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APPLICATIONS OF HOCHSCHILD COHOMOLOGY TO THE MODULI OF
SUBALGEBRAS OF THE FULL MATRIX RING

KAZUNORI NAKAMOTO AND TAKESHI TORII

ABSTRACT. Let Mold,, 4 be the moduli of rank d subalgebras of M, over Z. For x € Mold,, 4,
let A(xz) C My, (k(x)) be the subalgebra of M, corresponding to x, where k(z) is the residue field
of z. In this article, we apply Hochschild cohomology to Mold,, 4. The dimension of the tangent
space TMoldnYd/Z,x of Mold,, 4 over Z at x can be calculated by the Hochschild cohomology
H(A(z), My, (k(z))/A(z)). We show that H2(A(z), Mn(k(z))/A(x)) = 0is a sufficient condition
for the canonical morphism Mold,, 4 — Z being smooth at z. We also calculate H*(A, Mn(k)/A)
for several R-subalgebras A of M,,(R) over a commutative ring R. In particular, we summarize
the results on H*(A, My,(k)/A) for all k-subalgebras A of My, (k) over an algebraically closed field
k in the case n = 2, 3.

1. INTRODUCTION

By a rank d mold A of degree n on a scheme X, we mean a subsheaf of O x-algebras of M,,(Ox)
such that A is a rank d subbundle of M,,(Ox) (Definition BI]). Let Mold,, 4 be the moduli of rank
d molds of degree n over Z (Definition and Proposition B4). Roughly speaking, Mold,, 4 is the
moduli of d-dimensional subalgebras of the full matrix ring M,, over Z. The moduli Mold,, 4 is a
closed subscheme of the Grassmann scheme Grass(d, M,,) and has rich information on subalgebras
of the full matrix ring M,,.

Let A be the universal mold on Moldy, 4. For x € Mold,, 4, denote by A(z) = A®oy,.,, , k(z) C
M, (k(z)) the mold corresponding to x, where k(z) is the residue field of x. For investigating
Mold,, 4, it is useful to calculate Hochschild cohomology H®(A(x), M, (k(z))/A(x)) for each point
x € Mold,, 4. The dimension of the tangent space Tyrolq, ,/z,. of Mold, 4 over Z at x can be
calculated by the following theorem:

Theorem 1.1 (¢f. Corollary BI3). For each point x € Mold,, 4,
dimy () Tviold,, 4 /7.0 = dimy(e) H (A(z), My (k(2))/A(z)) + n® — dimy,) N(A(z)),
where N(A(z)) = {b € M,,(k(x)) | [b,a] = ba — ab € A(x) for any a € A(x)}.

By using H?(A(z), M, (k(x))/A(z)), we obtain a sufficient condition for the canonical morphism
Mold,, 4 — Z being smooth at x:

Theorem 1.2 (Theorem B22)). Let x € Mold,, 4. If H?(A(z), M, (k(z))/A(z)) = 0, then the
canonical morphism Mold,, g — Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a PGL,, g-
orbit {P7*AP | P € PGL, s} in Mold, 4 ®z S, where PGL, s = PGL, ®z S. By using
HY(A(z), M, (k(z))/A(x)), we also have:
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Theorem 1.3 (CorollaryB30). Assume that H*(A(x), M,,(k(z))/A(z)) = 0 for each x € S. Then
the PGL,, s-orbit {P~*AP | P € PGL, s} is open in Mold,, 4 ®z S.

These theorems are useful to investigate the moduli Mold,, 4. We will describe the moduli Mold,, 4
in the case n =3 in [11].

For k-subalgebras A, B C M, (k) over a field k, we say that A and B are equivalent if there
exists P € GL, (k) such that P~*AP = B (Definition B:3). In the case n = 2, there exist 5
equivalence classes of k-subalgebras of My (k) over an algebraically closed field & (Proposition [B.1).
In the case n = 3, there exist 26 equivalence classes of k-subalgebras of M3(k) over an algebraically
closed field k (Theorem [B2). For each k-subalgebra A C M, (k) (n = 2,3), we calculate the
Hochschild cohomology H*(A, M,,(k)/A) in Section 5. We will use the results on H*(A, M,,(k)/A)
for describing Mold,, 4 in the case n = 3 in [I1].

This article is the detailed version of [9] and [I0]. In the proof of Theorem [511] of this paper,
the Fibonacci numbers appear as the ranks of free modules in the cochain complex for calculating
H™(S11(R),M3(R)/S11(R)), which seems strange to us, while we have shown another proof of
Theorem [B.T1] using spectral sequence in [I0]. We need to point out that our results are closely
related with the variety Alg, of n-dimensional algebras in the sense of Gabriel in [2]. Our results
can be regarded as a reformulation of Gabriel’s theory in the k-subalgebra case. We will explain
the relation between Alg,, and Mold,, ,, in another paper.

The organization of this paper is as follows: in Section 2, we review Hochschild cohomology. For
calculating H*(A,M,,/A), we introduce several results on Hochschild cohomology. In Section 3,
we review the moduli of molds. For describing the moduli of molds, we introduce several applica-
tions of Hochschild cohomology to the moduli of molds such as Theorems (Corollary B.13
Theorem B.22] Corollary B30 etc.). In Section 4, we explain how to calculate Hochschild coho-
mology. By using Ciblis’s result (Proposition [.]), we can calculate Hochschild cohomology for
several cases. We also explain several techniques and perform several calculations. In Section 5,
we introduce the classification of k-subalgebras of M, (k) over an algebraically closed field & in the
case n = 2, 3. For each k-subalgebra A of M,,(k) (n = 2, 3), we calculate H*(A, M,,(k)/A) for i > 0.
In Section 6, we summarize the results on H*(A, M, (R)/A) for R-subalgebras A of M,,(R) over a
commutative ring R in the case n = 2,3 as Tables [l and

For a commutative ring R, we denote by I, the identity matrix of M, (R). We denote by
E;; € M, (R) the matrix with entry 1 in the (i, j)-component and 0 the other components. Set
[I,] = (I, mod R*-1I,) € PGL,(R) = GL,,(R)/(R* - I,,) for a local ring R. We also denote by
(R, m, k) the triple of a local ring R, a maximal ideal m of R, and k = R/m. By a module M over
an associative algebra A, we mean a left module M over A, unless stated otherwise.

2. PRELIMINARIES ON HOCHSCHILD COHOMOLOGY

In this section we give a review of Hochschild cohomology groups (cf. [3] and [I4]). Throughout
this section, R denotes a commutative ring, A an associative algebra over R, and M an A-bimodule
over R.

Definition 2.1. Assume that A is a projective module over R. Let A° = A ®p AP be the
enveloping algebra of A. For A-bimodules A and M over R, we can regard them as A°-modules.
We define the i-th Hochschild cohomology group H'(A, M) as Ext’y. (A, M).
We denote by B.(A, A, A) the bar resolution of A as A-bimodules over R. For p > 0, we have
P

—_—~
By(A,A,A) = AQRA®R --- ®r AQRA.



APPLICATIONS OF HOCHSCHILD COHOMOLOGY TO THE MODULI OF SUBALGEBRAS 3

For an A-bimodule M over R, we define a cochain complex C*(A, M) to be
Homye (B« (A, A, A), M).
We can identify CP(A, M) with an R-module
P
Homp(A®g---®g A, M).
Under this identification, the coboundary map d? : CP(A, M) — CP*1(A, M) is given by
dP(f)(a1 @ ®apr1) = a1- flaz®: - @ apy1)

P
+ Z(—l)lf(al R ®ait1 ® @ apy1)
i=1

+(:1)p+1f(a1 ®-®ap) - api

for f € CP(A, M). The Hochschild cohomology group H*(A, M) of A with coefficients in M can
be calculated by taking the cohomology of the cochain complex C*(A, M):

H*(A, M) = H*(C*(A, M)).

Remark 2.2. In Definition ] the assumption that A is a projective module over R is needed
for Extye (A, M) = H'(C*(A, M)) for i > 0.

Let N be another A-bimodule over R. We define a map
U:C*"(A,M)x C*(A,N) — C*(A,M ®4 N)
by
(fUN@1® - Rap@b1 @ Rby)=fla1 @ Rap) @g(b1 @+ Rby)
for f € CP(A, M) and g € C?(A, N). The map U is R-bilinear and satisfies

dPTI(fUg) =dP(f)Ug+ (=1)PfUd(g).

Hence the map U induces a map
HP(A,M)®gr HY(A,N) — HPT1(A,M @4 N)

of R-modules.

By the above construction, we see that the Hochschild cohomology H*(A, —) defines a lax
monoidal functor from the monoidal category of A-bimodules over R to the monoidal category
of graded R-modules. Hence, H*(A, M) is a graded associative algebra over R if M is a monoid
object in the category of A-bimodules over R.

Suppose that the unit map R — A is a split monomorphism. We set A = A/RI, where I € A
is the image of 1 € R under the unit map. Let B,(A4, A, A) be the reduced bar resolution of A as
A-bimodules over R. We have

p
—

By(A, A, A) =2 A@r A®R - @r AQRA
for p > 0. For an A-bimodule M over R, we denote the cochain complex Hom ¢ (B. (4, A, A), M) by
C"(A, M). The cochain complex C (A, M) is a subcomplex of C* (A, M). Recall that the reduced
bar resolution B, (A, A, A) is chain homotopy equivalent to the bar resolution B, (A, A, A), and
hence that the inclusion C" (A, M) — C*(A, M) induces an isomorphism

H*(C(A,M)) = H"(A, M).
We observe that the map U: C*(A, M) x C*(A,N) = C*(A, M ®4 N) induces an R-bilinear map

U:C (A,M)xC (A N)— C (A,M @4 N),
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where N is another A-bimodule over R. Hence the map U: C (A, M)xC (A,N) — C (A, M®,
N) induces the same map H? (A, M)®@r HY(A,N) — HPT9(A, M ®4 N) of R-modules as before.
The following proposition is a basic result.

Proposition 2.3. Let A be a finite-dimensional associative algebra over a field k. Let M be an
A-bimodule over k. For an extension field K of k, we have H'(A®r K, M @, K) =2 H'(A,M)®; K
fori>0.

Proof. The bar complex C*(A @ K,M ®; K) = Homg ((A @ K)® M ®j K) is isomorphic to
C (A, M) ®; K. Hence H (A ®y, K, M ®; K) = H'(A, M) @, K for i > 0. O

Corollary 2.4. Let A, M,k,K be as in Proposition [Z3 Then H'(A,M) = 0 if and only if
Hi(A®p K,M @, K) =0.

For an A-bimodule M over R, suppose that there exists a filtration of A-bimodules over R:
O=F"CcF"'c...cF'cF'=M.

We denote by Gr?(M) the p-th associated graded module F?/FP+l. The filtration induces a long
exact sequence

oo HPTU(A FPTYY 5 HPTI(A, FP) — HPY(A, Gr?(M)) — HPTITH (A FPHY) — ...
We set

Dra = HPHI(A FP)
EPd = HPTI(A GrP(M))
We obtain an exact couple
D : D
E

where D = ®,, (DP? and F = @, LP1. By standard construction, we obtain a spectral sequence:
Proposition 2.5. For a filtration of A-bimodules over R:
O=F"CcF™'c...c F'cF'=M,
there exists a spectral sequence
EV? = HPTI(A, GrP(M)) = HPTI(A, M)

of R-modules with
d, : BP9 N Eptrig-rtl
° kA T

for v > 1, where GrP (M) = F?/FPt1. Here dy : EV' — EPT™Y% s identified with the connecting
homomorphism HP+4(A, Gr?(M)) — HPTa+Y(A GrPT (M) of the long exact sequence

o= H*(A,GrPTH(M)) — H*(A, FP/FP*2) — H*(A,GrP(M)) — H*TY(A, GrP T (M) — - -

induced by the short exact sequence 0 — Gr?T™H (M) — FP/FP+2 — GrP(M) — 0. Moreover, the
spectral sequence collapses at the E,,-page.

Proof. See, for example, [6l, §2.2] for construction of spectral sequences. O
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3. APPLICATIONS OF HOCHSCHILD COHOMOLOGY GROUPS TO THE MODULI OF MOLDS

In this section, we apply Hochschild cohomology to the moduli Mold,, 4 of molds, that is, the
moduli of subalgebras of the full matrix ring. In Section Bl we give a review of the moduli of
molds. In Section 3.2] we show that the tangent space of the moduli of molds over Z at each point
x can be calculated by H*(A(x),M,,(k(z))/A(z)) (Corollary BI3). In Section B3, we construct
an obstruction for the canonical morphism Mold, 4 — Z to be smooth at x as a cohomology
class of H*(A(z), M, (k(x))/A(x)). Hence H*(A(x), My, (k(x))/A(z)) = 0 is a sufficient condition
for Mold,, ¢ — Z being smooth at x (Theorem B.22). In Section B4 we discuss the morphism
$a : PGL, s — Mold,, 4 ®z S defined by P + P~' AP for a rank d mold A C M,,(Og) on a locally
noetherian scheme S, where PGL,, g = PGL,, ®z S. We show that ¢4 is smooth if and only if
HY(A(z), M, (k(z))/A(z)) = 0 for each x € S (Theorem [3.29).

3.1. The moduli of molds. In this subsection, we introduce the notion of mold. We use [7] as
our main reference.

Definition 3.1 (7, Definition 1.1]). Let X be a scheme. A subsheaf of Ox-algebras A C M,,(Ox)
is said to be a mold of degree n on X if A and M, (Ox)/A are locally free sheaves on X. We
denote by rankA the rank of A as a locally free sheaf on X. For a commutative ring R, we say that
an R-subalgebra A C M, (R) is a mold of degree n over R if A is a mold of degree n on SpecR.

Definition 3.2 ([7, Definition 1.2]). Let A and B be molds of degree n on a scheme X. We
say that A and B are locally equivalent if for each x € X there exist a neighborhood U of x and
P, € GL,(Ox(U)) such that P, Y(A |)P: = B |y C M, (Op).

When X is Speck with a field k, we define:

Definition 3.3. Let k be a field. Let A and B be k-subalgebras of M,, (k). We say that A and B
are equivalent (or A ~ B) if there exists P € GL, (k) such that P~1AP = B.

