d, and W⊥
1 = W2.

Proof. First, we prove the “if” part. Suppose that there exist such W1 and W2.
Then we have a k(x)-rational point of Y (d,∧m(n),∧n−m(n);G)⊥real whose image by
q1 corresponds to x. Hence x ∈ q1(Y (d,∧

m(n),∧n−m(n);G)⊥real).
Next, we prove the “only if” part. Let x ∈ q1(Y (d,∧

m(n),∧n−m(n);G)⊥real). Set
ψ = q1|Y (d,∧m(n),∧n−m(n);G)⊥

real
: Y (d,∧m(n),∧n−m(n);G)⊥real → Repn(G). Since ψ is of

finite type, so is ψ−1(x) → Spec k(x). The fibre ψ−1(x) is not empty, and hence
there exist W1 and W2 with the desired property by Proposition 3.6. �

We can prove the following theorem on absolute m-thickness by Proposition 3.7.

Theorem 3.8. Let ρ : G → GLn(k) be an n-dimensional representation of G over
a field k. For 0 < m < n, the following conditions are equivalent:

(1) ρ is absolutely m-thick, in other words, ρ ⊗k k is m-thick for an algebraic
closure k of k.

(2) ρ⊗k K is m-thick for some algebraically closed field K over k.
(3) ρ⊗k K is m-thick for any algebraically closed field K over k.

Proof. It is obvious that (3) ⇒ (1) and that (1) ⇒ (2). Let us show that (2)
⇒ (3). Assume that ρ ⊗k K is m-thick for some algebraically closed field K over
k. Note that ρ ⊗k k is also m-thick by Remark 2.15. Suppose that ρ ⊗k K

′ is
not m-thick for some algebraically closed field K ′ over k. Let x be the k-rational
point of Repn(G) associated to ρ. By Proposition 2.11, there exists a K ′-rational
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point of Y (d,∧m(n),∧n−m(n);G)⊥real for some d whose image by q1 corresponds to
ρ ⊗k K

′. Hence x ∈ q1(Y (d,∧m(n),∧n−m(n);G)⊥real). Then ρ ⊗k k is not m-thick
by Proposition 3.7, which is a contradiction. Hence ρ ⊗k K

′ is m-thick for any
algebraically closed field K ′ over k. Therefore we have shown that (2) ⇒ (3). �

Now we show the openness of absolute m-thickness.

Theorem 3.9. Let Repn(G) be the representation variety of degree n for a group
G over Z. For 0 < m < n, the absolutely m-thick representations in Repn(G) form
an open subscheme of Repn(G). In particular, the absolutely thick representations
in Repn(G) form an open subscheme of Repn(G).

Proof. The absolutely m-thick representations form the complement of
⋃

0<d<(n

m)

q1(Y (d,∧
m(n),∧n−m(n);G)⊥real)

in Repn(G) by Propositions 2.11 and 3.7. Since q1(Y (d,∧
m(n),∧n−m(n);G)⊥real) is

closed for each d, we can verify the openness of absolute m-thickness. We can also
prove the openness of absolute thickness by considering all m. ✷

Let Repn(G)m-thick be the open subscheme consisting of absolutely m-thick rep-
resentations of Repn(G). Let Repn(G)thick be the open subscheme consisting of
absolutely thick representations of Repn(G). The open subschemes Repn(G)m-thick
and Repn(G)thick are contained in the representation variety of absolutely irreducible
representations Repn(G)air. We have group actions of the group scheme PGLn on
these schemes by the conjugation ρ 7→ P−1ρP . By [3, Theorem 1.3], there exists
a universal geometric quotient Chn(G)air of Repn(G)air by PGLn and the quotient
morphism Repn(G)air → Chn(G)air is a PGLn-principal fibre bundle. Hence we have
the following theorem:

Theorem 3.10. For each 0 < m < n, there exists a universal geometric quo-
tient Chn(G)m-thick of Repn(G)m-thick by PGLn. Moreover, there exists a univer-
sal geometric quotient Chn(G)thick of Repn(G)thick by PGLn. The quotient mor-
phisms Repn(G)m-thick → Chn(G)m-thick and Repn(G)thick → Chn(G)thick are PGLn-
principal fibre bundles.

We also have the same results on absolutely dense representations as absolutely
thick representations.

Proposition 3.11. For 0 < m < n, the absolutely m-dense representations in
Repn(G) form an open subscheme of Repn(G). In particular, the absolutely dense
representations in Repn(G) form an open subscheme of Repn(G).
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Proof. We define the morphism ∧m : Repn(G) → Rep(n

m)
(G) by ρ 7→ ∧mρ.

The inverse image of the open subscheme Rep(n

m)
(G)air by ∧m coincides with the

absolutely m-dense representations in Repn(G). Hence it is open. Considering all
m, we see that the absolutely dense representations in Repn(G) is also open. �

Let Repn(G)m-dense be the open subscheme consisting of absolutely m-dense rep-
resentations of Repn(G). Let Repn(G)dense be the open subscheme consisting of
absolutely dense representations of Repn(G). The open subschemes Repn(G)m-dense
and Repn(G)dense are contained in the representation variety of absolutely irreducible
representations Repn(G)air. In the same way as absolutely thick representations, we
have the following theorem:

Theorem 3.12. For each 0 < m < n, there exists a universal geometric quo-
tient Chn(G)m-dense of Repn(G)m-dense by PGLn. Moreover, there exists a universal
geometric quotient Chn(G)dense of Repn(G)dense by PGLn. The quotient morphisms
Repn(G)m-dense → Chn(G)m-dense and Repn(G)dense → Chn(G)dense are PGLn-principal
fibre bundles.

Summarizing the results above, we have the following diagrams:

Repn(G)m-dense ⊆ Repn(G)m-thick ⊆ Repn(G)air
↓ ↓ ↓

Chn(G)m-dense ⊆ Chn(G)m-thick ⊆ Chn(G)air

and
Repn(G)dense ⊆ Repn(G)thick ⊆ Repn(G)air

↓ ↓ ↓
Chn(G)dense ⊆ Chn(G)thick ⊆ Chn(G)air.

Remark 3.13. For a representation ρ : G → GLn(Γ(X,OX)) of a group G on
a scheme X , ρ is called absolutely m-thick (resp. absolutely thick) if the induced
representation ρ ⊗ k(x) : G → GLn(k(x)) is absolutely m-thick (resp. absolutely
thick) for each x ∈ X , where k(x) is the residue field of x. Similarly, ρ is called
absolutely m-dense (resp. absolutely dense) if the induced representation ρ⊗ k(x) :
G→ GLn(k(x)) is absolutely m-dense (resp. absolutely dense) for each x ∈ X . The
scheme Repn(G)m-thick (resp. Repn(G)thick, Repn(G)m-dense, Repn(G)dense) represents
the contravariant functor from the category of schemes to the category of sets which
maps each scheme to the set of n-dimensional absolutely m-thick (resp. absolutely
thick, absolutely m-dense, absolutely dense) representations of G on X .

4. Realizable subspaces

In this section, we discuss realizable subspaces in detail. We introduce the r-
number r(∧m(n)) which is closely related to thickness. In some cases, we can calcu-
late r(∧m(n)).
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Lemma 4.1. Let V be an n-dimensional vector space over an algebraically closed
field k. LetW be a vector subspace of ∧mV with 0 < m < n. If codimW ≤ m(n−m),
then W is realizable, in other words, there exists an m-dimensional vector subspace
V1 of V such that ∧mV1 ∈ W .

Proof. Remark that ∧mV1 ∈ ∧mV can be defined up to scalar multiplication.
The Grassmann variety Gr(m, V ) ⊂ P∗(∧

mV ) has dimension m(n − m). Since
the subspace P∗(W ) ⊂ P∗(∧

mV ) has codimension ≤ m(n − m), the intersection
P∗(W ) ∩Gr(m, V ) is not empty. Hence there exists an m-dimensional subspace V1
such that ∧mV1 ∈ W . �

Proposition 4.2. Let V be an n-dimensional vector space over an algebraically
closed field k. Let ρ : G → GL(V ) be a representation of a group G. If ∧mV has
a (∧mρ)(G)-invariant realizable subspace W of dimW ≤ m(n − m), then ρ is not
m-thick.

Proof. Let us consider W⊥ ⊆ ∧n−mV . Since dimW ≤ m(n − m), codimW⊥ ≤
m(n − m). By Lemma 4.1, W⊥ is realizable. Hence ρ is not m-thick because of
Proposition 2.11. �

Definition 4.3. For 0 < m < n, we define the r-number r(∧m(n)) by

r(∧m(n)) := min















dimW

there exists an n-dimensional irreducible
representation ρ : G→ GL(V ) of a group G
over a field k such that W is a G-invariant
realizable subspace of ∧m V















.

For convenience, we set r(∧0(n)) = 1 and r(∧n(n)) = 1 for each positive integer n.

For a real number x, we denote by [x] the largest integer which is equal to or less
than x.

Proposition 4.4. For 0 < m < n, r(∧m(n)) ≥ [n−1
m

] + 1.

Proof. Let ρ : G → GL(V ) be an n-dimensional irreducible representation of
a group G. Let W ⊆ ∧mV be a G-invariant realizable subspace. We show that
dimW ≥ [n−1

m
] + 1. Since W is realizable, there exists a basis e1, e2, . . . , en of V

such that x := e1 ∧ e2 ∧ · · · ∧ em ∈ W . We define gi ∈ G for 1 ≤ i ≤ [n−1
m

] + 1 in the
following way: Let g1 := e ∈ G. If gi ∈ G is determined for i ≤ k, choose gk+1 ∈ G
such that ρ(gk+1)e1 is not contained in the subspace Vk spanned by {ρ(gi)ej | 1 ≤ i ≤
k, 1 ≤ j ≤ m} of V . This procedure is possible, since dimVk ≤ km ≤ [n−1

m
]m < n

and the set {ρ(g)e1 | g ∈ G} spans V because of the irreducibility of ρ. In this way,
g1, g2, . . . , g[n−1

m
]+1 can be chosen.
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We claim that (∧mρ)(g1)x, (∧
mρ)(g2)x, . . . , (∧

mρ)(g[n−1

m
]+1)x ∈ W are linearly in-

dependent. Let
∑

ai(∧
mρ)(gi)x = 0 for ai ∈ k. By using

(∧mρ)(gi)x ∧ ρ(gi+1)e1 ∧ ρ(gi+2)e1 ∧ · · · ∧ ρ(g[n−1

m
]+1)e1 6= 0 and

(∧mρ)(gi)x ∧ ρ(gi)e1 ∧ ρ(gi+1)e1 ∧ ρ(gi+2)e1 ∧ · · · ∧ ρ(g[n−1

m
]+1)e1 = 0,

we see that ai = 0 for each i, which implies the claim. Hence dimW ≥ [n−1
m

]+1. �

Corollary 4.5. If 0 < m < n, then r(∧m(n)) ≥ 2. In particular, if ρ is an n-
dimensional irreducible representation, then ∧mρ has no 1-dimensional G-invariant
realizable subspace.

Proof. The statement follows from that r(∧m(n)) ≥ [n−1
m

] + 1 ≥ 2. �

If m divides n, then we can prove that r(∧m(n)) = n
m
. For proving this, we need

to make some preparations.

Lemma 4.6. Let f : V → V be a linear endomorphism on an n-dimensional vector
space V over a field k. Suppose that f has n distinct eigenvalues α1, . . . , αn ∈ k.
Let e1, . . . , en ∈ V be eigenvectors associated to α1, . . . , αn, respectively. Then for
any f -invariant subspace W of V , there exists a subset I of {1, 2, . . . , n} such that
W = ⊕i∈Ik · ei.

Proof. For an f -invariant subspaceW , we define a subset I of {1, 2, . . . , n} by I :=
{i | there exists

∑n
j=1 ajej ∈ W such that ai 6= 0}. It is clear that W ⊆ ⊕i∈Ik · ei.

We show that W ⊇ ⊕i∈Ik · ei. For each i ∈ I, there exists a vector x =
∑n

j=1 ajej ∈
W such that ai 6= 0. Set J := {j | aj 6= 0} = {j1, j2, . . . , jm} and m := ♯J .
Note that i ∈ J . Since f(x) =

∑

j∈J αjajej , f
2(x) =

∑

j∈J α
2
jajej, . . . , f

m−1(x) =
∑

j∈J α
m−1
j ajej , we have













x
f(x)
f 2(x)

...
fm−1(x)













=













1 1 · · · 1
αj1 αj2 · · · αjm

α2
j1

α2
j2

· · · α2
jm

...
...

...
...

αm−1
j1

αm−1
j2

· · · αm−1
jm

























aj1ej1
aj2ej2
aj3ej3

...
ajmejm













.

The matrix (αs−1
jt )1≤s,t≤m is invertible, and hence the vector ajsejs can be written as a

linear combination of x, f(x), f 2(x), . . . , fm−1(x) for each 1 ≤ s ≤ m. In particular,
ei ∈ W . This implies that W ⊇ ⊕i∈Ik · ei. So we have proved the lemma. �

Lemma 4.7. Let V be a vector space over an infinite field k. For any non-zero
vector v ∈ V and a finite subset S ⊂ k×, there exists f ∈ GL(V ) satisfying the
following conditions:

(1) There exists a basis {v1, v2, . . . , vn} of V such that vi is an eigenvector of f
with eigenvalues βi ∈ k× \ S for 1 ≤ i ≤ n.
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(2) β1, β2, . . . , βn are distinct.
(3) v = v1 + v2 + · · ·+ vn.

In particular, v is not contained in any proper f -invariant subspaces.

Proof. Let us take vectors v1, v2, . . . , vn−1 ∈ V such that {v, v1, v2, . . . , vn−1} is a
basis of V . Put vn := v − v1 − v2 − · · · − vn−1. Then {v1, v2, . . . , vn} is a basis of V
and v = v1 + v2 + · · ·+ vn. Let us choose distinct elements β1, β2, . . . , βn ∈ k× \ S.
We define f ∈ GL(V ) by f(vi) = βivi for 1 ≤ i ≤ n. By Lemma 4.6, for any proper
f -invariant subspace W , there exists a proper subset I of {1, 2, . . . , n} such that
W = ⊕i∈Ik · vi. Hence v = v1 + v2 + · · ·+ vn is not contained in W . This completes
the proof. �

Lemma 4.8. Let k be a field. Let A1, A2, . . . , Aℓ ∈ GLm(k). Set C := AℓAℓ−1 · · ·A2A1

and

X =



















0m 0m 0m · · · 0m Aℓ

A1 0m 0m · · · 0m 0m
0m A2 0m · · · 0m 0m
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0m 0m 0m · · · Aℓ−1 0m



















∈ GLn(k),

where n = ℓm with ℓ ≥ 2. Suppose that the eigenvalues α1, . . . , αm of C are distinct
and that ♯{z ∈ k | zℓ = αi} = ℓ for each 1 ≤ i ≤ m. Then for each ℓ-th root ξi,j of
αi (1 ≤ i ≤ m, 1 ≤ j ≤ ℓ) and for each eigenvector vi of C with respect to αi, the
vector

wi,j :=
t(ξℓ−1

i,j vi, ξ
ℓ−2
i,j A1vi, ξ

ℓ−3
i,j (A2A1)vi, . . . , ξi,j(Aℓ−2 · · ·A2A1)vi, (Aℓ−1Aℓ−2 · · ·A2A1)vi)

is an eigenvector of X with respect to the eigenvalue ξi,j. Conversely, all eigenvectors
of X can be obtained in this way (up to scalar multiplication).

Proof. It is easy to check that Xwi,j = ξi,jwi,j. The statement follows from that
{ξi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ℓ} forms the set of n distinct eigenvalues of X . �

Let F1 = 〈α〉 be the free group of rank 1. By Proposition 3.2, X(d, n; F1) is a
closed subscheme of Repn(F1)×Gr(d,An

Z
). Here recall that X(d, n; F1) = {(ρ,W ) |

W is a d-dimensional ρ(G)-invariant subbundle of An}. Let U(d, n) := U(d, n; F1)
be the complement of X(d, n; F1) in Repn(F1)× Gr(d,An

Z
). Note that Repn(F1) =

GLn and that U(d, n) = {(A,W ) | W is not A-invariant} ⊆ GLn × Gr(d,An
Z
). For

a X-valued point φ of Gr(d,An
Z
) with a scheme X , denote by φ∗(W ) ⊂ O⊕n

X the
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subbundle of rank d induced by φ on X . Then we have the following diagram

GLn,φ := {(A, x) ∈ GLn ×X | φ∗(W )x is not A-invariant} → U(d, n)
↓ ↓

GLn ×X
id×φ
→ GLn ×Gr(d,An

Z
),

which is a fibre product. Hence GLn,φ is an open subscheme of GLn ×X .
In particular, for a geometric point W of Gr(d,An

Z
), we have:

Proposition 4.9. Let k be an algebraically closed field. Let W be a k-rational point
of Gr(d,An

Z
). Then the subset {A ∈ GLn(k) | W is not A-invariant } is an open

subscheme of GLn(k).