We can construct the moduli of molds:

Definition and Proposition 3.4 ([7, Definition and Proposition 1.1]). The following contravari-
ant functor is representable by a closed subscheme of the Grassmann scheme Grass(d, M,,):

Mold,q : (Sch)? — (Sets)
X — {A] amold of degree n on X with rank A = d}.

We denote by Mold,, 4 the scheme representing the functor Mold,, 4.

Here we review Molds 4 for d = 1,2, 3, 4.

Example 3.5 ([7, Example 1.1]). In the case n = 2, we have

Molds 1 = SpecZ,
Moldg s = IP3,
Moldg s = P2,
Molds 4 = SpecZ.

3.2. Tangent spaces of the moduli of molds. Let k be a field. Let Ay € Mold,, 4(k). In other
words, Ag is a d-dimensional k-subalgebra of M, (k). Let R be the category of Artin local rings
with residue field k£ and local homomorphisms.
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Definition 3.6. We define the covariant functor Def 4, : R — (Sets) by

Aork S A
Def 4,(R) = { A € Mold,, 4(R)| A satisfies that 1 O 1
M, (R)®rk — M,(k)

for R € R. We also define the covariant functor G : R — (Groups) by
G(R)={P e PGL,(R) | P=1[I,] mod m},

where m is the maximal ideal of R € R and (Groups) is the category of groups. Then G(R) acts
on Def 4,(R) from the right by

DefAO (R) X G(R) — DefAO (R)
(4, P) —  P1AP.

Definition 3.7. Denote by (Groupoids) the category of groupoids. We can regard (Def 4,(R), G(R)) €
(Groupoids) for R € R. We define the covariant functor F': R — (Groupoids) by
F : R — (Groupoids)
R +— (Defs,(R),G(R)).

We also define the covariant functor 7y : (Groupoids) — (Sets) by

mo : (Groupoids) — (Sets)
G — { isomorphism classes of objects of G}.

Then we have the following composition

(Sets)

moF R
R Def 4,(R)/G(R).

_)
>

We define the k-vector space of derivations Dery (Ao, My, (k)/Ao) by Der (Ao, My (k)/Ao) = {f €
Homy, (Ao, M,,(k)/Ao) | f(ab) = af(b) + f(a)b for a,b € Ay}.

Proposition 3.8. There exists an isomorphism
Def 4, (k[€]/(¢)) 2 Dery, (Ao, M, (k) /Ao).

Proof. For 6 € Dery, (Ao, My, (k)/Ap), take a k-linear map 6’ : Ay — M, (k) as a lift of §. We define
A(0) = (kl[e]/(e){ a+ 0 (a)e | a € Ag} C M, (kle]/(€?)). Tt is easy to check that the definition of
A(#) does not depend on the choice of §’. We define a map Dery, (Ao, M,,(k)/Ag) — Def 4, (k[e]/(€?))
by 6 — A(6). We can easily prove that this map is bijective. O

Definition 3.9 ([4 16.5.13], [I3 Definition 0B2C]). Let f : X — S be a morphism of schemes.
Let x € X and s = f(x) € S. We denote by k(z) and k(s) the residue fields of x and s, respectively.
The field extension k(s) C k(z) induces k(s)-algebra homomorphisms k(s) 23 k(z)[e]/(€2) & k(x)
such that ¢1(a) =a+0-¢€ for a € k(s), p2(b+ ce) = b for b,c € k(x), and @2 0 @7 is the inclusion
k(s) = k(x). By ¢1 and 3, we obtain morphisms Spec k(z) — Spec k(x)[e]/(e?) — Spec k(s). By
a tangent vector of X/S at x, we mean an S-morphism 1 : Spec k(z)[€]/(¢?) — X such that the
following diagram is commutative:

Spec k(z)
Les N\
Spec k(z)[e]/(2) 5 X
Lot }
Speck(s) — S.
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We call the set of tangent vectors of X/S at x the tangent space T'x;s, of X over S at x, which
has a canonical k(x)-vector space structure.

Remark 3.10 ([4, 16.5.13.1], [13) (0BEA) and Lemma 0B2D]). Let X, be the scheme-theoretic
fiber f: X — S over s = f(x). Then there exists a canonical isomorphism T'x/s » = T'x, /Spec k(s),z
as k(x)-vector spaces. Let {2x/g be the sheaf of relative differentials of X over S. We also have a
canonical isomorphism

Tx)s» = Homoy  (Qx/5,q, k(z))

as k(x)-vector spaces, where Q2x /g , is the stalk of Qx /g at x.

Let A be the universal mold on Mold,, 4. For a point = of Mold,, 4, we denote by A(zx) =
A @0y, , k(x) € M, (k(z)) the mold corresponding to z.

Corollary 3.11. Let x be a point of Moldy, 4. The tangent space Tyiola, 42,2 0f Moldy g4 over Z
at x is isomorphic to Dery gy (A(x), My (k(z))/A(x)) as k(x)-vector spaces.

Proof. We see that Thiold, ,/z,2 = Def 4@z (k(2)[€]/(€*)) = Deryy) (A(z), My (k(z))/A(z)) by the
definition of tangent space and Proposition B.8 We also see that Tyola, ,/z,» 1S canonically iso-
morphic to Dery . (A(z), My (k(z))/A(z)) as k(x)-vector spaces. O

Let us define d : M,,(k) — Dery(Ag, M, (k)/Ao) by d(X)(a) = ([X,a] mod Ap) = (Xa — aX
mod Ay) for X € M,,(k) and a € Ag. It is easy to check that d(X) € Dery (Ao, My, (k)/Ao).
Proposition 3.12. There exists an isomorphism

H' (Ao, My (k)/Ao) = Dery,(Ag, My, (k)/Ag)/Im d.
Proof. Let us consider the bar complex
0 — C°(Ag, My (k)/Ao) S C (A9, My (k)/Ao) S C2(Ag, My, ()/Ag) — -+ .
Note that Ker d* = Dery(Ag, M, (k)/Ap) 2 Im d° = Im d. Hence we have H'(Ag, M,,(k)/Ao) =
Dery, (Ao, My, (k)/Ap)/Im d. O

Let N(Ag) = {X € My(k) | [X,a] € Ap for any a € Ap}. The k-linear map d : M, (k) —

Dery.(Ag, M, (k)/Ap) induces a k-linear map d : M,,(k)/Ag — Derg(Ag, M,,(k)/Ap). Then we have

Corollary 3.13. There exists an exact sequence

0 — N(Ag)/Ao — My (k)/Ao % Dery(Ag, My (k)/Ao) — H*(Ag, My, (k)/Ag) — 0.

In particular, dimy(y) Taold, 4/z,: = dimy ) H' (A(z), My, (k(z))/A(z)) +n? — dimyg,) N (A(z)) for
any point x € Mold,, 4.

Proof. By PropositionB12 M, (k)/Ao 4, Dery(Ag, My, (k)/Ag) — H'(Ag, M,,(k)/Ag) — 0 is exact.
The kernel of d is equal to N (Ag)/Ag. Hence we have the exact sequence above. The last statement
follows from the fact that Thio1a, ,/z,2 = Derg)(A(x), My (k(x))/A(z)) by Corollary B.111 O

By the definition, G(kle]/(€?)) = {[I, + X¢] € PGL,(kle]/(¢?)) | X € M,(k)}. Note that
[I, + Xe] = [I, + Y] if and only if there exists ¢ € k such that X = Y + ¢l,. Hence we
have a group isomorphism G(kle]/(¢?)) = M, (k)/kI, defined by [I, + Xe] — (X mod kI,).
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Recall A(0) € Def 4, (k[e]/(¢?)) defined in Proposition B8] for 6 € Dery(Ag, M,,(k)/Ag). For P =
[In + Xe] € G(k[el/(€2)),

PrAOP = [I,— XAO)[I, + X¢]
= (k[e/(e)){a+ (0'(a) + aX — Xa)e| a € Ao}
A6 — d(X)),

where 0" : Ay — M,,(k) is a lift of 6. Hence we have

Proposition 3.14. We have isomorphisms
H'(Ag, My (k)/Ao) = Def a, (kle]/(¢?)) /G (kle] /(%)) = mo o F(k[e] /(¢?)).

Proof. By the discussion above and Propositions and [3.12] we can prove the statement. O

Let us consider H°(Ag, M,,(k)/Ao).

Definition 3.15. We define the trivial deformation A, = Ag @4, (k[e]/(€?)) € Def 4, (k[e]/(€?)) of
Ag to kle]/(e?). Note that A, = A(0), where 0 € Dery(Ag, M,,(k)/Ag). We also define G, = {P €
G(kle]/(€?)) | P7*AcP = Ac}. Then G. is equal to the stabilizer group Aut gk (e2))(Ae) of Ac in
the groupoid F(k[e]/(c?)) = (Def 4, (K[e]/(¢2)), G(Klel/(2)).
Proposition 3.16. There exists an exact sequence

01— Ge— H°(Ag,My(k)/Ag) =0
where I = {P € G(k[e]/(?)) | P = [I, + X¢|, X € Ao}.

Proof. Recall the isomorphism G(k[e]/(e?)) = M,,(k)/kI, given by [, + Xe] — (X mod kI,,). For
P =[I, + Xe] € G(kle]/(¢?)), P7*A.P = P1A(0)P = A(—d(X)). Hence we have G, = {P €
G(kle]/(€®) | P = [In + X¢],d(X) =0} = {X € M, (k) | [Ao, X] C Ao}/kI,. Let d: M, (k)/A¢ —
Dery (Ao, My, (k)/Ao) be the k-linear map induced by d : M,, (k) — Dery (Ao, M,,(k)/Ao). By the
bar complex, H°(Ag, M,,(k)/A¢) = Kerd = {[X] € M,,(k)/Ao | [Ao, X] C Ap}. The canonical pro-
jection M, (k)/kI, — M,,(k)/Ap induces a surjective homomorphism p : G. — H%(Ag, M,,(k)/Ao).
The kernel of pis I = {P € G(k[e]/(¢?)) | P = [I,, + X¢], X € Ap} = Ag/kl,. This complete the
proof. O

3.3. Smoothness of Mold,, 4. Let (R,7,k) be an Artin local ring. Let I be an ideal of R
such that mI = 0. Set R = R/I and m = m/I. Then (R,m,k) is also an Artin local ring.
Let A € Mold, 4(R). In other words, A C M,(R) is a rank d mold. Since R is a local ring,
A and M, (R)/A are free modules over R. Take a basis aj,as,...,aq of A over R. For 1 <
1 < d, choose a lift S(a;) € Mn(ﬁ) of a;. Since a;a; € A = Rayr & Ras @ -+ & Rag, we can
choose a lift S(a;a;) € RS(a1) @ RS(az) & --- & RS(ag) of aza; for 1 < i,j < d. Note that
S(aia;) — S(ai)S(a;) € My, (I). Let us define an R-linear map ¢ : A®p A — M, (I) =M, (k) @ [
by (X 1cijea i @ a;) = Y1 <i j<q Tj(S(aia;) — S(a;)S(ay)), where 7; € R is a lift of ryj € R.
The R-module structure of M,, (k) ®j I is given by a- (X ®@z) = (p(a)X)®@x for a € R, X € M, (k),
and x € I, wherep: R — R/m = é/ﬁ’b = k is the canonical projection. By using I? = 0, we easily
see that the definition of ¢’ does not depend on the choice of lifts 7;; of r;;.

Set Ag = A®r k C M, (k). Since A = @, Ra;, we can write A9 = L ka;, where @; = (a;
mod m). We denote by ¢’ the composition A @ A LR M, (k) @k I — (M, (k)/Ao) @ I. Tt is easy
to see that ¢’ : A®@r A — (M, (k)/Ao) @k I goes through Ay @k Ag. Hence we have a k-linear
map ¢ : Ay @ Ag — (M (k)/Ag) @x I. By a- (X ®@2)-b = (aXb) ® x for X € M, (k)/Ao,
x € I and a,b € Ap, we can regard (M, (k)/Ao) ®% I as an Ap-bimodule. For the Ap-bimodule
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(M, (k)/Ao) @ I, let us consider the bar complex (C*,d")icz, where C* = C*(Ag, (M, (k)/A) @,
I) = Homy (AF", (M,,(k)/Ag) @i I) and d’ : C* — C*! is a differential.

Lemma 3.17. The k-linear map c : Ag @ Ao — (Mp(k)/Ao) @k I is a 2-cocyle in C2.

Proof. Let us show that d?(c) = 0, where d* : C? — C3. It suffices to show that d?(c)(a; ®a,;®@a;) =
0 for 1 <4,5,1 < d. By the definition,

d? (C)(Ei Ka; ® El) = Eic(aj ® El) — C(Eiaj ® EZ) + C(Ei ® Ejal) — C(ai ® Ej)al.
For 1 <4,j <d, there exist ¢j; € R such that a;a; = Zf 1 ¢5jas € A, Putting ¢ = (cj;
we have @;a; = 25:1 ¢;jas € Mn(k) For verifying d?(c)(@; ® a; ® a;) = 0 in ( n(k)/Ao) @i I =
(M, (k)®%1)/(Ao @k I), we calculate S(a;)c (a; @), d (aia; ®al) '(ai®ajar), and ¢ (a; ®a;)S ( 1)
in M, (k)®k1 =M, (I) C M, (R). We can write S(a;a;) = Z cs.S(as) € @¢_RS(as) C M, (R),

s=1 “1ij

mod m),

where ¢ c S Ris a lift of c . Since

S(ai)c'(aj @ a) = S(a;)(S(ajar) — S(a;)S(ar))
= S(a;)S(ajar) — S(a;)S(a;)S(ar),

d(aa; @ ay)

Il
m\
N
(]~
)
S
S
»
&
£
N———

C/(Qi ® ajal) — C/ (Z C;lai ® as>

s=1
d d
= Z Ejlczss(at) - ZE;IS(al)S(aS)
s,t=1 s=1

and

d(ai ®a;)S(a) = (S(aiaj) — S(ai)S(a;))S(ar)
= S(aza;)S(ar) — S(a;)S(a;)S(ar),
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we have
(3.1) S(a;)d (a; @ a;) — ' (aia; @ a1) + ¢ (a; @ aja;) — ¢ (a; @ a;)S(ar)
d
ST - B8,
s,t=1

The associativity a;(aja;) = (a;a;)a; implies that E'Si:l(czscﬂ c;;cty) € I'foreach 1 <t < d. The

right hand side of (B]) is contained in Zle I1S(a;) = Ag @k I C My (k) @, I =M, (I). Thus, we
have d*(c)(a; @ a; @ @) = 0. O

For lifts S(a;) € M, (R) of a; (1 < i < d) and lifts S(a;aj) € RS(a1) ® --- @ RS(ag) of a;a;
(1 <i,j < d), we can define a 2-cocycle cg € C? by LemmaB.I7 We denote by [cs] the cohomology
class of cs in H?(Ag, (M,,(k)/Ao) @k I).