Proposition 4.10. Let ℓ and m be positive integers with ℓ,m ≥ 2. Set n = ℓm.
Let k be an algebraically closed field such that ch k does not divide ℓ. Then there
exists an irreducible representation ρ : F2 → GLn(k) of the free group F2 of rank 2
such that ∧mρ has a realizable invariant subspace of dimension ℓ. Moreover, there
exists an irreducible representation ρ : F2 → GLn(k) such that ρ is neither m-thick
nor ℓ-thick.

Proof. Let F2 = 〈α, β〉. For constructing ρ, we need to determine A := ρ(α), B :=
ρ(β) ∈ GLn(k). The group GLn(k) acts canonically on kn. Let e1, e2, . . . , en be the
canonical basis of kn. Set

A =



















0m 0m 0m · · · 0m A′

Im 0m 0m · · · 0m 0m
0m Im 0m · · · 0m 0m
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0m 0m 0m · · · Im 0m



















, B =



















0m 0m 0m · · · 0m Bℓ

B1 0m 0m · · · 0m 0m
0m B2 0m · · · 0m 0m
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0m 0m 0m · · · Bℓ−1 0m



















,

where A′, B1, . . . , Bℓ ∈ GLm(k) will be suitably chosen. Let us define Φ : GLm(k)×
· · · ×GLm(k) = GLm(k)

ℓ → GLn(k) by (B1, B2, . . . , Bℓ) 7→ B.
First, we show that ρ is not m-thick. Let W := 〈e1 ∧ e2 ∧ · · · ∧ em, em+1 ∧

· · · ∧ e2m, e2m+1 ∧ · · · ∧ e3m, . . . , e(ℓ−1)m+1 ∧ · · · ∧ en〉 ⊆ ∧mV . Note that ∧mρ has
a realizable invariant subspace W of dimension ℓ. Since ℓ ≤ m(n − m), ρ is not
m-thick by Proposition 4.2.

Second, we show that ρ is not ℓ-thick. For 1 ≤ i ≤ ℓ, we put Ji := {(i − 1)m +
1, (i − 1)m + 2, . . . , im}. Then J1 ⊔ J2 ⊔ · · · ⊔ Jℓ = {1, 2, . . . , n}. Let Y be the
subspace of ∧ℓV generated by {ei1 ∧ ei2 ∧ · · · ∧ eiℓ | i1 ∈ J1, i2 ∈ J2, . . . , iℓ ∈ Jℓ}.
Note that Y is an mℓ-dimensional (∧ℓρ)(F2)-invariant realizable subspace of ∧ℓV .
The subspace Y ⊥ of ∧n−ℓV contains e1 ∧ e2 ∧ · · · ∧ em ∧ v′ for any v′ ∈ ∧n−ℓ−mV . In
particular, Y ⊥ is realizable. By Proposition 2.11, ρ is not ℓ-thick.

Finally, we show that ρ is irreducible if A′, B1, . . . , Bℓ are suitably chosen. Let
A′ = diag(α1, α2, . . . , αm), where α1, . . . , αm ∈ k× are distinct. For each ℓ-th root
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ξi,j of αi (1 ≤ i ≤ m, 1 ≤ j ≤ ℓ), we define wi,j := t(ξℓ−1
i,j e

′
i, ξ

ℓ−2
i,j e

′
i, . . . , e

′
i) as in

Lemma 4.8, where A1 = A2 = · · ·Aℓ−1 = Im and Aℓ = A′. Here we use e′1, . . . , e
′
m

as the canonical basis of km in the sequel. Then wi,j is an eigenvector of A.
By Lemma 4.6, for any A-invariant subspace W of kn, there exists a subset I

of {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ ℓ} such that W = WI := ⊕(i,j)∈Ik · wi,j. For
proving ρ is irreducible, it suffices to show that B does not keep any non-trivial
A-invariant subspace WI invariant. For each non-trivial A-invariant subspace WI ,
we set GLn(k)I := {B ∈ GLn(k) | WI is not B-invariant }. By Proposition 4.9,
GLn(k)I is an open subscheme of GLn(k). Let us prove the claim that the open
subset Φ−1(GLn(k)I) ⊆ GLm(k)

ℓ is not empty for each non-empty proper subset
I of {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ ℓ}. If Φ−1(GLn(k)I) 6= ∅ for each I, then
∩IΦ

−1(GLn(k)I) 6= ∅ because GLm(k)
ℓ is irreducible. Then by taking (B1, . . . , Bℓ) ∈

∩IΦ
−1(GLn(k)I), we obtain an irreducible representation ρ, which completes the

proof.
For proving the claim that Φ−1(GLn(k)I) 6= ∅, take some (i0, j0) ∈ I. By

Lemma 4.7, there exist a basis {v1, v2, . . . , vm} of km and f : km → km such that
f(vi) = βivi (1 ≤ i ≤ m) and e′i0 = v1 + · · · + vm. Here β1, . . . , βm are distinct
elements in k× \{αi | 1 ≤ i ≤ m}. Let Bℓ ∈ GLm(k) be the corresponding matrix to
f . Set B1 = B2 = · · · = Bℓ−1 = Im and B = Φ(B1, . . . , Bℓ). For each ℓ-th root ηij
of βi (1 ≤ i ≤ m, 1 ≤ j ≤ ℓ), put w′

i,j :=
t(ηℓ−1

i,j vi, η
ℓ−2
i,j vi, . . . , vi) ∈ kn. By Lemma

4.8, Bw′
i,j = ηi,jw

′
i,j for each i, j. Since {w

′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ℓ} is a basis of kn,

we can write wi0,j0 =
∑

ci,jw
′
i,j for ci,j ∈ k. If ci,j 6= 0 for all i, j, then wi0,j0 ∈ WI is

not contained in any non-trivial B-invariant subspaces by Lemma 4.6. In particular,
WI is not B-invariant and (B1, . . . , Bℓ) ∈ Φ−1(GLn(k)I), which implies the claim.
Hence we only need to show that ci,j 6= 0 for all i, j.

Let us show that ci,j 6= 0. For each 1 ≤ i ≤ m, we define the ℓ-dimensional
subspace Ui := 〈t(vi, 0, 0, . . . , 0),

t(0, vi, 0, . . . , 0), . . . ,
t(0, 0, 0, . . . , vi)〉 ⊂ kn. Let pi :

kn = U1 ⊕ · · · ⊕ Um → Ui be the projection onto Ui. Since Ui = ⊕1≤j≤ℓ k · w
′
i,j,

pi(wi0,j0) = pi(
t(ξℓ−1

i0,j0
e′i0 , ξ

ℓ−2
i0,j0

e′i0 , . . . , e
′
i0
)) =

∑

1≤j≤ℓ

ci,jw
′
i,j.

On the other hand, e′i0 = v1 + · · ·+ vm and hence

t(ξℓ−1
i0,j0

vi, ξ
ℓ−2
i0,j0

vi, . . . , vi) =
∑

1≤j≤ℓ

ci,jw
′
i,j.

Then we have










ηℓ−1
i,1 ηℓ−1

i,2 · · · ηℓ−1
i,ℓ

ηℓ−2
i,1 ηℓ−2

i,2 · · · ηℓ−2
i,ℓ

...
... · · ·

...
1 1 · · · 1



















ci,1
ci,2
...
ci,ℓ









=











ξℓ−1
i0,j0

ξℓ−2
i0,j0
...
1











.
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By Cramer’s rule,

ci,j = det















ηℓ−1
i,1 ηℓ−1

i,2 · · ·

j

ˇξℓ−1
i0,j0

· · · ηℓ−1
i,ℓ

ηℓ−2
i,1 ηℓ−2

i,2 · · · ξℓ−2
i0,j0

· · · ηℓ−2
i,ℓ

...
... · · ·

... · · ·
...