Lemma 3.18. The cohomology class [cs] in H?(Ag, M, (k)/Ao) @y I) is mdependent from the
choice of the lifts S(a;) € Mp(R) of a; (1 <i < d) and the lifts S(aiaj;) € RS(a1) & --- ® RS(aq)
of aa; (1 <1i,j<d).

Proof. Let T(a;) € M,,(R) and T(a;a;) € RT(a1) @ --- & RT(ag) be other lifts of a; (1 <i < d)
and a;a; (1 < 4,5 < d), respectively. We denote by cg,cr : Ay @ Ao — (My(k)/Ao) @ I the
2-cocycles defined by the lifts {S(a;)} U{S(a;a;)} and {T'(a;)} U{T (a;a;)}, respectively. We define
the k-linear map 6 : Ag — (M, (k)/Ao) @k I = Mn(k) @ I)/(Ao @k I) by @; — (T(a;) — S(a;)
mod Ap @ I) for 1 < i < d. Note that T'(a;) — S(a;) € M, (1) = M,,(k) ®x I. Let us calculate
d'(0)(a; ® a;) = a;0(a;) — 0(a;a;) + H(EZ)EJ Put aja; = > ., ”as for ¢§; € R and ¢}; = (cf;

mod m) € k. We can write S(a;a;) = Z ciS(as) and T'(aa;) = Z d3.T(as) for 1 < z,j <d,

s=1 “ij 5 <s=1 "]
where cw,dfj € M, (R) are lifts of ci;- Using ¢f; —df; € I and (c§; — ds; )T (as) € Ag @y, I, we have
d
G(Eﬂj) = 40 <Z CUCLS>
s=1
d
= ZEfj(T(as) — S(as)) mod Ag @y I
s=1
d d d N
= Y dT(a) =Y &;S(a) + > (G —di)T(as) mod Ag @y I
s=1 s=1 s=1
d
= Z d;. ¢;;S(as) mod Ay ®y I
s=1

= T(aiaj) — S(a;a;) mod Ay ®y I.
Since @; X = S(a;)X and Xa@; = XT'(a;) for each X € M,,(I), we have
d'(0)(a; ® a;)

= af(a;) — 0(@a;) + 0(@)a;
= S(a;)(T(a;) — S(ay)) — (T'(aia;) — S(aia;)) + (T(a;) — S(ai))T(a;) mod Ag @y [
— a;).

cs(@ ®@a;) —er(@ ®
1

Hence we have cg — cp = d*(6), which implies that [cg] = [er]. O
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For lifts S(a;) € M, (R) of a; (1 < i < d) and lifts S(aiaj) € RS(a1) ® - - @ RS(ag) of a;a;
(1 <i,j <d), it seems that the 2-cocycle cg depends on the choice of an R-basis a1, ..., aq of A.
In fact, we see that the cohomology class [cs] is independent from the choice of an R-basis of A by
the following lemma.

Lemma 3.19. The cohomology class [cs] is independent from the choice of an R-basis {a1,...,aq}

of A.

Proof. Suppose that aq,...,aq and by, ..., by are bases of A over R. Then there exists P = (p;;) €
GL4(R) such that

(ala"'aad):(blv"'vbd)P'

Let P = (pij) € GL4(R) be a lift of P. Let us choose lifts S(a;) € M,,(R) of a; (1 < i < d) and lifts
S(a;aj) € RS(a1) ® -+ ® RS(aq) of a;a; (1 <i,j <d). We define lifts T'(b1),...,T(ba) € My (R)
of by, ...,ba € My(R) by

(T(by),...,T(bg)) = (S(ay),...,S(aq))P".
Then
d

S(ai) =Y Thj)p;  (1<i<d)

j=1

holds. Take lifts T(a;a;) € RT(a1) & --- & RT(aq) of asa; for 1 <i,j < d.
We define ¢y : A®r A — M, (I) by

d d
ds | D rijai@a; | = Y Tii(S(aiag) — S(ai)S(ay)),
ij=1 i,5=1

where 75, € R is a lift of ri;. Similarly, we also define ¢/ : A®g A — M, (I) by

d d
A | Do rigbi @by | = > T (T(bidy) — T(0:)T(by)).
i,j=1 i,5=1

Let cb,¢f + Aor A — (M, (k)/Ao) ®% I be the compositions of M, (I) = M, (k) @k I —
(M,,(k)/Ao) @k I with ¢y and ¢/, respectively. By lemma [B.I8 we only need to show the claim
that ¢} = .

Assume that

d d
2 : k 2 : k
aiaj = aijak, bibj = ﬁijbk
k=1 k=1

for 1 <i,j < d, where afj, ij € R. We can write

d

d
S(aia;) = > a%S(ar),  T(biby) =D BET(br),
k=1

k=1
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where &fj, Elkj € R are lifts of ai and ﬂw’

a;Qj

and

we have

(3.2)

d

d
k —
E Q;;Pik =
k=1

for 1 < ¢,5,0 < d. Let us show that cg(z) — ¢p(x) € I ®% A for any x € A ®g A.

respectively. Since
d

= Zo‘fjak

- e szpu«
k= 1

= Z afipikbi

d d
(Z bllplli)(z blzplzj)

1=1 lo=1
d

E Di,iPis b1, b,
l17l2 1

Z P1yiPlyj Z 511[2 b

l1, l2 1

Z plliplgj/Bllll2bl7

Uiy, la=1

d
I
> puipniBly,

l1,l2=1

T = Zrijai@)ajeA@RA. Letﬁjeﬁbealift of rij € R (1 <4,j <d). Then we have

ij=1

@) =

I
R
<.
i M&
I

d d d
T(b)pu | — Z Tij (Z T(bll)ﬁlu‘) <Z T(blz)ﬁlﬂ)

=1 l2=1

Let
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d d
= Z ﬁj&fjﬁlkT(bl) - Z ﬁjﬁlliﬁlij(bll)T(blz)
i,J,k,1=1 i,5,01,l2=1
On the other hand,
d
dr(r) = | D rijei®a;
Q=1
d d d
= Z Tij (Z bllpm) ® (Z blzpl2j>
ij=1 li=1 lo=1
d d
= Z Z Fijﬁlliﬁlzj (T(bllblz) - T(bll)T(blz))
Iy, la=14,j=1
d d d
= D D Tubuibis (Z B, T(br) - T(me(blz))
Iy, la=1i,j=1 1=1
d N d
= Z Fz’jﬁlliﬁlgjﬁllllzT(bl) - Z ?ij]aihiﬁlij(bll)T(blz)
3,5,0,01,12=1 i,5,01,l2=1
By B.2),
d d N
Z T4 O Pk — Z FiiPuibiaiBly, € 1
i, k=1 igiln la=1
for 1 <1 < d. Hence
d d d N
co(z) — ()= > TP — > TibuibiBh, | T
1=1 \ijk=1 igilala=1
d d N
= Z ?ijafjﬁlk - Z TijPuiPlaiBl, | bi € I @k Ao,
=1 \4,j,k=1 ©,5,01,l2=1
where b; = (b mod m). Therefore, ¢ = c.. O

By the lemmas above, we have a unique cohomology class [¢] € H?(Ag, (M, (k)/Ao) @4 I) for
A € Mold,, 4(R) and (R, m, k). Here we introduce the following definition:

Definition 3.20. We call [c] € H%(Ag, (M, (k)/Ao) @k I) the cohomology class defined by A and
(R, m, k).
Proposition 3.21. Let (R,m,k), (R,m, k), and I be as above. Let A € Mold,, 4(R) and Ay =

AQ®pg k. There exists Ae Mold,, 4(R) such that /~1®§ R = A if and only if the cohomology class
[c] defined by A and (R, 7, k) is zero in H2(Ag, (M, (k)/Ao) ®x I).

Proof. Assume that there exists Ae Moldn,d(é) such that /~1®§ R = A. For a basis ay,as,...,aq
of A over R, there exists a basis ay, ds,...,aq of A over R such that w(a;) = a; fori =1,2,...,d,

where 7 : M, (R) — M, (R) is the projection. Set S(a;) = a@; for 1 < i < d and S(a;ia;) = a;a; €
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RS(a1)®---®RS(ag) = Afor1 <i,j <d. Put@ = (a; mod m) € Agfor1 < i< d. The 2-cocycle
¢ defined by lifts {S(a;)} and {S(a;a;)} satisfies ¢(@; ®a;) = S(a;a;)—S(a;)S(a;) = a;a;—a;a; = 0.
Hence the cohomology class [c] is zero in H?(Ag, (M,,(k)/Ao) @k I).

Conversely, assume that the cohomology class [c] is zero in H?(Ag, (M, (k)/Ao) ® I). For
an R-basis a1,...,aq of A, choose lifts S(a;) € Mu(R) of a; (1 < i < d) and lifts S(a;a;) €
RS(a1) @ --- & RS(aq) of aa;j (1 <1i,j < d), respectively. The R-linear map ¢ : AQr A —
M, (k) @k I defined by a; ® a; — S(a;a;) — S(ai)S(a;) for 1 < i,j < d induces a 2-coboundary
cs i Ap ® Ag = (M, (k)/Ao) ® I by the assumption. In other words, there exists a k-linear map
0: Ayg — (My(k)/Ao) @y I such that cs = d*(). Let us denote by 8" : A — Ay RN (M,,(k)/Ao) @i T
the composition of 6 with the projection A — Agy. Choose an R-linear map 6’ : A — M, (I) as a
lift of #”. Then there exist t.; € I such that

(3.3) S(asa;) — S(ai)S(a;) = S(a;)8'(a;) — 0 (aia;) + 0 (a:)S Zt

in M, (I )forl<zg < d. Put aZ—S(aZ)—l—H'(al)EM (R) and A = Z,lRalCM (R). Tt is
casy to see that A and M, (R ) / A are free modules over R and that rank A =d. Let us show that
A is an R-subalgebra of M, (R). For 1 <i,j < d, we can write S(aaj) = lel cZ]S(al) for some
Eéj €R. By using ([3.3), we have

aia; = (S(ai)+0'(a:i)(S(a;) +0'(ay))
= S(a;)S(a;) + S(a;)0'(a;) + 0'(a;)S(ay)
d
= S(aiaj) + 0 (aia;) + Y _th;S(a)

=1

d d d
= Y &S(@) + >0 (@) + >t S(a)
=1

for 1 < 4,5 < d. Thus, A is closed under multiplication. Since 1 € A = ©% | Ra;, we can
write 1 = Zle r;a; for some r; € R. Take a lift 7; € R of r; for 1 < ¢ < d, respectively. Put
a=Y" Fma =Y 7(S(a) + 0'(a;)) € A. Then n(a) = 7(X°, 7a;) = 2%, ria; = 1 and
there exists € My, (I) such that @ = 1+2. Hence 2a—a2 = 2(1+z)—(14z)2 = 1 € A. Therefore,
Aisan R—subalgebra of M,,(R ) Obviously, A® 7zt = A. Thus, we have proved the statement. [J

Theorem 3.22. Let z € Moldy, 4. Let A be the universal mold on Mold,, 4. Set A(z) = A®0,4, ,

k(z). If H*(A(z), M, (k(x))/A(z)) = 0, then the canonical morphism Mold,, 4 — Z is smooth at
x.
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Proof. Since Mold,, g — Z is a morphism of finite type of noetherian schemes, it suffices to show
that if
Spec R/I EN Mold,, 4
ml \
Spec R — SpecZ
is a commutative diagram such that I is an ideal of an Artin local ring (R, m, k) with mI =0, f
maps the special point m/I to z, and k(xz) = R/m = k, then there exists g : SpecR — Mold,, 4 such
that gor = f (for details, see [I3, Lemma 02HX]). Let A C M,,(R/I) be the mold corresponding to
f. The cohomology class [c] defined by A and (R,m, k) is zero, since A®p, k = A(z) C M, (k) =
M, (k(x)) and HQLA(x), (M, (k(x))/ A(2)) @y 1) = H?*(A(x), My (k(2))/A(x)) @k(zy I = 0. By
Proposition B22T] A has a lift A C M, (R), and hence we have g : Spec R — Mold,, 4 corresponding
to A such that g o = f. This completes the proof. O

Remark 3.23. Even if H?(A(z), M, (k(z))/A(x)) # 0, the morphism Mold,, 4 — Spec Z may be
smooth at € Mold,, 4. Indeed, assume that A(z) = J, (k(z)) for x € Mold,, ,, with n > 2, where
Jp is defined in Definition EEI6 below. We will see that H?(J,,(k(z)), M, (k(z))/Jn(k(z))) # 0 by
Corollary £200 However, x is contained in an open subscheme Mold}’%, of Mold,, ,, and Mold;’%, is
smooth over Z (for details, see [11]).