1 1 · · · 1 · · · 1















·det











ηℓ−1
i,1 ηℓ−1

i,2 · · · ηℓ−1
i,ℓ

ηℓ−2
i,1 ηℓ−2

i,2 · · · ηℓ−2
i,ℓ

...
... · · ·

...
1 1 · · · 1











−1

.

The Vandermonde determinant is not 0 because ηi,j and ξi0,j0 are distinct. Hence
ci,j 6= 0. Therefore we have completed the proof. ✷

Corollary 4.11. If m divides n, then r(∧m(n)) = [n−1
m

] + 1 = n
m
.

Proof. If m = 1 or n = m, then the statement is trivial. Let n > m ≥ 2. By
Proposition 4.10, there exists an n-dimensional irreducible representation ρ of F2

such that ∧mρ has a realizable invariant subspace of dimension n/m. Hence we
have r(∧m(n)) = n/m by Proposition 4.4. ✷

The following remark was suggested by the referee.

Remark 4.12. Proposition 4.10 shows that there exists an irreducible representa-
tion ρ : F2 → GLn(k) such that ρ is neither m-thick nor ℓ-thick, where n = ℓm for
ℓ,m ≥ 2. However, we can easily construct an irreducible representation ρ : F3 →
GLn(k) of the free group F3 = 〈α, β, γ〉 of rank 3 such that ρ is neither m-thick nor
ℓ-thick. Indeed, set ρ(α) = diag(α1, α2, . . . , αn),

ρ(β) =

(

B′ 0m,n−m

0n−m,m In−m

)

, ρ(γ) =



















0m 0m 0m · · · 0m Im
Im 0m 0m · · · 0m 0m
0m Im 0m · · · 0m 0m
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0m 0m 0m · · · Im 0m



















,

where α1, . . . , αn ∈ k× are distinct andB′ =



















0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 0



















∈ GLm(k).

We can show that ρ : F3 → GLn(k) is irreducible by Lemma 4.6. We can also prove
that ρ is neither m-thick nor ℓ-thick, and that W := 〈e1 ∧ e2 ∧ · · · ∧ em, em+1 ∧ · · · ∧
e2m, e2m+1 ∧ · · · ∧ e3m, . . . , e(ℓ−1)m+1 ∧ · · · ∧ en〉 ⊆ ∧mV is a realizable (∧mρ)(F3)-
invariant subspace of dimension ℓ as in the proof of Proposition 4.10.
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By the definition, it is obvious that r(∧m(n)) ≤
(

n
m

)

. The following proposition
gives us a non-trivial upper bound of r(∧m(n)).

Proposition 4.13. For 0 < m < n, r(∧m(n)) ≤ n.

Proof. Let a and b are distinct non-zero elements of a field k. Assume that
♯{c ∈ k | cn = a} = ♯{c ∈ k | cn = b} = n. Let {ξi | 1 ≤ i ≤ n} and {ηi | 1 ≤ i ≤ n}
be the n-th roots of a and b, respectively. We define an n-dimensional representation
ρ of the free group F2 = 〈α, β〉 by

ρ(α) =



















0 0 0 · · · 0 a
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 0



















, ρ(β) =



















0 0 0 · · · 0 b
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 0



















.

Set vi =
t(ξn−1

i , ξn−2
i , . . . , ξi, 1) and wi =

t(ηn−1
i , ηn−2

i , . . . , ηi, 1). It is easy to check
that ρ(α)vi = ξivi and ρ(β)wi = ηiwi for 1 ≤ i ≤ n and that {v1, . . . , vn} and
{w1, . . . , wn} are bases of kn. In a similar way as the last part of the proof of
Proposition 4.10, we can prove that ρ : F2 → GLn(k) is irreducible. Indeed, let V
be a non-zero subspace of kn which is invariant under ρ(α) and ρ(β). By Lemma
4.6, there exist subsets I and J of {1, 2, . . . , n} such that V = ⊕i∈Ik ·vi = ⊕j∈Jk ·wj.
Suppose that wj ∈ V . Put wj =

∑

civi. Then we have









ξn−1
1 ξn−1

2 · · · ξn−1
n

ξn−2
1 ξn−2

2 · · · ξn−2
n

...
... · · ·

...
1 1 · · · 1

















c1
c2
...
cn









=











ηn−1
j

ηn−2
j
...
1











.

By Cramer’s rule,

ci = det















ξn−1
1 ξn−1

2 · · ·
i
ˇηn−1
j · · · ξn−1

n

ξn−2
1 ξn−2

2 · · · ηn−2
j · · · ξn−2

n
...

... · · ·
... · · ·

...
1 1 · · · 1 · · · 1















·det









ξn−1
1 ξn−1

2 · · · ξn−1
n

ξn−2
1 ξn−2

2 · · · ξn−2
n

...
... · · ·

...
1 1 · · · 1









−1

.

The Vandermonde determinant is not 0 because ξi and ηj are distinct, and hence
ci 6= 0 for 1 ≤ i ≤ n. We see that I = {1, 2, . . . , n} and that V = kn. This implies
that ρ is irreducible.
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Let e1, e2, . . . , en be the canonical basis of kn. For 0 < m < n, define an n-
dimensional subspace Wm of ∧mkn by

Wm := 〈e1 ∧ e2 ∧ · · · ∧ em, e2 ∧ e3 ∧ · · · ∧ em+1, . . . , ei ∧ ei+1 ∧ · · · ∧ ei+m−1,

. . . , en−1 ∧ en ∧ e1 ∧ · · · ∧ em−2, en ∧ e1 ∧ · · · ∧ em−1〉 ⊂ ∧mkn.

Then Wm is an F2-invariant realizable subspace of ∧mkn. Hence r(∧m(n)) ≤
dimWm = n. This completes the proof. ✷

We prepare some basic results on perfect pairings for determining some r(∧m(n)).
In the sequel, by a G-module we understand a finite-dimensional left G-module over
a field k for a group G. For a G-module W , the dual W ∗ is defined as W ∗ :=
{f : W → k | k-linear }, where (g · f)(∗) := f(g−1∗) for g ∈ G and f ∈ W ∗. For
G-modules W,W ′, we define the G-module W ⊗k W

′ by g · (u ⊗ v) := gu ⊗ gv for
g ∈ G, u ∈ W , and v ∈ W ′.

Lemma 4.14. Let W,W ′ be finite-dimensional G-modules over a field k. Let L be
a one-dimensional G-module. Suppose that f : W × W ′ → L is a G-equivariant
perfect pairing. In other words, the bilinear map f satisfies

(1) f(u, v) = 0 for all v ∈ W ′ ⇒ u = 0,
(2) f(u, v) = 0 for all u ∈ W ⇒ v = 0,
(3) f(gu, gv) = g(f(u, v)) for all g ∈ G, u ∈ W, v ∈ W ′.

Then there exists a canonical isomorphism W ′ ∼= W ∗ ⊗k L as G-modules.

Proof. Let e be a non-zero vector of L. Let φe : k → L be the linear isomorphism
defined by a 7→ ae for a ∈ k. We define the linear map Φ : W ′ → W ∗ ⊗ L by
v 7→ φ−1

e (f(∗, v))⊗ e. Note that the definition of Φ is independent from the choice
of e. We claim that Φ is an isomorphism as G-modules.

First, we show that Φ is G-equivariant. Let χ : G → GL1(k) be the character
associated to L. In other words, g · w = χ(g)w for g ∈ G and w ∈ L. We see that

Φ(gv) = φ−1
e (f(∗, gv))⊗ e = φ−1

e (g · (f(g−1∗, v)))⊗ e = φ−1
e (χ(g)f(g−1∗, v))⊗ e

= φ−1
e (f(g−1∗, v))⊗ χ(g)e = φ−1

e (f(g−1∗, v))⊗ g · e = g · Φ(v).

Hence Φ is G-equivariant.
Next, suppose that Φ(v) = 0. The assumption implies that f(u, v) = 0 for all

u ∈ W . Because of perfectness, we have v = 0. Thus we proved that Φ is injective.
On the other hand, we see that dimW ′ = dim(W ∗ ⊗ L), which implies that Φ is
surjective. Therefore Φ is an isomorphism. ✷

Corollary 4.15. Let W,W ′ be finite-dimensional G-modules over a field k. Let L
be a one-dimensional G-module. Suppose that a bilinear map f : W × W ′ → L
satisfies:

(1) f(u, v) = 0 for all v ∈ W ′ ⇒ u = 0.
(2) f(gu, gv) = g(f(u, v)) for all g ∈ G, u ∈ W, v ∈ W ′.
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Then there exists a canonical surjection W ′ →W ∗ ⊗k L as G-modules.