3.4. Smoothness of the morphism ¢4 : PGL,, s — Mold,, 4®zS. Let S be a locally noetherian
scheme. For a rank d mold A of degree n on S, we obtain a morphism 74 : S — Mold,, ¢ ®z S:

S ™ Moldy,q®zS — Mold,g
N\ 1 I
idg S —  SpecZ.
Let us consider the group scheme PGL, g = PGL, ®z S over S. We define the S-morphism
¢4 : PGL, s — Mold,, g ®z S by P — P~ AP. For an S-scheme f: X — S, set Ax = f*A C
M, (Ox). In particular, set Agp = f*A C M, (R) in the case X = SpecR. For an X-valued point
P of PGL, s, ¢A(P) =P lAxP.
Let us consider the question whether ¢4 : PGL,, s — Mold,, 4 ®z S is (formally) smooth or not.
Let I be an ideal of an Artin local ring (R, m, k) with mI = 0. Assume that

SpecR/I 2 PGL, s
(3.4) Ll L oa
SpecR ﬂ Mold,, ¢ ®z S

is a commutative diagram. If there exists g : SpecR — PGL,, g5 such that g = gocrand ¢y =¢40g
for any commutative diagram above, then ¢ 4 is smooth since ¢ 4 is locally of finite type (for details,
see [13, Lemma 02HX]).

Denote by B'(C M,,(R)) the mold associated to ¢». We can identify PGL,(R) = GL,(R)/(R* -
I,,) with the set of R-valued points of the group scheme PGL,, for a local ring R. Note that there
is a commutative diagram consisting of surjective group homomorphisms:

GL.(R) —  GL.(R/I)

4 4
PGL,(R) - PGL,(R/I).
Given diagram (34), we have P € GL, (R/I) such that FﬁlAR/IF = B’ ®pg (R/I). There exists
g : SpecR — PGL,, s satisfying g = go¢ and 1) = ¢4 o g if and only if there exists P € GL,(R)
such that P~'AxP = B’ and (P mod I) = P € GL,(R/I). Take a lift P’ € GL,(R) of P. Set
B = P'B'P'~!' C M,(R). Then B®g (R/I) = P(B' ®g (R/I))ﬁ_l = Agyr. Let us denote by
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1, € GL,(R/I) the identity matrix. There exists P” € GL,(R) such that P"~'AxP" = B and
(P" mod I) = I, € GL,(R/I) if and only if g exists. Hence, we only need to consider whether
there exists P € GL,(R) such that P"'AgP = B and (P mod I) = I,, € GL,(R/I) when
B ®pgr (R/I) = Ag/;. Here we have:

Lemma 3.24. Let A be a rank d mold of degree n on a locally noetherian scheme S. The morphism
b4 : PGL,.s — Mold,, g ®z S defined by P +— P~Y AP is smooth if and only if for any ideal I
of an Artin local ring (R, m, k) over S with mI = 0, and for any rank d mold B C M, (R) with
B ®@g (R/I) = Apgyy, there ezists P € GLy(R) such that P~'AgP = B and (P mod I) = I,, €
GL,,(R/I).

Assume that BRg (R/I) = Agy;. Let us define ¢’ : Ap/y = Ar®@r(R/I) = (M, (R)/ARr)®r1.
Take R-bases a1, az,...,aq € Ag and by, by, ..., bg € B such that @; = b; in M,,(R/I) for 1 <14 < d,
where @; = (a; mod I) and b; = (b; mod I). This is possible because Ar and B are free modules
over a local ring R and B ®r (R/I) = Agjr. Set ¢; = bj —a; € My (I) for 1 < i < d. For
Zle Tia; € Agyq, we define

d d
& <Z ﬂ@-) = (Z ric; mod Ap ®p I) € (M, (R)/AR) @r I = M, (I)/(Ar @r I),
i=1 i=1
where r; € R and 7; = (r; mod I) € R/I for 1 < i < d. Here note that Zle ric; € M, (I).
First, we show that ¢’ does not depend on the choice of lifts r; of 7;. Let v, € R be another lift
of 7; for 1 <i <d. Set s; =r; —r} € I. Note that s;c; =0 for 1 <7 < d because I? = 0. Since

d d
/
E ric; = E r —i—sz 5 E rcl—i— E SiC; = E 7;Cis
i=1 i=1

we see that ¢’ does not depend on the choice of lifts r; of 7;.

Since 12 = 0, (M, (R)/Ar)®gI is an R/I-module. It is obvious that 6’ : Ag,; — (M, (R)/ARr)®r
I is an R/I-linear map. Second, we show that ¢’ does not depend on the choice of b; for 1 < i < d.
Let b)), b5, ..., b, be another basis of B C M,,(R) such that b; — b; € M,,(I) for 1 <i <n. We can
write b, = b; + 2?21 x;;b; for z;; € I. By using ¢; = b; — a; € M,,(I) and I? = 0, we have

d d d
b; = bz + injbj = bz + inj(aj + Cj) = bl + injaj.
7j=1 Jj=1 Jj=1

Set ¢ = b; —a; € My, (I) for 1 <i <d. Since ¢ =, —a; =b; —ai—i—z;l:l Tijaj = cz-—i—zgl:l xijaj,

ch = thz + Z Zrl:vwa]

=1 j=1

Hence (E?:l ric; mod Ar @r I) = (Ele ric; mod Ar ®p I), which implies that ¢’ does not
depend on the choice of a basis {b1,bs,...,bs} of B such that @; = b; in M, (R/I) for 1 <i <d.

Third, we show that ¢ does not depend on the choice of a basis {ai,az,...,aq} of Ar over
R. Let {a},ah,...,a,;} be another basis of Ar over R. There exists P = (p;;) € GL,(R)
such that (a1,as,...,aq) = (a}, a’2, —..,a)P. Let {b1,ba,...,ba} and {b},b5,...,0,} be bases
of B over R such that (bi,bo,...,bq) = (b),05,...,b)P and ¢; = b; — a;,¢; = b, —a) € M,,(I)
for 1 < i < d. Then (¢1,co,...,¢q)

. ; { d: (ch,¢h,...,c;)P. By using a; = Z;l:l pjl-;;-, we have
D1 T = D 7”1'(2]‘:1 pjia;) Z 1(21 1 npﬂ) . Similarly, by using ¢; = Zj:l pjic;w we
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obtain Zle Tic; = Z?:l rl-(z;l:lpjic;-) = Z;l:l (Zle ipji)c;. Hence we see that ¢’ does not
depend on the choice of a basis {aj,as,...,aq} of Ag over R.

Since I? = 0, we can regard (M, (R)/ARr)®r [ as a bimodule over Ag/; = Ag®@g (R/I). Fourth,
we show that the R/I-linear map ¢’ : Ag/; — (M (R)/ARr) ®g I is a derivation. For proving it,

we only need to verify that ¢'(a;a;) = ¢'(a;)a; + a;0'(a;) for 1 <i,j < d. Let a;a; = 22:1 ckay,.
Because @; = b; and @;a; = b;b; in M,,(R/I), there exist dfj € I such that b;b; = Zzzl(cfj —|—di—“j)bk
for 1 <4,j < d. By the definition of §’,
8 (a;)a; +a;0'(a;) = (c;aj + aic;, mod Ar ®pI).

By using ¢;c¢; = 0 for ¢; = b; — a; € M,,(I), we see that

ciaj+aic; = (bi—a;)a;+ (b —ci)ej
bia; — a;a; + bic;
bi(bj — ¢j) — aza; + bic;

= blbj — QG
d d
= D (e di)be =Y cha
k=1 k=1

d d
— E k E k
k=1 k=1

in M,,(I) € M,,(R). Since dfjck =0, we have dfjbk = dfj(ak +ocp) = dfjak € Ar ®g I. Thereby,
d
5/(51-)@ + Eial(aj) = (Z Ci‘cjck mod AR XRr I)
k=1
in (M,,(R)/ARr) ®r I =M, (I)/(Ar @g I). On the other hand,

d
§(@a;) = &> ckar)

k=1

<Zcfjck mod Ar ®r I) ,

k=1

where @; = (cf; mod I) € R/I. Hence &' (@ia;) = 0'(a;)a; + a;8'(a;).
Let us consider the d-dimensional subalgebra Ag = Ar @r k C M, (k). Since I is finitely
generated over R and mI = 0, [ is a finite-dimensional k-vector space. Then

(Mn(R)/Ar) @r 1 = (Mn(R)/AR)®r (R/m)®r1
= (Mu(R)/Ar)®rk @k k@RI
My, (k)/Ao) @y 1.
It is easy to see that the derivation ¢’ : Ap,; — (Mp(R)/AR) ®@r I = (M, (k)/Ao) @ I factors
through Ar,; ®gr/r k = Ao. Hence we obtain a k-linear map 0 : A9 — (M, (k)/Ao) @ I. Set
[ai] = (ai mod AR®Rm) € Ag = Ar®@prk = AR/(AR(X)R’ITL). Note that 5([0,1]) = (Ci mod Ar®p
I eM,(I)/(Ar®@r I) = My, (k)/Ao) @ I for 1 < i < d. We regard (M, (k)/Ao) @ I as an Ag-
bimodule by a(X ® )b = aXb® x for a,b € Ag, X € M,(k), and z € I, where X = (X
mod Ap) and aXb = (aXb mod Ay) in M, (k)/As. We easily see that § is a derivation, that is,
§(ab) = 6(a)b + ad(b) for a,b € Ag. Then § is a 1-cocycle in C*(Ag, (M,,(k)/Ag) @4 I).
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Definition 3.25. Let § : Ag — (M,,(k)/Ao) ®x I be as above. We say that 0 is the derivation
associated to a rank d mold B C M,,(R) with B ®g (R/I) = Agr;;. Note that ¢ does not depend
on the choice of an R-basis {a;} of A and an R-basis {b;} of B with a; —b; € M,,(I) for 1 <1i < d.

Let z1,%2,...,2, € I be a basis of I over k. We can write § = >.._, 2;6;, where §; €

C1(Ag,M,,(k)/Ag) is a derivation for 1 < i < r. The cohomology class [§] is expressed by
[0] = 3251 [0i] @ @i in H' (Ao, (Mn(k)/Ag) @k I) = H' (Ao, Mn(k)/Ao) @5 I.

Lemma 3.26. In the situation above, there exists P € GL,(R) such that P~*ArP = B and (P
mod I) = 1I,, € GL,(R/I) if and only if [§] = 0 in H* (Ao, (M, (k)/Ao) @k I).

Proof. Suppose that [§] = 0. For 1 <i <7, [§;] =0 in H'(Ap, M, (k)/Ap). By the exact sequence

0 — N(Ag)/Ao — My (k)/Ao % Dery(Ag, My (k)/Ao) — H (Ao, My (k)/Ag) — 0

in Corollary BI3] there exists X; € M, (k) such that d;(a) = ([X;,a] mod Ay) € M, (k)/Ay for
a€ Ay. Set X =31 2;X; € M,,(I). Then §([a;]) = ([X,a;] mod Ag ®g I) in M,,(I)/(Ar ®r
I) = (M, (k)/Ao) ® I for 1 < i < d. On the other hand, §([a;]) = (¢; mod Ar ®p I) by the
definition of §. There exists d; € Ar ®p I such that [X,a;] = ¢; +d; for 1 < i < d. Put
P =1, - X € GL,(R). Note that (P mod I) = I,, € GL,(R/I). Using P~ = I,, + X and
¢i =b; —a; € M, (I), we have

P la,P = (I, +X)ai(I, — X) = a; + [X, a;]
= a;+c¢+di=a;+b;,—a; +d; =b; +d;.

Forx el a;®@x € A ®r I C Agp C M, (R). Since a; ® x = a;x = (b; — ¢;)x = bjx € B for
1<i<d, Ap®rI C B. Hence P~ 'a;P = b; + d; € B, which implies that P"'AzrP C B. By
Lemma 327 below, P~'*ArP = B.

Conversely, suppose that there exists P € GL,,(R) such that P! AP = B and (P mod I) =
I, € GL,(R/I). We can write P = I, — X, where X € M, (). For a basis a1, as,...,aq
of Ag over R, set b; = P~'a;P. Note that b; = (I,, + X)a;(I,, — X) = a; + [X,a;] and that
b1,ba, ..., bq is a basis of B over R such that (a; mod I) = (b; mod I) € M,,(R/I). The derivation
6"+ Aryr — My (I)/(Ar ® I) can be written by ¢'(a;) = ([X,a;] mod Ar ®g ) for 1 < i < d.
Then 6 : Ag — (M,,(k)/Ag) @4 I is a 1-coboundary in C*(Ag, (M,,(k)/Ag) @k I). Hence [§] = 0 in
Hl(AQ,(Mn(k)/Ao) Rk I) O

The following lemma has been used in Lemma [3.20]

Lemma 3.27. Let A and B be subbundles of rank d of a locally free sheaf £ of rank m on a scheme
X. If AC B, then A = B. In particular, if A,B C M, (Ox) are rank d molds of degree n on a
scheme X and if A C B, then A =B.

Proof. By the assumption that .4 and B are subbuldes of £, £/A and £/B are locally free sheaves
of rank m —d on X. If A C B, then we have the following commutative diagram with rows exact:

0
1
0 - A > & —- &A = 0
no Lo
0 - B - & — &/B —= 0
1

0
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For ¢ : £/A — £/B, set K = Kery. For proving that A = B, it suffices to show that K = 0. Let
x € X. Taking the stalks at x, we have an exact sequence

0= Ky = Enf Ay B3 E,/B, — 0.

Since &;/B, is free over the local ring Ox ,, £/ Ay = (E4/Bs) ® Ky In particular, Iy is a
finitely generated module over Ox ,. By taking the tensor products with the residue field k(x) =
Ox .,z /Mg, we obtain (£;/Az) ®ox , k(1) = ((E2/Bz) ®ox , k() © (Ke ®0y., k(). Because both
(Ex/As)®0x , k(x) and (£, /B:) @0y, k() have dimension m—d, K, @0y, k(z) = Ky /m Ky = 0.
By Nakayama’s lemma, K, = 0, which implies that L = 0. Hence A = B. O

Let k be a field over the residue field k(z) of a point # € S. For a rank d mold A on S, put
Ag = A®og k € M, (k), which is a d-dimensional k-subalgebra of M, (k). Let R = kle]/(¢?),
and let T = (¢). We regard SpecR and SpecR/I as S-schemes by Spec k = SpecR/I — SpecR —
Spec k — Spec k(x) — S induced by the canonical homomorphisms k(z) — k — R — R/I. Set
A= Ay®r R C M,(k[e]/(¢?)). Then A is the pull-back of A on the S-scheme SpecR. Take a basis
ai,az,...,aq of Ag over k. We can also regard ay,as,...,aq as an R-basis of the rank d mold A
by a; = a; + 0e € M, (k) C M,,(k) & M, (k)e = M, (k[e]/(€?)) = M, (R).

Let us show that for any ¢ € Dery (Ao, M,,(k)/Aop), there exists a rank d mold B C M,,(R) such
that Bog (R/I) = A®gr(R/I) = Ao and § : Ag — (M,,(k)/Ag) @k I = M,,(k)/Ap is the derivation
associated to B. For a derivation & € Derg(Ag, My, (k)/Ag), choose a lift & : Ag — M, (k) of § as
a map. Set b; = a; + 6(a;)e € My, (k[e]/(¢?)) and B = Rby & Rby @& --- & Rbg C M, (k[e]/(¢2)).
Note that bje = a;e € B and that Ay @k ke = Age C B in M, (k[e]/(¢?)). We claim that the
definition of B does not depend on the choice of a lift 5 of 6. Indeed, let us choose another lift
0" : Ao = My (k) of 8. Set b} = a; + 0/ (a;)e and B’ = Rb; @ Rby @ - - @ Rb); C My (k[e] /(€)). Since
b, — b = = (8'(a;) — 8(as))e € Age C B, we have B’ C B. Similarly, we can verify that B C B'.
Hence B = B’, which implies that the definition of B does not depend on the choice of lifts 5 of
5. Note that a + 6(a)e € B for any a € Ay and that B is generated by {a + d(a)e | a € Ay} as an
R-module.

Let us prove that B is an R-subalgebra of M,,(k[e]/(¢%)). Calculating b;b;, we have

bib; = (a;+ g(az)f) (a; +§(aj)€)
aia; + (@‘5(%‘) +d(a;)aj)e
= aa; + (6(aa;) + c)e

for some ¢ € Ap. Since a—l—g(a)e € B for any a € Ay, aiaj—l—(g(aiaj))e € B. By using ce € Age C B,
we see that b;b; € B. We easily see that 1 € B. Hence B is an R-subalgebra of M,,(k[e]/(e?)). We
also see that B is a rank d mold on R such that BRQrk =ARrk = Ay.

We denote by 9 : SpecR — Mold,, 4 ®z S the morphism induced by the rank d mold B. We
also denote by g : SpecR/I = Spec k — PGL,, s the morphism given by the identity [I,,]. Then we
obtain commutative diagram (3.4). Diagram (B.4) induces a derivation ¢’ : Ap/;; = A®r (R/I) =
Ao = (M, (k)/Ag) @y I, that is, 6 (a;) = b; — a; = (6(a;) mod Ag) ® € = §(a;) ® € for 1 < i < d.
Hence 6 : Ag — (M, (k)/Ag) @ I = M,,(k)/Ao is the derivation associated to B. Therefore, we
have the following lemma.

Lemma 3.28. Let k be a field over the residue field k(x) of a point x € S. Let R = k[e]/(€?), and
let I = (6) Put Ag = A®ogs k C Mn(k) Set Ar = Ao ® R and AR/I = Ay R (R/I) = Ag

For any 0 € Dery (Ao, M, (k)/Ao), there exists a rank d mold B C M, (R) such that 6 : Ay —
(Mp(k)/Ao) @k I = M, (k)/Ao is the derivation associated to B with B ®@r (R/I) = Ag/r.



20 KAZUNORI NAKAMOTO AND TAKESHI TORII

Now we have:

Theorem 3.29. Let A be a rank d mold of degree n on a locally noetherian scheme S. Set A(x) =
Ao k(x) C M, (k(z)), where k(z) is the residue field of a point x € S. Put PGL,, s = PGL,,®z5S.
Let us define the S-morphism ¢4 : PGL,, s — Mold,, 4 ®7 S by P+ P~YAP. Then ¢ is smooth
if and only if H*(A(z),M,,(k(x))/A(z)) =0 for each x € S.

Proof. Assume that H'(A(z), M, (k(x))/A(x)) = 0 for each x € S. Let I be an ideal of an
Artin local ring (R,m, k) over S with mI = 0. Suppose that B C M, (R) is a rank d mold
with B ®g (R/I) = Agr/;. By Lemma B.24] it suffices to prove that there exists P € GL,(R)
such that P~'ArP = B and (P mod I) = I,, € GL,(R/I). Let § : Ay — (M, (k)/Ao) @k I
be the derivation associated to B. Denote by = € S the image of m by the canonical morphism
SpecR — S. Then k is a field over k(z) and Ay = A(z) k() k € My (k). By the assumption
that H'(A(z), M, (k(z))/A(z)) = 0 and Proposition 23 H'(A¢, M, (k)/Ao) = H'(A(x) ®k(x)
k, (M, (k(x))/A(2)) @k k) = H (A(z), My, (k(2))/ A(2))®k(2)k = 0. Hence H'(Ag, (M, (k)/Ao)®%
I) = H*(Ag,M,,(k)/Ap) @ I = 0 and the cohomology class [§] is 0. By Lemma B.26 there exists
P € GL,(R) such that P"'AxP = B and (P mod I) = I,, € GL,(R/I).

Conversely, assume that ¢ 4 is smooth. Let z € S. By Corollary B.13] there exists a surjection
Dery(z) (A(z), My (k())/ A(z)) — H'(A(x), My, (k(z))/A(x)) — 0. It suffices to show that [§] = 0
in H'(A(z), M, (k(z))/ A(x)) for any 6 € Dery) (A(x), My (k(x))/A(z)). Let k = k(z) and Ag =
A®o, k = A(x) € M, (k). By Lemma B28 there exists a rank d mold B C M, (R) such that
d: Ag = (Mp(k)/Ao) @k I = M, (k)/Ap is the derivation associated to B with B @ (R/I) =
Apgyr, where R = kle]/(€?), I = (e), Ap = Ay @ R, and Ap;; = Ay @k (R/I) = Ap. Using
Lemma 24 we have P € GL,,(R) such that P"'AgrP = B and (P mod I) = I,, € GL,(R/I),
because ¢4 is smooth. Hence, Lemma implies that [§] = 0 in H'(Ag, (M, (k)/Ao) @y ) =
H'(A(z),M, (k(z))/A(z)). Thereby, H'(A(z), M, (k(z))/A(z)) = 0 for each x € S. O

Corollary 3.30. In the situation of Theorem [Z29, assume that H'(A(x), M, (k(z))/A(z)) = 0
for each xz € S. Then Im¢4 is open in Mold,, 4 ®z S.

Proof. By Theorem [B:29] the assumption implies that ¢4 : PGL,, s — Mold,, 4 ®z S is smooth. In
particular, ¢ 4 is flat morphism locally of finite presentation. Hence ¢ 4 is open, which completes
the proof. O

4. HOW TO CALCULATE HOCHSCHILD COHOMOLOGY GROUPS

In this section, we introduce how to calculate Hochschild cohomology groups. By using Cibils’s
result (Proposition LT]), we can calculate Hochschild cohomology for several cases. As a result, we
see that if A is the incidence algebra of an ordered quiver Q with n = |Qq|, then H*(A, M,,(R)/A) =
0 for ¢ > 0 (Theorem [L6]). We also explain several techniques and perform several calculations.

Let @ be a finite quiver. Denote by @ the set of vertices of @. Let RQ be the path algebra
over a commutative ring R. We define the arrow ideal F' as the two-sided ideal of RQ) generated by
the paths of positive length of Q. A two-sided ideal of I of RQ is called admissible if F* C I C F
for a positive integer n and F/I is an R-free module which has an R-basis consisting of oriented
paths. For an admissible ideal I, set A = RQ/I and r = F/I. Denote by E the R-subalgebra of
A generated by Q.
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Proposition 4.1 ([I], Proposition 1.2). Let M be a A-bimodule. The Hochschild cohomology
R-modules H'(A, M) are the cohomology groups of the complex

g & 5! 52
0 — M* = Hompge(r, M) = Hompge (r @g r, M) = - -

i—1 . i . i+1
S HomEe(r@,M)LHomEe(r@H,M) R

where the tensor products are over F,
ME = {me€ M|sm=ms for each s € Qp} = ®scg,5Ms,
(m)(z) = zm—mzx forme M¥ and z €,

and
5Z(f)(iE1 SR $i+1) = xlf(IQ (SR 1131'+1) + Z(—l)jf(iEl R ® xjxjH Q- ® $i+1)
7j=1

T (1) (21 @ @ 20)Tiga
for f € Hompe(r®, M) and 21 @ - - - @ 211 € &1,

Remark 4.2. Set r®° = E. Then Hompge(r®°, M) = M¥. Hence the complex above can be
written by {Homge (r®", E), 0" }.

Denote by @1 the set of arrows of a finite quiver ). For each oriented path « of @, we denote
by h(a) and t(a) the head and the tail of «, respectively.

Definition 4.3. Let @ be a finite quiver without oriented cycles. We say that @ is ordered if there
exists no oriented path other than « joining ¢(«) to h(«a) for each arrow o € Q.

Definition 4.4. Let @ be an ordered quiver. Let I be the two-sided ideal of RQ generated by
{y—9d € RQ| ~ and 0 are oriented paths with h(y) = h(d) and ¢(v) = ¢(0)}.
We call A = RQ/I an incidence R-algebra. Note that I is an admissible ideal.

For an ordered quiver @, set n = |Qo|. For a,b € Qo, we define a > b if a = b or there exists
an oriented path « such that t(a) = a and h(a) = b. Then (Qo,>) is a partially ordered set
(i.e. poset). Let A = RQ/I be the incidence algebra associated to Q. For a > b, let ey, be the
equivalence class of oriented paths from a to bin A. We can write A = &,>p Rep,. Fix a numbering
on Qo. By regarding ey, as Eyq, A can be considered as an R-subalgebra of M, (R) = ®q4.,bcqo REbas
where Ep, is the matrix unit. We can write £ = ©.cq,Reqq and E° = EQp E? = @4 peqyReaa ®
epp- We also have r = F/I = @®,>pRepq. (In the sequel, we denote Ep, € M, (R) by ep, for
simplicity.)

Lemma 4.5. For i >0, Hompge (r® M, (R)/A) = 0.

Proof. As E-bimodules, r®? is isomorphic to @g,>s;>...>s; Res,s,- On the other hand, M, (R)/A =2
GaypRepe. Hence we have Hompe (r® M, (R)/A) = Bsyss,>>s:, axp Hompe (Res,s,, Rep).
Since Hompge (Res, s, , Reba) = €55, (Repa)esys, = 0, Hompe (r®4 M, (R)/A) = 0. O

Summarizing the discussion above, we have the following theorem.

Theorem 4.6. Let QQ be an ordered quiver with n = |Qo|. Let A be the incidence algebra associated
to Q. Then H'(A,M,,(R)/A) =0 fori > 0.
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Proof. By Proposition -]l and Lemma 5] we can prove the statement. O

We show several examples of Hochschild cohomology groups H*(A, M,,(R)/A) for R-subalgebras
A of M, (R). We also refer to the moduli Mold,, 4 of molds. Let A be the universal mold on Mold,, 4.
For z € Mold,, 4, we set A(z) = A ®0y,q, , k(z), where k(z) is the residue field of z.

Example 4.7. Let R be a commutative ring, and let us consider the following quiver Q:
1+—2+—3¢+— - ¢—n.

Let A = RQ/I be the incidence algebra associated to @ over a commutative ring R. Then
A = @i<i<j<nRe;j. We can regard A as the upper triangular matrix ring B,(R) = {(a;;) €
M,,(R) | a;; = 0 for i > j}. By Theorem I8, H*(B,(R), M, (R)/B,(R)) =0 for i > 0.

This result is compatible with the fact that the connected component containing B,, in Mold,, 4
is isomorphic to GL,,/B,,, where d = n(n +1)/2 and B,, = {(ai;) € GL,, | a;; = 0 for ¢ > j} (For
details, see [7, Theorem 1.1]). Indeed, the image of the morphism ¢z, : PGL,, — Mold,, 4 associ-
ated to the mold B,,(Z) on Spec Z is open by Corollary B30, since H'(B,(R), M, (R)/B.(R)) =0
for any commutative ring R. It is easy to see that Im¢g, = GL, /B, is irreducible, open and
closed, and hence that GL,,/B,, is an irreducible component and a connected component. We also
see that H2(B,,(R),M,(R)/B,(R)) = 0 is compatible with the fact that GL,, /B, is smooth over
Z (see Theorem B.22). If A(x) = By (k(z)) for a point x € Mold,, 4, then dimy(,) Tvotd,, 4/z,0 =
dimy () H' (Ba(k(@)), M (k(2))/Bn (k(2))) +n* — dimg,) N(Ba(k(z))) = n? — dimy,) Ba(k(z)) =
dim GL,, (k(x))/Bn(k(x)) = n(n—1)/2 by Corollary B.I3] since N (B,,(k(z))) = B, (k(z)). For more
general result, see Example

Example 4.8. Let R be a commutative ring, and let A = RI,, C M,(R). The bar complex
1

C*(RI,,, M,,(R)/RI,) is isomorphic to 0 — M, (R)/RI, % M,(R)/RI, % M,(R)/RIL, % -,
where d' = 0 if ¢ is even and d' = idy;,, ()1, if @ is odd. Hence we have

R)/RI, (i=0)
0 (1> 0).

The moduli Mold,, ; is smooth over Z, since it is isomorphic to Spec Z. This is compatible with
the fact that H?(RI,, M, (R)/RI,) = 0 (see Theorem 3.22). Note that A(x) = k(z)I, for each
point 2 € Mold,,1. Then dimy) Tviowa, ,/z,e = dimye) H (k(z) 1, My, (k(z))/k(x)1,) + n® —
dimy,p) N (k(2)1,) = n® — dimy,) My, (k(2)) = 0 by Corollary BI3| since N (k(z)I,) = My (k(x)).