Proof. Let W ′♯ := {v ∈ W ′ | f(u, v) = 0 for all u ∈ W}. The bilinear map
f :W×W ′ → L induces a G-equivariant perfect pairing f : W×(W ′/W ′♯) → L. By
Lemma 4.14 we have a canonical isomorphism Φ : (W ′/W ′♯) ∼= W ∗⊗L. Composing
Φ and the projectionW ′ → (W ′/W ′♯), we have a canonical surjectionW ′ → W ∗⊗kL.
✷

Corollary 4.16. Let W,W ′ be finite-dimensional G-modules over a field k. Let L be
a one-dimensional G-module. Let Z be an irreducible G-submodule of W , and let Y
be a G-submodule of W ′. Suppose that any G-homomorphism φ : Y → Z∗⊗L is not
surjective. If f : W ×W ′ → L is a G-equivariant perfect pairing, then f(z, y) = 0
for all z ∈ Z, y ∈ Y .

Proof. Let Y ♯ := {y ∈ Y | f(z, y) = 0 for all z ∈ Z}. If Y ♯ = Y , then the
statement is true. Suppose that Y ♯ 6= Y . Then f induces f : Z × (Y/Y ♯) → L
which has the property that f(z, y) = 0 for all z ∈ Z implies y = 0. By Corollary
4.15, there exists a surjection φ : Z → (Y/Y ♯)∗ ⊗ L. Since Z is irreducible, φ is an
isomorphism. Taking φ ⊗ L∗ and the dual, we have Z∗ ⊗ L ∼= (Y/Y ♯). Then we
obtain a surjection Y → (Y/Y ♯) ∼= Z∗⊗L, which is a contradiction. Hence Y ♯ = Y .
✷

Proposition 4.17. For 0 < m < n, r(∧m(n)) = r(∧n−m(n)).

Proof. Let ρ : G → GL(V ) be an n-dimensional irreducible representation of a
group G. Assume that ∧mV has a G-invariant realizable subspace W of dim d. We
claim that ∧n−m(V ∗) has a G-invariant realizable subspace of dim d. Since V ∗ is an
n-dimensional irreducible G-module, we see that r(∧m(n)) ≥ r(∧n−m(n)) from this
claim. By Changing m and n − m, we have r(∧n−m(n)) ≥ r(∧m(n)), and we can
conclude that r(∧m(n)) = r(∧n−m(n)).

Let us prove the claim. Considering the perfect pairing ∧mV × ∧n−mV → ∧nV ,
we have a canonical isomorphism Φ : ∧mV ∼= (∧n−mV )∗⊗∧nV by Lemma 4.14. Let
e1, . . . , en be a basis of V such that e1∧· · ·∧em ∈ W . Let f1, . . . , fn be the dual basis
for e1, . . . , en. Set W

′ := Φ(W )⊗ (∧nV )∗. Then W ′ is a d-dimensional G-invariant
subspace of (∧n−mV )∗⊗∧nV ⊗(∧nV )∗ ∼= ∧n−m(V ∗). We easily see thatW ′ contains
(e1 ∧ · · · ∧ em) ∧ ∗ = fm+1 ∧ · · · ∧ fn. This implies that ∧n−m(V ∗) has a G-invariant
realizable subspace W ′ of dim d. Therefore we have proved the statement. ✷

Remark 4.18. By the definition, r(∧0(n)) = r(∧n(n)) = 1. Hence r(∧m(n)) =
r(∧n−m(n)) for 0 ≤ m ≤ n. We see that r(∧1(n)) = r(∧n−1(n)) = n for n ≥ 2. By
Corollary 4.5 and Proposition 4.13, 2 ≤ r(∧m(n)) ≤ n for 0 < m < n. It is not easy
to calculate the r-number r(∧m(n)) in general.

Proposition 4.19. r(∧2(5)) = r(∧3(5)) ≥ 4.
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Proof. Since r(∧2(5)) = r(∧3(5)) by Proposition 4.17, it suffices to prove that
r(∧2(5)) ≥ 4. By Proposition 4.4 we have r(∧2(5)) ≥ 3. We claim that r(∧2(5)) 6= 3.
Suppose that there exists a 3-dimensional realizable invariant subspaceW of ∧2V for
a 5-dimensional irreducible representation ρ : G→ GL(V ) of a group G. Since W is
realizable, there exist linearly independent vectors e1, e2 ∈ V such that e1∧ e2 ∈ W .
By irreducibility of ρ, there exists g ∈ G such that ρ(g)(e1) can not be written as a
linear combination of {e1, e2}. Similarly, there exists g′ ∈ G such that ρ(g′)(e1) can
not be written as a linear combination of {e1, e2, ρ(g)e1, ρ(g)e2}. Put v1 := e1 ∧ e2,
v2 := ρ(g)e1 ∧ ρ(g)e2, and v3 := ρ(g′)e1 ∧ ρ(g

′)e2. Note that {e1, e2, ρ(g)e1, ρ(g
′)e1}

and {ρ(g)e1, ρ(g)e2, ρ(g
′)e1} are linearly independent. Then v1∧ρ(g)e1∧ρ(g

′)e1 6= 0
and v2 ∧ ρ(g′)e1 6= 0. We easily see that v1, v2, v3 ∈ W are linearly independent.
Hence W = 〈v1, v2, v3〉.

We define the subspace W ∧W of ∧4V as the subspace spanned by the vectors
{x ∧ y ∈ ∧4V | x, y ∈ W}. The vector space W ∧W can be spanned by the vectors
v1 ∧ v2, v1 ∧ v3, and v2 ∧ v3. Hence W ∧W is a G-invariant subspace of ∧4V and
dimW ∧W ≤ 3. Since V is irreducible, ∧4V is also irreducible. Thus W ∧W = 0.
Then there exist g1, g2, g3 ∈ G such that {e1, e2, ρ(g1)e1, ρ(g2)e1, ρ(g3)e1} is linearly
independent and (e1 ∧ e2)∧ (ρ(gi)e1 ∧ ρ(gi)e2) = 0 for 1 ≤ i ≤ 3. The vector ρ(gi)e2
can be written as a linear combination of {e1, e2, ρ(gi)e1} for each i. So we easily
see that e1∧ e2, ρ(g1)e1∧ρ(g1)e2, ρ(g2)e1∧ρ(g2)e2, and ρ(g3)e1∧ρ(g3)e2 are linearly
independent. Thus dimW ≥ 4. This is a contradiction. Therefore r(∧2(5)) ≥ 4. ✷

Later we will show that r(∧2(5)) = r(∧3(5)) = 4 in Proposition 5.3.

Proposition 4.20. r(∧2(6)) = r(∧4(6)) = 3 and r(∧3(6)) = 2.

Proof. By Corollary 4.11 and Proposition 4.17, we can verify the statement. ✷

5. Criterion for thickness

In this section, we discuss criteria for thickness. First, we deal with 4-dimensional
representations.

Proposition 5.1. Let V be a 4-dimensional vector space over an algebraically closed
field k. For a representation ρ : G → GL(V ), the following statements are equiva-
lent:

(1) ρ is thick.
(2) ρ is 2-thick.
(3) ρ is irreducible and the induced representation ∧2ρ : G → GL(∧2V ) has no

G-invariant subspace W ⊂ ∧2V such that 2 ≤ dimW ≤ 4.
(4) ρ is irreducible and the induced representation ∧2ρ : G → GL(∧2V ) has no

G-invariant subspace W ⊂ ∧2V such that dimW = 2 or 3.

Proof. It is trivial that (1) ⇒ (2) and (3) ⇒ (4). If ρ is 2-thick, then ρ is irreducible
by Proposition 2.7. Hence by Proposition 2.6, ρ is m-thick for 1 ≤ m ≤ 4, which
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implies that (2) ⇒ (1). Assume that ρ satisfies (4). Suppose that ∧2ρ has a G-
invariant subspace W ⊂ ∧2V of dimW = 4. Then W⊥ ⊂ ∧2V is a 2-dimensional
G-invariant subspace. This is a contradiction. Hence (4) ⇒ (3).