Example 4.9. Let R be a commutative ring, and let A = M, (R). Since M, (R)/M,(R) =
0, H (M, (R),M,(R)/M,(R)) = 0 for i > 0. The moduli Mold,, > is isomorphic to Spec Z
(see [T, Proposition 1.1]), and hence it is smooth over Z. This is compatible with the fact
that H?(M, (R), M,(R)/M,(R)) = 0 (see Theorem B22). We see that dimy, Tviowd,, /2,0 =
dimy, o) H' (M, (k(2)), My, (k(2)) /My (k(2))) + n? — dimy,) N (M, (k(z))) = 0 for z € Mold,, ,2 by
Corollary B.13

H'(RI,,M,(R)/RI,) = { Ma(

Example 4.10. Let R be a commutative ring, and let A = D,,(R) = {(ai;) € M, (R) | ai; =
0 for i # j} C M, (R). In other words, D,,(R) is the R-subalgebra of diagonal matrices in M,,(R).
Let Q be a quiver with Qo = {1,2,...,n} and @; = 0. Then D,,(R) = RQ = ;-1 Re;; C M,(R) =
@} j—1Reij and M, (R)/Dy(R) = ®ixjReij. The arrow ideal I of RQ is 0. Set [ = I' = 0. Then
A =RQ/I = RQ =D,(R), r=F/I =0, and E = D,(R). The complex in Proposition 1] for
M = M, (R)/D,(R) is the zero cochain complex, since r = 0 and M*” = (M, (R)/D,,(R))P~(®) = 0.
Hence H'(D,,(R),M,(R)/D,(R)) = 0 for @ > 0. This result also follows from that D,(R) is a
separable R-algebra.
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Definition 4.11. Let ni,ne,...,ns be positive integers with Zle n; = n. We define the R-
subalgebra Py, n,....n. (R) of M,,(R) over a commutative ring R by

t t+1 t
P, (B) = {(ai;) € Mn(R) | a5; = 0if > mp <i <Y mpand j < milh.
k=1 k=1 k=1

To simplify notation, we write Py (R) instead of Py, ny,....n, (R) for n = (n1,n2,...,n5). Set
X1 0 0o --- 0
0O Xo 0 --- 0
E = 0 0 X5 -+ 0 | cp(R)|X;eM, (R for1<i<s
0 0 0o - X
and
0 X2 Xy3 -0 Xy
0 0 X3 Xos )
_ 0 0 0 - Xss Xij € My, n, (R
" ) ) ) ) . € Pu(R) f0r1§i<;§s ’
0 0 0 0

where M, ;(R) is the set of (i x j)-matrices over R. Note that E is an R-subalgebra of Py, (R) and
that Pn(R) = E @ r as E-bimodules. We also set

X 0 0 -~ 0
0 Xo 0 - 0
o 0 0 X3 --- 0 cE X; € My, (R), but X; equals 0
T = in My, (R) for j #i
o o0 0 - X5
for 1 <i<sand
0 X2 Xiz -+ Xy
0 0 ng Xos
o 0 0 0 X3 | ¢ Xij € My, n; (R), but Xy equals 0
i = " in My, n, (R) for (k,1) # (i, )
0 0 o --- 0

for 1 <i < j <s. We easily see that r;; is an E-bimodule and that Pn(R) = @1<i<j<sTi; and
7 = B1<i<j<sTij as F-bimodules.

To calculate H'(Pn(R),M,,(R)/Pn(R)), we need to make several preparations.

Proposition 4.12. For 1 <i<j <s, r;; is a projective E-bimodule. In particular, Pn(R) and r
are projective E-bimodules.

Proof. The E-bimodule F ®r E = ©1<; j<sTi @pg 755 is isomorphic to ' ® EP as K¢ = F Qg FP-

modules. Hence r;; ®g 7j; is a projective F-bimodule for 1 <i,7 <s. For 1 <1i < j <5, we can
easily check that ry; ®gprj; = rgnmj as E-bimodules. Therefore, r;; is a projective E-bimodule.

The last statement follows from that Pn(R) = B1<i<j<sTij and 1 = B1<icj<sTij- O
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Proposition 4.13. For a commutative ring R, put P = Pn(R). Let E and r be as in Definition
[£11 The following complex gives a projective resolution of P in the category of P-bimodules:

3 PR @ PA PRpr® g P - 5 Poprop PR PepP BP0,

where 1% = r Qp -+ Rpr (i times), d; : PQpr® @p P LY P®pr®~l®p P is the P-bimodule
homomorphism determined by d;(1 Q@21 ® -+ Q@ z; 1) =21 Q1@ - Qa; ® 1+ Z;;ll(—l)jl ®
T1Q - Rrjri Q- Q@1+ (1)1 Q2@ @y, and dy : P Qg P — P is defined by
do(a ® b) = ab.

Proof. As E-bimodules, r;; @ rj = ry and 1; @p i = 0 for j # k. We see that r®' =
D1<i<jo<<jir1<s Tige OF ** OF Tjijin = P1<ji<jo<<jiy1<s Tjijisr- (FOI" convenience, set
r® = E.) By Proposition 12, 7®® is a projective E-bimodule for i > 0. There exists an
E¢ = E ®p E°P-module M such that 7®* & M = (E ®g E°P)®7 as E¢-modules for some ¢q € Z.
Then we have

Py (r® o M)®p P

(P®g (E®p E°?) ®@p P)%1
(P®g P)®q.

(Popr® ®@p P)® (P®p M ®g P)

1

1%

Since P ®pg P is a projective P-bimodule, P®z r® ®p P is also a projective P-bimodule for i > 0.

Let us show that the complex is exact. For A € P = E®r, we write A = Ag + A\, where A\p € F
and A, € r. For i > 1, we define the R-homomorphism ¢; : PQgr® ' @r P - PQrr® @ P
by t(A®21 @ Qa1 @Qu) =10\ @21 ® -+ 2,1 ® u. We also define tg : P - P ®p P by
A= 1® A By doto(A) = do(1 ® A) = A, we have dpty = id. Next, let us check tody + dit; = id.
By todo(A®@ ) =to(Ap) = 1@ Apand dity(A@ p) =di(1 QN @ u) = A\ Q@ p — 1 & A\t

(todo + dit1)) A @p) = 1A+ @pu—13\p
= 1A+ AN+ X Qu—10 A\u
= 1RApu+AQp
= AE@pu+A@p
= AQpu.

This implies that todo + dltl = id.
Finally, let us prove that t;d; + d;11t;41 = id for ¢ > 1. Since

diA@r1® - Qx; @ W)
= M1 - Qx;, du

1—1
+Z(—1)j)\®$1 X R rixi ®"'®$i®ﬂ+(—1)i)\®$1 Q- QTi—1 @ T,
=1

(4.1) Ldi(A@T1 @ - Qx; @ p)
i—1
= 10A), @20 Rz @u+» (110N R1® - @uzj11® - Qx; O p
j=1
F(ED1ON Q11 @ @ Ti1 ® T,
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On the other hand,

(4.2) dit1tit1(A@T1 @+ ®2; @ p)
= (1N Q11 ® - @z @)

= MR ® - Qru—13AN21 220 - Qx; QU
1—1
+Z(—1)j+11®>\r®x1®---®xjxj+1®---®xi®u

—

j:
HEDTION @1 @ @ X @ .

By (@) and ([@2I),

(tid; + dig1t141) (A Q 11 @ - Q1 @ )
= 10(M\1),@22® QAU+ 01Q - QTOp—1ONT1 RT2@ - Qx; @ p
= 1A+ N)21 220 QTiOpU+ M Q1@ - T, Qu—19MT1 ®T2® - Qx; Qi
= 1I@AET1IR12® - QU+ X2 Q- QX D
= AEQ®TIR2Q - QT QUu+AN Q01 ® - Qx; O
= AT Q- Qx; DU.

Here we used (A\z1), = Ax1 = (Ag + A\)z1. Hence t;d; + dit1tiy1 = id for ¢ > 1. Thus, we have
proved that the complex is exact. O

Proposition 4.14. Let R be a commutative ring. Let Pn(R) be as in Definition [{.11 Then
HY (Pa(R),M,,(R)/Pn(R)) =0 fori > 0.

Proof. Put P = Py(R). We use the same notation in the proof of Proposition I3l For 1 < j <
1 < s, we set

0 0 0 0
Xo1 0 0 0
o X3 Xz O 0 Xij € My, n,; (R), but Xy equals 0
i U EMa(B) | M, (R) for (k1) 2 (i )
Xsl X52 Xs3 e 0

Note that M,,(R)/P = ®1<j<i<s Tij as E-bimodules.
Let us consider the projective resolution of P in Proposition [4.13

3 PR @0 PAPRpr® ' @g P> > PRpr@s P B3 Pop P B P 0.
To calculate H!(Pn(R), M,,(R)/Pn(R)), it suffices to take the cohomology of the following complex

0 — Hompe(P ®g P,M,(R)/P) — Homp:(P ®p r ®p P,M,(R)/P) — ---
— Hompe (P ®p r® ' @ P,M,(R)/P) = Homp: (P @ r® @p P,M,(R)/P) = --- .

For i > 1, we see that

1%

Hompe(P ®@p r® @ P,M,(R)/P) Homgpg. (r®, M,,(R)/P)

Hompge (®1<jy <jo<<jiy1<s Tirgir> D1<j<i<s Tij)

0.

1

12
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We also see that

Homp: (P ®5 P,M,(R)/P) = Homp.(E,M,(R)/P)
= Hompge (Bj_ 7, Pi<j<i<s Tij)
= 0.
Hence we have H*(Pn(R), M,,(R)/Pn(R)) = 0 for i > 0. O

Example 4.15. Proposition .14 is compatible with the fact that the connected component con-
taining Pn = Pn, n,,....n. in Mold, g is isomorphic to GL,, /Py, n,y,..n, = Flag, ., ., where
d= Zlgigjgs nin; and Py, ny 0, = {(aij) € GL,, | a;; = 0 if 22:1 ng <i< Ef;ll ng and j <
S h—y nk} (for details, see [, Theorem 1.1]). Indeed, since H'(Py(R), M,,(R)/Pn(R)) = 0 for any
commutative ring R, the image of the morphism ¢p, : PGL,, — Mold,, 4 associated to the mold
Pn(Z) on Spec Z is open by Corollary B30 It is easy to see that Im ¢p, = GL,, /Py sy, on, 18
irreducible, open and closed, and hence that GL,, /Py, ny.... n, is an irreducible component and a
connected component. We also see that H?(Pn(R), M, (R)/Pn(R)) = 0 is compatible with the
fact that GL,, /Py ns,...n. is smooth over Z (see Theorem B.22). If A(x) = Pn(k(x)) for a point
x € Mold,, 4, then

.....

dimy ) Tnold, 4/z,2
— dimgge) H(Palk(z)), Ma (h(2))/Pa(k(2))) +n? — dimy ey N (Pa(k(z))
= n® —dimy(,) Pa(k(z))
= dim GL,(k(x))/Pn, na,....n, (k(z))
by Corollary BI3] since N (Pn(k(x))) = Pn(k(x)).
Definition 4.16. Let R be a commutative ring. We define € M,,(R) by

o10 0 --- 0

oo1 0 --- 0

o oo 1 --- 0
€T =

000 0 . 1

oo0oo0o 0 --- 0

Let J,,(R) be the R-subalgebra of M,,(R) generated by z. Then J,(R) = R[z]/(2™) as R-algebras.

To calculate H'(J,,(R), M, (R)/J,(R)), we need to make several preparations. Let A = R[x]/(z").
We introduce the following proposition without proof. This gives a projective resolution of A over
A= A®pg AP,

Proposition 4.17 ([5, Proposition 1.3], [I2, Example 2.6]). The following complex gives a projec-
tive resolution of A over A°:

R ey L U LN N )
where
(E’?‘l x’ ®x"’1*j) (a®b) (i: even)
di(a@b) = j=0 :
(lez—2z21)(a®b) (i: odd)

and p(a ®b) = ab.
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Set M = M, (R)/J,(R). For calculating H*(J,,(R), M), it suffices to take the cohomology of
the complex

0 — Home (A€, M) & Hom e (A, M) — - — Homa- (A, M) 2% Homu. (A€, M) — ---
which is isomorphic to

1 n
0O-M5S M- s MS M.

where
bi(m) = Z;:ol man 177 (i: even)
mx — xm (i : odd).
Let E;; € M,,(R) be the matrix unit. We can write € J,(R) by x = E12 + Eag + -+ + Ej_1 .
Note that
o _J Eijn (G<n-1)
Bye={ P UEL
and
_ [ By (22
First, let us calculate b : M — M for even i. For Ey € M, b'(Ey) = E;:Ol I Egan 177 =
Z?;}fl Er_jitn-1-j = Zf;i“ Ejn-1ti—kt; = 2"T7F"1 = 0in M (if k& < I, then there is no
term in the sum). Hence if 7 is even, then b’ = 0.
Next, let us calculate b* : M — M for odd i. The rank of the R-free module M is n(n —1). We
can choose an R-basis Epn1, En2, ..., Epn, En—11, En—12,. .., En—iny. .., E21,E29,...,Ez, of M.
Set b=bl =03 =0b"=--..

Lemma 4.18. With respect to the R-basis
Enl; EnQ; e aEnn; Enfl,la En71,27 R Enfl,nv e E2,17 E2,27 te EQ,n
of M, the matriz B representing b : M — M is given by

J 0 o - 0o Jr!
-1, J 0o .- 0o J?
o - J - 0o Jr3
B = : Lo : € Myy(n-1)(R),
0 0 0 . J?
0 0 o - —=I, 2J
where
0 0 O 0 0
1 0 0 0
01 0O 0 0
J= € M, (R)
0 0 O 0 0
0 0 O 1 0

Proof. For 3 <1 <n,
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For1 <j<n-2 b(EQj) =Fo 41— By =2 j11 + B30+ -+ Ey_jy1.,. We also see that
b(Ezn—1) = Bz — E1 n_1 = 2E5,, and that b(Fs,) = —FE1, = 0. By these results, we can check
the statement. ]

By multiplying

L, J 0 -~ 0 0 L, 0 0 0 0 L, 0 0 0 0
o I, 0 -~ 0 0 o I, J 0 0 o I, O 0 0
o o I, --- 0 0 0o 0 I, 0 o o0 I, 0 0
o 0o 0 . I, O 0O 0 0 I, 0 o o o . I, J
o o o - 0 I, 0 0 O 0 I, o o o --- 0 I,
by B, we have

0 0 0 0 nJnt

I, O 0 0 (n—1)Jn2

o -1, 0 0 (n—2)Jn3

0 0 0o . 0 3J2

0 0 o - —I, 2J

Furthermore, we can obtain the following Smith normal form of B by multiplying elementary
matrices (although R may not be a principal ideal domain, we use the terminology ”Smith normal
form”):

L, 0 --- 0 O

" n 0 0

o I, --- 0 0 0 0 0

Do Lo , where X = ) € M, (R)
o o --- I, O i

o o --- 0 X 00 0

By the discussion above, we have the following proposition:

Proposition 4.19. Let J,(R) be as above. Then

MR,y = { 178G )

where Ann(n) = {a € R | an = 0}.
Proof. Let us consider the complex
0o-ME3MESMS5MmSmwh ...

By the Smith normal form of B, KerB = R"~! & Ann(n) and CokerB = R"! & (R/nR). The
statement follows from this result. O

Corollary 4.20. Let k be a field. For each i >0,

M) = { L G

For calculating the dimension of the tangent space of Mold,, , over Z at J,, we determine
the normalizer N(J,(k)) = {z € My (k) | [2,y] € Jn(k) for any y € J,(k)} for a field k, where

[z,y] = 2y — yz.
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Proposition 4.21. Let k be a field. Let x € J,(k) be as in Definition [[.16 Put Ay = I,, and
A; =a' for 1 <i<n-—1. We define B;,C € M, (k) by

n—i—1
B; = Z JEji1ivje1 = E2ivo+2E3 134+ 3FEs 44+ -+ (n—i—1)Ep_;, for0<i<n-—2
=1
and
n—1
C=> jEjy1;="FEa1+2Es32+3Es3+-+(n—1)Enn 1.
i=1
Then

_ (®;75 kAi) @ (8725 kBi) (ch(k) f n)
N(Jn(k)) - n—1 n—2
(B kA;) ® (B kB;) ® kC (ch(k) |
In particular,

. [ 2n—1 (ch(k) [ n)
dimy, N (Jn(k)) = { 2 (ch(k) | n).
Proof. Note that N(J,(k)) = {z € My (k) | [z,z] € Jn(k)}. Set My = &;_;—kE;; C M, (k). Then
M, (k) = EB?Z__l(n_l)Ml. Since [E;j, x| = E; j+1 — Ei—1,j, [2,2] € My4q if z € M. For z € M,,(k),
we can write 2 = 2_(,,_1)+- -+ 20+ -+ 2,1, where z; € M;. It is easy to see that z € N(J,(k))

if and only if z; € N(J,(k)) for —(n — 1) <i <n — 1. It suffices to determine N (J,(k)) N M.

For —(n —1) <1< =2,if 0 # z; € M;, then 0 # [z, 2] € M;41. Hence N(J,(k)) N M; =0
for —(n—1) < i < —2. Let 21 = agE91 +azEse + -+ + anEpn_1 € M_y. Since [z_1,2] =
—asF11 + (ag — a3)E22 + (a3 — a4)E33 + -+ (an—l — an)En_l,n_l + anFpn, 2.1 € N(Jn(k)) if
and only if
(4.3) —Ay=a2— A3 =0A3 — Q4 =+ = Ap_1 — Ap, = Q.

Suppose that (3) holds. Putting a,, = —¢, we have as = t,as = as + t,a4 = as +¢,...,a, =
an—1+t. Hence as = t,a3 = 2t,...,ap—1 = (n—2)t,a, = (n—1)t. By a,, = —t, we obtain nt = 0.
If ch(k) f n, then ¢t = 0. In this case, as = ag = --- =a, =0 and z_; = 0. If ch(k) | n, then
z_1 = tC. Conversely, z_1 = tC € N(J,(k)). Thus, we have
_ | 0 (ch(k) [ n)
N(In(k)) N M- = { kC (ch(k) | n).

Let us investigate N(J,(k)) N Mp. Let zo = a1E11 + agEas + -+ + anEpny, € My. Since
[Zo,fE] = (a1 — a2)E12 =+ (CLQ — ag)E23 4+ 4 (an,1 — a,n)En,Ln, Z0 S N(Jn(k)) lf and only lf
(4.4) A1 — Ay = Q3 — A3 = +++ = Ap_1 — Ap.-

Suppose that (4] holds. Putting a1 = s and a; — ag = —t, we have a1 = s,a2 = s+ t,a3 =
s+2t,...,a, = s+ (n—1)t. Then z9 = sl,, +tBy = sAg+tBy. Conversely, if zg = sAg+tBy, then
z0 € N(Jp,(k)). Hence N(J,,(k))NM_q1 = kAo®kBy. Similarily, we can show that N(J,(k))NM,; =
kA; ® kB; for 1 <i <n—2 and that N(J,(k)) " M,,—1 = kA,,_1. Therefore, we have proved the
statement. O

Example 4.22. If A(z) = J,(k(x)) for a point x € Mold,, ,,, then

dlmk(m) TMoldn,d/quC

= dimy(e) H' (3 (k(@)), M (k(2)) /3, (k(2))) + n® — ditny (o) NI, (k(2)))

= n2—n

by Corollary B3] since dimy N(J,(k)) — dimy H'(J,,(k),M,,(k)/Jn(k)) = n for any field k by
Corollary and Proposition @211
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To calculate several Hochschild cohomology groups, we introduce several propositions.

Proposition 4.23. Let R be a commutative ring. Let A and B be R-subalgebras of M,,(R) and
M,,(R), respectively. Assume that A and B are projective R-modules. We regard the product A x

0 ) € Mypsn(R) ‘X €AY € B} 0f Myyn(R). Then Hi(A x

B as the R-subalgebra }O,
B, My4n(R)/(A x B)) 2 H(A,M,,(R)/A) ® H(B,M,(R)/B) as R-modules for each i.

0 O 0 I,
contained in the center of A and that 1 = e4 + ep, e% = ey, eQB = ep, and eqep = egey = 0.
There is a projective resolution P, — A — 0 of A in the category of A-bimodules. There is also
a projective resolution Q. — B — 0 of B in the category of B-bimodules. Then we obtain a
projective resolution P, Q. — A =2 A® B — 0 of A in the category of A-bimodules, since P, @ Q.
is a projective A-bimodule for each *. Putting M = M, (R)/A = My,4n(R)/(A X B), we see
that

Proof. Set A = A x B. Put ey = < Lm0 ) and eg = ( 00 ) Note that e4 and ep are

M = egsMeg®eaMep BegMey PegMep
>~ M (R)/A® My n(R) ® My.m(R) ®M,(R)/B,

where M,,, ,(R) and M, ,,(R) are the R-modules of (m x n)-matrices and (n x m)-matrices, re-
spectively. By the isomorphism

Hompe (P & Qx, M) = Hom ye (Py, M, (R)/A) & Hompe (Q«, M,,(R)/B),
we have H'(A X B,M,,4n(R)/(A x B)) =2 H(A,M,,(R)/A) ® H'(B,M,,(R)/B) for each i. O

Proposition 4.24. Let A be an R-subalgebra of M,,(R) over a commutative ring R. Assume that
A is a projective module over R. For P € GL,(R), set B = P~YAP. Then H'(A,M,(R)/A) =
HY(B,M,,(R)/B) as R-modules for each i.

Proof. Let ¢ : My, (R) — M,,(R) be the isomorphism defined by X + P71 X P. The commutative
diagram
A 5 B
1 1

M.(R) % M,(R)
is induced by ¢. Then we obtain an isomorphism C*(A, M, (R)/A) = C*(B,M,(R)/B) of com-
plexes. This implies the statement. 0

Proposition 4.25. Let A be an R-subalgebra of M,,(R) over a commutative ring R. Assume that
A is a projective module over R. Set 'A = {!X | X € A} C M,,(R). Then H'(A,M,(R)/A) =
H(*A,M,,(R)/*A) as R-modules for each i.

Proof. Let A°? be the opposite R-algebra of A. In other words, A°? = {a°? | a € A} and
a?b? = (ba)°? for a,b € A. For an A-bimodule M, we define the A°P-bimodule M = {m° |
m € M} by a®®m°Pb? = (bma)°P for a®?,b°? € A°P and m°P € M°P. Let us choose a projective
resolution - -+ — P} — Py — A — 0 of A in the category of A-bimodules. We canonically obtain a
projective resolution - -+ — P/¥ — Pg¥ — A% — 0 of A° in the category of A°P-bimodules. Then
Hom A —pimod (P, M) and Hom gor _pimod(Pe?, M°P) are isomorphic as complexes of R-modules.
Hence H' (A, M) = H'(A°P, M°P) for each i.

We define a canonical R-algebra isomorphism ¢ : A°? — *A by a°? — fa. Note that A°P
and 'A are projective modules over R. The ‘A-bimodule M,,(R)/*A can be regarded as an A°P-
bimodule through ¢, which is isomorphic to (M,,(R)/A)°. This implies that H*(A, M, (R)/A) =
Hi(A? (M, (R)/A)°P) = H'(*A,M,,(R)/tA) for each i. O
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Definition 4.26 (c¢f. Definitions and B3). Let R be a commutative ring. Let A, B C M, (R)
be R-subalgebras. We say that A and B are (globally) equivalent (or A ~ B) if there exists
P € GL,(R) such that P"'AP = B.

Corollary 4.27. Let A and B be R-subalgebras of M,,(R) over a commutative ring R. Assume
that A and B are projective modules over R. If A ~ B or A ~ 'B, then H'(A,M,(R)/A) =
HY(B,M,,(R)/B) as R-modules for each i.

Proof. The statement follows from Propositions [4.24] and [4.25 O

5. THE CALCULATION OF H%(A, M, (k)/A) FOR n = 2,3

Let A be a k-subalgebra of M, (k) over a field k. In this section, we discuss the Hochschild coho-
mology H*(A, M, (k)/A) for n = 2 and 3. For an algebraic closure k of k, H'(A®y, k, M, (k)/(A®y
k)) = H'(A, M, (k)/A)®yk for i > 0 by Proposition 3 Thereby, for studying H'(A, M,,(k)/A), it
only suffices to investigate the case that k is an algebraically closed field. For an algebraically closed
field k, we have the classification of equivalence classes of k-subalgebras of M,, (k) for n = 2,3. Here
we calculate all cases of k-subalgebras for n = 2 and 3.

5.1. The case n = 2. In this subsection, we calculate H*(A, Ma(k)/A) for k-subalgebras A of
M;(k) over a field k. In the case n = 2, we have the following classification.

Proposition 5.1 ([8 Proposition 35] and [I1, Proposition 2.2]). Let k be an algebraically closed
field. Any subalgebras of Ma(k) are equivalent to one of the following:

(1) Mz(k)

anin={(; 1))
omo={(3 2]

(4) Na(k) :{ abek }

Let k be a (not necessarily algebraically closed) field. We summarize the results on H*(A, Mo (k)/A)
in the cases (I)-() in Proposition 51l For details, see Table [l in Section 6.
@) For A = May(k), we have H* (A, Ma(k)/A) = 0 for i > 0 by Example {9l
@) For A = Bay(k), we have H' (A, My(k)/A) = 0 for i > 0 by Example ET1
@) For A = Dy(k), we have H*(A,Ma(k)/A) = 0 for i > 0 by Example 10
@) For A =Ny(k), A coincides with J2(k) in Definition Then we have

maswm ={ G2
for i > 0 by Corollary E20
@) For A = Cy(k), we have
HY(A,My(k)/A) = { Mz(’”/cg(’“) = 8 N 8;

by Example
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5.2. The case n = 3. In this subsection, we calculate H*(A, M3(k)/A) for k-subalgebras A of
Mj3(k) over a field k. In the case n = 3, we have the following classification.

Theorem 5.2 ([8] Theorem 2] and [I1, Theorem 2.1]). Let k be an algebraically closed field. Any
subalgebras of M3 (k) are equivalent to one of the following:

(1) M3 (k)
(2) Pg)l(k) = {( * ok %k ) (S M3(/€)}
0 0 =
8) Prath) = {( 0. ) eMgw}
0 % =
(4) Bs(k) = {( 0 * = ) € Mg(k)}
0 0 =«
a 0 0
(5)C3(k)={(0 a O) aek}
0 0 a
* 0
(6) D3(k) = {( 0 0 ) € M3(/€)}
0 *

/

oo OO
o o O O

—

(9) (B2 x Dy)(k) =

—

(10) (M2 x D1)(k) =

®

Z,

[V}

X

=

=

Il
—— N N7 ‘o x ©
/

* %
0 =
0 0
*x %
*x %
0 0
a b ¢
(11) Js(k) = 0 a b a,b,cek
0 0 a
a b c
(12) N3(k) = 0 a d a,b,c,d ek
0 0 a
a b 0
(13) Syi(k) = 0 a O a,bek
0 0 a
a 0 0
(14) Sa(k) = 0 a ¢ a,b,cek
0 0 b
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a 0 ¢
(15) Ss(k) = 0 b 0 a,b,cek
0 0 b
a b c
(16) S4(k) = 0 a O a,b,cek
0 0 a
a 0 b
(17) S5(k) = 0 a ¢ a,b,c €k
0 0 a
a ¢ d
(18) Sg(k) = 0 a O a,b,c,d €k
0 0 b
a 0 c
(19) Sr(k) = 0 a d a,b,c,d ek
0 0 b
a ¢ d
(20) Ss(k) = 0 b 0 a,b,c,d €k
0 0 b
a 0 ¢
(21) Sy(k) = 0 b d a,b,c,d €k
0 0 b
a b c
(22) Sio(k) = 0 a d a,b,c,d,e € k
0 0 e
a b c
(23) S11(k) = 0 e d a,b,c,d,eck
0 0 a
a b c
(24) Sia(k) = 0 e d a,b,c,d,eck
0 0 e
* % %
(25) S13(k) = 0 = 0 ) eMsk)
{ 0 0 = }
* 0 =%
(26) Sia(k) = 0 = x | €Ms(k)
( 0 0 = )

Let k be a (not necessarily algebraically closed) field. We summarize the results on H*(A, My (k)/A)
in the cases (I)-(26]) in Theorem (2l For details, see Table [ in Section 6.