Next, we show that (2) ⇒ (3). Assume that ρ is 2-thick. By Proposition 2.7, ρ is
irreducible. Suppose that ∧2ρ has a non-trivial G-invariant subspaceW ⊂ ∧2V such
that 2 ≤ dimW ≤ 4. Put W1 := W and W2 := W⊥ ⊂ ∧2V . Then 2 ≤ dimW2 ≤ 4.
By Lemma 4.1, W1 and W2 are realizable. Hence it follows from Proposition 2.11
that ρ is not 2-thick. This is a contradiction. Therefore ρ satisfies (3) and we have
(2) ⇒ (3).

Finally, we show that (3) ⇒ (2). Assume that ρ satisfies (3). Suppose that ρ
is not 2-thick. It follows from Proposition 2.11 that there exist realizable invariant
subspaces W1,W2 ⊂ ∧2V such that W⊥

1 = W2. By Corollary 4.5 we have dimW1 ≥
2 and dimW2 ≥ 2. Hence W1 is a realizable invariant subspace such that 2 ≤
dimW1 ≤ 4. This is a contradiction. Therefore (3) ⇒ (2). We have completed the
proof. ✷

Next, we deal with 5-dimensional representations.

Proposition 5.2. Let V be a 5-dimensional vector space over an algebraically closed
field k. For a representation ρ : G→ GL(V ), the following are equivalent:

(1) ρ is thick.
(2) ρ is 2-thick.
(3) ρ is irreducible and the induced representation ∧2ρ : G → GL(∧2V ) has no

non-trivial G-invariant subspace W ⊂ ∧2V with 4 ≤ dimW ≤ 6.

Proof. It is easy to check that (1) ⇔ (2) by Propositions 2.6 and 2.7. Let us
show that (1) ⇒ (3). Assume that ρ is thick. Then ρ is irreducible by Proposition
2.7. Suppose that there exists a non-trivial G-invariant subspace W ⊂ ∧2V with
4 ≤ dimW ≤ 6. Put W1 := W and W2 := W⊥ ⊂ ∧3V . By Lemma 4.1, W1 and
W2 are realizable. Hence Proposition 2.11 implies that ρ is not thick. This is a
contradiction. Therefore we see that ρ satisfies (3) and that (1) ⇒ (3).

Finally, we show that (3) ⇒ (2). Assume that ρ satisfies (3). Suppose that ρ is
not 2-thick. Then by Proposition 2.11 there exist realizable subspaces W1 ⊂ ∧2V
and W2 ⊂ ∧3V such that W⊥

1 = W2. Proposition 4.19 says that dimW1 ≥ 4 and
dimW2 ≥ 4. Hence 4 ≤ dimW1 ≤ 6. This contradicts the assumption. Therefore ρ
is 2-thick. ✷

By using Proposition 5.2, we have the following proposition.

Proposition 5.3. r(∧2(5)) = r(∧3(5)) = 4.

Proof. For a partition λ = (λ1, . . . , λn) of d, we denote by Vλ the irreducible
representation of the symmetric group Sd over C corresponding to λ. Let us consider
the 5-dimensional irreducible representations V(3,2) and V(2,2,1) of S5. By calculating
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characters, we see that ∧2V(3,2) = V(3,1,1)⊕V(2,1,1,1) and ∧2V(2,2,1) = V(3,1,1)⊕V(2,1,1,1).
Since dimV(3,1,1) = 6 and dimV(2,1,1,1) = 4, V(3,2) and V(2,2,1) are not 2-thick by
Proposition 5.2. In particular, ∧2V(3,2) and ∧2V(2,2,1) have 4-dimensional S5-invariant
realizable subspaces V(2,1,1,1), respectively. This implies that r(∧2(5)) = r(∧3(5)) ≤
4. Using Proposition 4.19, we have r(∧2(5)) = r(∧3(5)) = 4. ✷

Remark 5.4. By the calculations above, we have the following table on r(∧m(n))
in the case n ≤ 10:

n\m 0 1 2 3 4 5 6 7 8 9 10
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 2 4 1
5 1 5 4 4 5 1
6 1 6 3 2 3 6 1
7 1 7 A B B A 7 1
8 1 8 4 C 2 C 4 8 1
9 1 9 D 3 E E 3 D 9 1
10 1 10 5 F G 2 G F 5 10 1

Here we have not yet determined A,B,C,D,E, F,G. Until now, we can only know
that 4 ≤ A ≤ 7, 3 ≤ B ≤ 7, 3 ≤ C ≤ 8, 5 ≤ D ≤ 9, 3 ≤ E ≤ 9, 4 ≤ F ≤ 10, and
3 ≤ G ≤ 10.

For n ≥ 6, it is difficult to check whether a given n-dimensional representation
is thick or not. In the rest of this section, we show some results on thickness and
denseness.

Lemma 5.5. Let φ : G → G′ be a group homomorphism and ρ : G′ → GL(V ) a
finite-dimensional representation of G′. If ρ is not m-thick, then neither is ρ ◦ φ :
G→ GL(V ).

Proof. Suppose that ρ ◦ φ is m-thick. Let V1 and V2 be subspaces of V such that
dimV1 +dim V2 = dimV . Then there exists g ∈ G such that (ρ ◦ φ)(g)V1 ⊕ V2 = V .
Putting g′ := φ(g) ∈ G′, we have ρ(g′)V1 ⊕ V2 = V . This implies m-thickness of ρ,
which is a contradiction. Hence ρ ◦ φ is not m-thick. ✷

Proposition 5.6. Let k be a field. Let V := ∧2kn be the exterior of the stan-
dard representation kn of GLn(k) with n ≥ 4. Then V is not (n − 1)-thick as a
representation of GLn(k).

Proof. Let e1, e2, . . . , en be the canonical basis of kn. Let W := 〈e1 ∧ e2, e1 ∧
e3, . . . , e1 ∧ en〉 ⊂ ∧2kn. Note that the (n− 1)-dimensional subspace W is expressed
as e1∧k

n := {e1∧v | v ∈ kn}. For each g ∈ GLn(k), gW = 〈ge1∧ge2, . . . , ge1∧gen〉 =
(ge1)∧ k

n. Put ge1 = a1e1 + a2e2 + · · ·+ anen. We see that ge1 ∧ e1 ∈ gW and that
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ge1∧e1 = −a2e1∧e2−· · ·−ane1∧en ∈ W . If ge1 6= a1e1, then 0 6= ge1∧e1 ∈ W∩gW .
If ge1 = a1e1, then 0 6= ge1∧ ge2 = a1e1∧ ge2 ∈ W ∩ gW . Hence W ∩ gW 6= 0. If we
choose a subspace W ′ of dimension n(n − 1)/2 − (n − 1) such that W ′ ⊃ W , then
gW ∩W ′ 6= 0 for each g ∈ W . Hence V is not (n− 1)-thick. ✷

Corollary 5.7. Let n ≥ 4. For any n-dimensional representation V of an arbitrary
group G, the exterior representation ∧2V of G is not (n− 1)-thick.

Proof. The statement follows from Lemma 5.5 and Proposition 5.6. ✷

In the same way as Proposition 5.6, we can prove the following proposition. This
result was suggested by the referee.

Proposition 5.8. Let ρ : G → GL(V ) be an n-dimensional representation of a
group G over a field k. Let m ≤ 1

2
n. Suppose that there exists an m-dimensional

subspace W of V such that (ρ(g)W ) ∩W 6= 0 for all g ∈ G. Then ρ is not m-thick.

Proof. Since n−m ≥ 2m−m = m, we can choose an (n−m)-dimensional subspace
W ′ of V such that W ′ ⊇ W . For all g ∈ G, (ρ(g)W ) ∩W ′ ⊇ (ρ(g)W ) ∩W ′ ∩W =
(ρ(g)W ) ∩W 6= 0. Hence ρ is not m-thick. ✷

Remark 5.9. Denseness and thickness are independent from absolute irreducibility.
For example, the representation

ρ : R → GL(2,R)

θ 7→

(

cos θ − sin θ
sin θ cos θ

)

is dense and thick, but not absolutely irreducible. Conversely, the representation
V = ∧2C4 of GL(4,C) is not thick (and hence not dense) but absolutely irreducible.

The following proposition shows that there are many examples of representations
which are not dense.

Proposition 5.10. Let n ≥ 4. Let V be an n-dimensional irreducible representation
of a group G. Assume that all irreducible representations of G have dimension ≤ n.
Then the representation V of G is not dense.

Proof. The dimension of ∧2V is
(

n
2

)

(> n). Hence ∧2V can not be irreducible.
This implies that V is not dense. ✷

Corollary 5.11. Let G be a finite group. Assume that G has an irreducible rep-
resentation of dimension n with n ≥ 4. Then G has an irreducible representation
which is not dense.

Proof. Let n be the maximum of the dimensions of irreducible representations
of G. Since G is finite, there exists the maximum n. The assumption implies that
n ≥ 4. Let V be an irreducible representation of G of dimension n. The previous
proposition shows that V is not dense. ✷
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Remark 5.12. Let G be a group. Let V be a representation of G of dimension n
with n ≥ 4 over C. Then ∧mV is not thick for 2 ≤ m ≤ n − 2. This fact will be
proven in [4].

6. Examples

In this section, we show several examples of representations for Lie groups. In [4],
we will classify thick representations and dense representations for complex simple
Lie groups. Here we show another approach to verify thickness and denseness.

6.1. Case: G = GL2(C). Let a and b be integers with a ≥ 0. Let V(a+b,b) be
the irreducible representation of G = GL2(C) with highest weight (a + b, b). Set
detb := V(b,b) for b ∈ Z. Note that V(a+b,b) = detb ⊗V(a,0) and that dim V(a+b,b) = a+1.

Lemma 6.1. As representations of GL2(C), we have

∧2V(a+b,b) = det 2b ⊗





[ a+1

2
]

∑

k=1

det 2k−1 ⊗ V(2a−4k+2,0)





=

[ a+1

2
]

∑

k=1

V(2a+2b−2k+1,2b+2k−1).

Proof. Comparing characters, we can verify the statement. ✷

Corollary 6.2. For a ≥ 3, the representation V(a+b,b) is not 2-dense. In particular,
it is not dense.

Proof. Since [a+1
2
] ≥ 2 if a ≥ 3, the representation ∧2V(a+b,b) is not irreducible by

Lemma 6.1. Hence V(a+b,b) is not 2-dense. ✷

Corollary 6.3. If a = 3 or 4, then the representation V(a+b,b) is thick.

Proof. When a = 3, ∧2V(b+3,b) = V(2b+5,2b+1) ⊕ V(2b+3,2b+3) by Lemma 6.1. Hence
∧2V(3+b,b) has no GL2(C)-invariant subspace W such that 2 ≤ dimW ≤ 4 because
dimV(2b+5,2b+1) = 5 and dimV(2b+3,2b+3) = 1. By Proposition 5.1, the 4-dimensional
representation V(b+3,b) is thick. When a = 4, ∧2V(b+4,b) = V(2b+7,2b+1) ⊕ V(2b+5,2b+3)

by Lemma 6.1. Hence ∧2V(b+4,b) has no GL2(C)-invariant subspace W such that
4 ≤ dimW ≤ 6 because dimV(2b+7,2b+1) = 7 and dimV(2b+5,2b+3) = 3. By Proposition
5.2, the 5-dimensional representation V(b+4,b) is thick. ✷

Remark 6.4. When a = 1 or 2, the representation V(a+b,b) is dense. When a ≥
3, we can verify that V(a+b,b) is not dense, but thick by the classification of thick
representations of simple Lie groups. Indeed, we will see that SmSL2 is thick and
not dense if m ≥ 3 in [4].
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6.2. Case: G = GLn(C).

Proposition 6.5. Let V = Cn be the standard representation of GLn(C). Then V
is dense.

Proof. This assertion follows from the irreducibility of ∧iV for 1 ≤ i ≤ n− 1. ✷

For the standard representation V = Cn of GLn(C), let us discuss thickness and
denseness of S2V and ∧2V .

Lemma 6.6. Put Pn(x) =
∏n

i=1(1 + xi) = (1+ x)(1 + x2) · · · (1 + xn). Let ai be the

coefficient of xi in Pn(x). Then if n ≥ 3, then ai ≥ 1 for any 0 ≤ i ≤ n(n+1)
2

and

ai ≥ 2 for any 3 ≤ i ≤ n(n+1)
2

− 3.

Proof. Let us prove the statement by induction on n. When n = 3, P3(x) =
1 + x + x2 + 2x3 + x4 + x5 + x6 and hence the statement holds. Suppose that the
statement is true for n. Since

Pn+1(x) = Pn(x)(1 + xn+1)

= a0 + a1x+ a2x
2 + · · ·+ anx

n + (an+1 + a0)x
n+1 + (an+2 + a1)x

n+2

+ · · ·+ (an(n+1)/2 + a(n+1)(n−2)/2)x
n(n+1)/2 + an(n−1)/2x

(n2+n+2)/2

+ · · ·+ an(n+1)/2x
(n+1)(n+2)/2,

the statement is also true for n+ 1. This completes the proof. ✷

Proposition 6.7. Let V = Cn be the standard representation of GLn(C) (n ≥ 3).
Then the second symmetric tensor S2V is irreducible, but not m-thick for 3 ≤ m ≤
n(n+1)

2
− 3.

Proof. It is well-known that S2V is irreducible. By [2, Theorem 4.4.2], the number
of irreducible components of ∧m(S2V ) is equal to the the number of partitions of m
into distinct parts of size at most n. This number is equal to the coefficient am of
xm in Pn(x) in Lemma 6.6. Since am ≥ 2 by Lemma 6.6, ∧m(S2V ) is not irreducible

for any 3 ≤ m ≤ n(n+1)
2

− 3. We see that irreducible components of ∧m(S2V ) are all
realizable by the proof of [2, Theorem 4.4.2]. Hence Proposition 2.11 implies that

∧m(S2V ) is not m-thick for any 3 ≤ m ≤ n(n+1)
2

− 3. ✷

Proposition 5.6 shows that ∧2
C

n is not (n− 1)-thick for the standard representa-
tion Cn of GLn(C) for n ≥ 4. Moreover, we have the following proposition.

Proposition 6.8. Let V = Cn be the standard representation of GLn(C) (n ≥ 4).
Then the second alternating tensor ∧2V is irreducible, but not m-thick for 3 ≤ m ≤
n(n−1)

2
− 3.



28 KAZUNORI NAKAMOTO AND YASUHIRO OMODA

Proof. It is well-known that ∧2V is irreducible. By [2, Theorem 4.4.4], the number
of irreducible components of ∧m(∧2V ) is equal to the the number of partitions of
m into distinct parts of size at most n− 1. This number is equal to the coefficient
am of xm in Pn−1(x) in Lemma 6.6. Since am ≥ 2 by Lemma 6.6, ∧m(∧2V ) is not

irreducible for any 3 ≤ m ≤ n(n−1)
2

− 3. We see that irreducible components of
∧m(∧2V ) are all realizable by the proof of [2, Theorem 4.4.4]. Hence Proposition

2.11 implies that ∧m(∧2V ) is not m-thick for any 3 ≤ m ≤ n(n−1)
2

− 3. ✷

Then from Propositions 6.7 and 6.8, we have the following corollary.

Corollary 6.9. Let V = Cn be an n-dimensional representation of any group G. If
n ≥ 3, then the second symmetric tensor S2V is not thick. If n ≥ 4, then the second
alternating tensor ∧2V is not thick.

Proof. Using Lemma 5.5, we can prove the statement (the latter part has been
proved in Corollary 5.7). ✷

6.3. Case: G = SOn(C).

Proposition 6.10. Let V be the standard representation of G = SO2n(C). Then V
is m-dense for each 0 < m < 2n with m 6= n, but not n-thick.

Proof. The first assertion follows from the irreducibility of ∧iV for 1 ≤ i ≤ n− 1.
The proof of [1, Theorem 19.2] shows that the n-th alternating tensor ∧nV has
exactly two irreducible factors and they are realizable. Then by Proposition 2.11
the representation V is not n-thick. ✷

Proposition 6.11. Let V be the standard representation of G = SO2n+1(C). Then
V is dense.

Proof. The m-th alternating tensor ∧mV is irreducible for each 0 < m < 2n + 1
(for example, see [1, Theorem 19.14]). This implies the statement. ✷

6.4. Case: G = Sp2n(C). Let V be a 2n-dimensional complex vector space, {e1, e2,
. . . , e2n} a basis for V , and {e∗1, e

∗
2, . . . , e

∗
2n} its dual basis for the dual vector space

V ∗. We use a non-degenerate skew-symmetric bilinear form ω =
n

∑

i=1

e∗i ∧ e∗n+i and

the corresponding symplectic Lie group Sp2n(C). Then we have a contraction map
by ω:

fm : ∧mV → ∧m−2V.

If m ≤ n, Kerfm is the m-th fundamental representation of Sp2n(C). In particular,
Kerfm is irreducible. We have the isotropic Grassmann variety of isotropic subspaces
of dimension m as a unique minimal closed orbit in the projective space P(Kerfm).
Since Kerfm contains ∧mL for any isotropic m-dimension subspace L ⊂ V , Kerfm
is realizable. For details see [1].

The following lemma is well-known.
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Lemma 6.12. Let (V, ω) be a 2n-dimensional symplectic vector space and W ⊂ V
a subspace. Then there is a basis {v1, v2, . . . , v2n} of V such that ω(vi, vn+i) = 1,
ω(vi, vj) = 0 if j 6= i± n, and for some non-negative integers l, k

W = 〈v1, . . . , vk, vk+1, . . . , vn−l, vn+1, . . . , vn+k〉.

Lemma 6.13. Let (V, ω) be a 2n-dimensional symplectic vector space and W ⊂ V
a subspace of codimension i (i ≤ n). Then there is a Lagrangian subspace L ⊂ V
such that L+W = V .

Proof. It is enough to prove the case of i = n. By Lemma 6.12, there is a
symplectic basis {v1, v2, . . . , v2n} of V such that for some non-negative integer k ≤ n

2

W = 〈v1, . . . , vk, vk+1, . . . , vn−k, vn+1, . . . , vn+k〉.

In the case of k = 0, W = 〈v1, . . . , vn〉. Then L = 〈vn+1, . . . , v2n〉 satisfies the
condition L+W = V . In the case of 1 ≤ k ≤ n

2
, we put as following,

L = 〈vn+k+1, . . . , vn+k+i, . . . , v2n−k,

vn−k+1 + vn+1, . . . , vn−k+i + vn+i, . . . , vn + vn+k,

v2n−k+1 + v1, . . . , v2n−k+i + vi, . . . , v2n + vk〉.

Then L is a Lagrangian subspace and satisfies the condition L+W = V . ✷

Lemma 6.14. Let (V, ω) be a 2n-dimensional symplectic vector space and W ⊂ V
a subspace of codimension i (i ≤ n). Then there is an isotropic subspace U ⊂ V of
dimension i such that U ∩W = {0}.

Proof. By Lemma 6.13, there is a Lagrangian subspace L ⊂ V such that L+W =
V . Since the dimension of L ∩ W is n − i, there is a subspace U ⊂ L such that
the dimension of U is i and U ∩W = {0}. Since U is a subspace of a Lagrangian
subspace L, U is an isotropic subspace. ✷

Then we have the following proposition.

Proposition 6.15. Let (V, ω) be the standard representation of Sp2n(C). For each
1 < m ≤ n, (Kerfm)

⊥ ⊂ ∧2n−mV is not realizable.

Proof. If (Kerfm)
⊥ is realizable, there is a subspace W ⊂ V of codimension m

such that ∧2n−mW ∈ (Kerfm)
⊥. Then by Lemma 6.14 we have an isotropic subspace

U ⊂ V of dimension m such that U ∩W = {0}. Because Kerfm contains ∧mL for
any isotropic subspace L ⊂ V of dimension m, we have ∧mU ∈ Kerfm. But we have
(∧2n−mW ) ∧ (∧mU) 6= 0. This is a contradiction. ✷

By the SL2n(C)-equivariant canonical pairing ∧2n−kV × ∧kV → ∧2nV ∼= C, we
have the SL2n(C)-equivariant isomorphism

∧2n−kV → (∧kV )∗ ∼= ∧kV ∗.
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Moreover by the correspondence e∗i1 ∧ · · · ∧ e∗ik 7→ ei1 ∧ · · · ∧ eik we have the

isomorphism ∧kV ∗ → ∧kV as vector spaces. The difference between these vector
spaces as SL2n(C)-modules is described by the outer automorphism

σ : SL2n(C) → SL2n(C)
g 7→ tg−1.

Then we obtain the isomorphism φ as SL2n(C)-modules up to the outer automor-
phism σ, that is,

φ : ∧2n−kV → (∧kV )∗ ∼= ∧kV ∗ → ∧kV.

Thereby φ induces the isomorphism φ as follows:

φ : P(∧2n−kV ) → P(∧kV )
∪ ∪

Gr(2n− k, V ) ∼= Gr(k, V ).

Since σ(Sp2n(C)) = Sp2n(C) and σ is an inner automorphism of Sp2n(C), φ gives
an isomorphism between ∧2n−kV and ∧kV as Sp2n(C)-modules. When we consider
∧kV as a Sp2n(C)-module, it is well-known that each irreducible representation
of Sp2n(C) occurs at most once in an irreducible decomposition of ∧kV (see [1,
Chap.17]). Then we have several irreducible Sp2n(C)-invariant subspaces {Wi}i=1,...,s

in ∧kV such that we have a unique irreducible decomposition ∧kV = W1 ⊕W2 ⊕
· · · ⊕Ws, and Wi

∼= Wj if and only if i = j. Since there exists some number i such
that Wi = Kerfk, from now we put W1 = Kerfk. Therefore under the isomorphism
φ we can obtain the unique irreducible decomposition of ∧2n−kV . Namely if we put
W ′

i := φ−1(Wi), {W
′
i}i=1,...,s are Sp2n(C)-invariant subspaces in ∧2n−kV such that

we have the unique irreducible decomposition ∧2n−kV = W ′
1 ⊕W ′

2 ⊕ · · · ⊕W ′
s, and

W ′
i
∼= W ′

j if and only if i = j. By the above construction we have the following
lemma.

Lemma 6.16. For any subset {j1, . . . , jl} ⊂ {1, 2, . . . , s}, the subset P(Wj1 ⊕ · · · ⊕
Wjl)∩Gr(k, V ) is empty if and only if the subset P(W ′

j1 ⊕· · ·⊕W ′
jl
)∩Gr(2n−k, V )

is empty.

Proposition 6.17. For any subset {j1, . . . , jl} ⊂ {1, 2, . . . , s}, the following are
equivalent:

(1) Wj1 ⊕ · · · ⊕Wjl is a realizable subspace of ∧kV .
(2) W ′

j1
⊕ · · · ⊕W ′

jl
is a realizable subspace of ∧2n−kV .

(3) There is some m ∈ {1, . . . , l} such that jm = 1.

Proof. Lemma 6.16 shows that (1) and (2) are equivalent. Note that W ∗ ∼= W
for any Sp2n(C)-modules W . For the perfect paring ∧kV × ∧2n−kV → ∧2nV ∼= k,
we see that (Kerfk)

⊥ = W ′
2 ⊕W ′

3 ⊕ · · · ⊕W ′
s. Indeed, any Sp2n(C)-homomorphism

φ : W1 = Kerfk → (W ′
2 ⊕ W ′

3 ⊕ · · · ⊕ W ′
s)

∗ ∼= W ′
2 ⊕ W ′

3 ⊕ · · · ⊕ W ′
s is zero. By

Corollary 4.16, we have (Kerfk)
⊥ ⊇ W ′

2 ⊕ W ′
3 ⊕ · · · ⊕ W ′

s. Since W ′
1
∼= W1 is
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irreducible, (Kerfk)
⊥ =W ′

2 ⊕W ′
3 ⊕ · · · ⊕W ′

s. Then Proposition 6.15 shows that (2)
and (3) are equivalent. ✷

Then we have the following proposition.

Proposition 6.18. The standard representation of Sp2n(C) is thick, but not m-
dense for each 1 < m < 2n− 1.

Proof. Since each irreducible representation occurs at most once in ∧kV , for any
invariant subspace U ⊂ ∧kV there is a subset {i1, . . . , iα} ⊂ {1, 2, . . . , s} such that
U =Wi1 ⊕ · · · ⊕Wiα . Similarly for U⊥ there is a subset {j1, . . . , jβ} ⊂ {1, 2, . . . , s}
such that U⊥ =W ′

j1⊕· · ·⊕W ′
jβ
. Since (Kerfk)

⊥ = W ′
2⊕W

′
3⊕· · ·⊕W ′

s, 1 ∈ {i1, . . . , iα}

if and only if 1 /∈ {j1, . . . , jβ}. By Proposition 6.17, it is impossible that both U and
U⊥ are realizable. This implies that V is thick. Since it is well-known that ∧mV is
not irreducible for each 1 < m < 2n− 1, V is not m-dense for 1 < m < 2n− 1. ✷
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