@) For A= Mj3(k), we have H* (A, M3(k)/A) = 0 for i > 0 by Example {9l

@) For A= Ps1(k), we have H'(A, M3(k)/A) =0 for i > 0 by Proposition EET4l
@) For A =P;2(k), we have H' (A, M3(k)/A) =0 for i > 0 by Proposition EET4l
@) For A = Bs(k), we have H' (A, M3(k)/A) =0 for i > 0 by Example ET

) For A = Cs(k), we have

Ms(k)/Cs(k) = k* (i=0

H'(A,M3(k)/A) = { 0 (i > 05'
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by Example L8
For A = D3(k), we have H*(A,Mj3(k)/A) = 0 for i > 0 by Example L10
For A = (C2 x Dy)(k), we have

JCalk) = k3 (i =0)
0 (1> 0).

Indeed, H'(A, M3(k)/A) = H'(Ca(k), Ma(k)/Ca(k)) © H' (D1 (k), My (k) /D1 (k)) by Propo-
sition By Example (or by Example ET0), H*(D1(k),M;(k)/D1(k)) = 0. Hence
we can calculate H*(A,M3(k)/A) by using the result on H*(Cq(k), Ma(k)/Ca(k)).

For A = (N3 x Dy)(k), we have

(A, My (k) A) = { Ma(k)

k2 (ch(k)

for each 4. Indeed, H*(A,M3(k)/A) = H*(Na(k), Mz (k)/Na(k))® H (D1 (k), My (k)/D1(k))
by Proposition L2231 By Example L9 (or by Example EE10), H*(D1(k), M (k)/D1(k)) = 0.
Hence we can calculate H*(A, M3(k)/A) by using the result on H*(Na(k), Ma(k)/Na(k)).
For A = (B x D1)(k), we have H'(A,M3(k)/A) = 0 for i > 0. Indeed, H'(A, M3(k)/A) =
Hi(Ba(k),Ma(k)/Ba(k))® H (D1 (k), My (k)/D1(k)) = 0 by Proposition 23, ExamplesE.T]
and (or Example [.10).

For A = (My x Dy)(k), we have H'(A, M3(k)/A) = 0 for i > 0. Indeed, H(A, M3(k)/A) =
H (Mz(k), Ma(k)/Ma(k))® H(D1(k), M1 (k)/D1(k)) = 0 by Proposition 23] and Example
(or Example ETT]).

For A = J3(k), we have

masmm = { G2

. (K2 (ch(k)#3
M /mm) = { s 7Y
for i > 0 by Corollary 20
For A = N3(k), we have
i ~ K2 (i=0
masmmm={ L G20
For details, see Section .31
For A = S;(k), we have

i [k GE=0
im0
For details, see Section [5.41
For A = Sy(k), we have
i [k (=0
massmm {00
For details, see Section [5.0l
For A = S3(k), we have
i L[k (i=0
masmmm = {4 G20

by the result on H*(Sa(k),M3(k)/Sa(k)) and Corollary .27 since S3(k) ~ 'Sz (k).
For A = S4(k), we have

masm={ S 020
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For details, see Section 5.0l
[[@) For A = Ss(k), we have
Kt (i=0)
k32 (i > 0)
by the result on H*(S4(k),M3(k)/S4(k)) and Corollary EE27, since Ss(k) ~ tS4(k).

[@8) For A = Sg(k), we have H' (A, M3(k)/A) = k for i > 0. For details, see Section (.71
(@@ For A = S;(k), we have

HY (A, M (k) /A) = {

i L E (i=0
masm={ ) 10
For details, see Section 5.8
@0) For A = Sg(k), we have
i [k (=0
mamm = { G

by the result on H*(S7(k),M3(k)/S7(k)) and Corollary EE27, since Sg(k) ~ 'S7(k).

ZI) For A = So(k), we have H*(A, M3(k)/A) = k for i > 0. Indeed, this follows from the result
on H'(Se(k), M3(k)/Se(k)) and Corollary 2T} since Sg(k) ~ 'S (k).

@2) For A = Syp(k), we have

. ( k (ch(k)#£2
for 4 > 0. For details, see Section [5.9
23) For A = Sy1(k), we have

HY (A, My (k) /A) g{ b

For details, see Section [£.101
@4) For A = S12(k), we have

H'(A,Ms(k)/A) ﬁ{ ;fz Eiﬁﬁiﬁiii

for i > 0. Indeed, this follows from the result on H*(S10(k), M3(k)/S10(k)) and Corollary
m since 812(]{3) ~ tslo(k).

Z5) For A = S13(k), we have H' (A, M3(k)/A) = 0 for i > 0. For details, see Section 5111

@8) For A = Sy4(k), we have H'(A,M3(k)/A) = 0 for i > 0. Indeed, this follows from the
result on H*(S13(k), M3(k)/S13(k)) and Corollary EEZT, since Sy14(k) ~ 'S13(k).

5.3. The case A = N3(k). Set N3(R) = a,b,c,d e R » for a commutative

o o e

b ¢
a d
0 a
ring R. We denote N3(R) by N for simplicity. Let J be t

0 b ¢
J = 0 0 d |]eN|bcedeR ;.

-+

e the two-sided ideal of N given by

0 0 O

We set T'= N/J, which is an N-bimodule over R. First, we calculate the Hochschild cohomology
H*(N,T) of N with coefficients in T. We note that there is an isomorphism T'®@y T = T of
N-bimodules over R. This implies that 7" is a monoid object in the category of N-bimodules over
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R. The unit w: N — T = N/J is given by the projection. Hence H*(N,T) has the structure of a
graded associative algebra over R.

We set [ = Eyq + Eag + E33, U = E12,V = Eag and W = Ej3. We let N = N/RI. The set
{U,V,W} forms a basis of the free R-module N. Let B.(N,N,N) be the reduced bar resolution
of N as N-bimodules over R. We have

p
——

By(N,N,N) 2 N®@r N Qg---®@r N @rN

for p > 0. We denote the cochain complex Hompye (B« (N, N, N),T) by c (N,T). The cohomology
of C"(N,T) is isomorphic to the Hochschild cohomology H*(N,T) (see Section 2).

Let e € T" be the image of I under the unit v : N — T'. We denote by U*,V* € c (N,T) the
maps N — T of R-modules given by

) - e ifn=U
Un) = {o ifn=V,W
N - e ifn=V
Vin) = {o ifn=0UW,

respectively. The maps U* and V* are 1-cocycles in the cochain complex c (N, T). We denote by
a,B € HY(N,T)

the cohomology classes represented by the 1-cocycles U*, V*| respectively.
Let W* € ' (N,T) be the map N — T of R-modules given by

N _Je ifn=W
W (")_{ 0 ifn=U,V.

We observe that
UruV* = =" (W),
where 6! : O (N,T) — c’ (N,T) is the coboundary map. Thus, we obtain that
af =0

in H3(N,T).
Let R{c, B) be the free associative algebra over R generated by « and 8. There is a map

Re, B)/(af) — H*(N,T)

of graded associative algebras over R, where (af) is the two-sided ideal of R{c, ) generated by
af.

Lemma 5.3. We have an isomorphism H*(N,T) = R{a, 8)/(afB) of graded associative algebras
over R.

Proof. We observe that the cochain complex c (N, T) is isomorphic to the differential graded
algebra which is the free associative algera

RU*,V* W)
generated by U*, V* W* with differential
o(U*)y=0(V*)=0, o(W*)=-U"V".
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We let C5r(; be the subcomplex of R(U*, V*, W*) given by
i J

C;;Uzé @ Rrv--vUrU

n=0 i+j=n
,j >0

with trivial differential. We also let C7;, be the subcomplex of R(U*,V*, W*) given by

RW* (1=1),
Cch, = RU*V* (i=2),
0 (i #1,2),
with differential §(W*) = —U*V*. We observe that there is an isomorphism of cochain complexes

between R(U*,V* W*) and

Cvv @r @D (Ciy ®r Cry) ®r -+ @& (Cy @r Ciy),

r>0

T

0 1 2
where we set (Cy @r Cyy) Qr -+ Qr (Cly @r Cyry) = (0 — rRL0%0% --+)if r = 0. Since
Cyy is acyclic and Cyy; has a trivial differential, we obtain an isomorphism of R-modules
i J

— o ——
HCNT)=H @ RV---VU - U
n=0 i+j=n
i,j>0

This implies that the R-algebra homomorphism R{a, ) — H*(N,T) induces an isomorphism
H*(N,T) = R{w, B)/(aB) of graded associative algebras over R. O

We set M = Mj3(R). Let us calculate the Hochschild cohomology H*(N, M/N) of N with
coefficients in M/N. For this purpose, we construct a spectral sequence which converges to
H*(N,M/N). We show that the spectral sequence collapses at the Fs-page and there is no
extension problem.

In order to construct the spectral sequence, we introduce a filtration on M/N. We set F0 =
M/N. Let L be the R-submodule of M = M3(R) consisting of matrices in which the (3,1)-entry
is 0. We set F' = L/N and F? = B/N, where B = B3(R) = {(a;;) € M3(R) | a;; = 0 for i > j}.
We have obtained a filtration

0=F*cF*cF'c F'=M/N

of N-bimodules over R. We denote by Gr?(M/N) the p-th associated graded module F?/FP+L.
By Proposition 28], we obtain a spectral sequence

EPY = HPT(N, GrP(M/N)) = H"T9(N, M/N)
with
dy : BP9 —y pPmaril

for r > 1. Note that E"? = 0 unless 0 < p < 2 and p+¢ > 0. Thus, the spectral sequence collapses
at the Es-page. Since H*(N,T) = R{«, 8) /() and the N-bimodule Gr” (M /N) is isomorphic to
the direct sum of finitely many copies of T', we obtain that

EYTTP = R{o, B)/ () @ GrP(M/N).
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First, we calculate d; : EY'? — E}'? for ¢ > 0. We have E{"* = H*(N, M/L) which is isomorphic
to R{a, B)/(af) ®r REs1, and E;* ™' = H*(N,L/B) which is isomorphic to R{a, 8)/(af) ®r
(REQl D REBQ). We set

. .
c(i,j) = ﬁ Ba-- aeH“”(NT)
fori,j > 0. The set {c(i, )| i,j > 0, i+j = n} forms a basis of the free R-module H"(N,T) for all

n > 0. Since the differential d; : EY"* — E}"* can be identified with the connecting homomorphism
§: H*(N,M/L) — H**'(N,L/B), we obtain
di(c(i, j) ® Es1) = c(i +1,§) ® Ba1 + (=1)F¢(i, j + 1) ® Bsa.
Next, we calculate d; : B} 9" — E?9! for ¢ > 0. We have B/ ' = H*(N, L/B), which
is isomorphic to R{a,3)/(af) ®r (RE2 @© REs). We have Ep* -2 = H*(N,B/N) which is

isomorphic to R{a, 8)/(af) ®@r F2. Since the differential d; : E;**" — E?7"! can be identified
with the connecting homomorphism § : HY(N,L/B) — H9" (N, B/N), we obtain

o (=1)H+le(i, j+ 1) @ Eao (i >0),
di(c(i,5) ® Bn) = { (0.5 +1)® (B 4 (1) B (i=0),
- i+ 1,)®F (j > 0),
di(c(i, j) ® Es2) = { c(i+ 1,%) ® (1%22 + (—1)""1 Es3) (; =0).

By the above calculation of dy, Ey? = Ey 9" =0 and EJ? ! is a free R-module of rank ¢ + 2
for all ¢ > 0. Hence the spectral sequence collapses at the Es-page. Since EP:? is a free R-module
for all p, ¢, there is no extension problem. Hence we obtain the following theorem.

Theorem 5.4. The R-module H"(N, M/N) is free for alln > 0. The rank of H"(N,M/N) over
R is given by

2 (n=0),
rankp H" (N, M/N) =
(n> 1
a b 0
5.4. The case A = Si(k). Let A = R[z]/(2?) = S 0 a 0O a,be R ;. Here
0 0 a
R is a commutative ring and x corresponds to F1o € S1(R). By Proposition 17 there exists a
projective resolution of A as A°-modules:
cs ATt A A B A A,
where

di(a@b) = { 8 S BEZ . 113 ((ii:: ivﬁ))
and p(a®b) = ab. Set M = M3(R)/S1(R). By applying Hom 4. (—, M) to the projective resolution
above, we have
0 — Home (A%, M) 2 Hom e (A%, M) — - -~ — Homa. (A%, M) % Hom. (A€, M) = --- ,
which is isomorphic to
0—>Mb—1>M—>---—>Mf>M—>---,

where
i [ mz+axm (i: even)
bi(m) = { mz —xzm (i: odd).
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We can choose a basis {E13, E21, Eog, Fa3, E31, Es2, F33} of the R-free module M. With respect
to this basis, we have

0 -1

b= (i: odd) and b* =

(i: even).

O OO O oo
— O oo NO O
OO OO OO
O OO O oo
_— o O o oo
O OO OO OO
O OO OO OO
O OO OO oo
OO O OO O
O OO OO oo
O OO O OO
O R OO O OO
O OO OO OO
O OO OO oo

0 0

Thereby, we easily verify that

_ RE13® RFEy ® RE3» @ RE33 =~ R* (i =0)
H'(S1(R),M3(k)/S1(R)) = { (RFE2 ® RE33)/R(2F2 + F33) 2 R (i : odd > 0)

REs =R (i - even > 0).

5.5. The case A = Sy(k). Let us consider the quiver @ = 1 +— 2. Let A = RQ/I be the

incidence algebra associated to @ over a commutative ring R. Then A = Rej; @ Reas @ Reqo.
a 0 0

We can regard A as Sy(R) = 0 a c a,b,ce R by e11 — E11 + FEao, €20 +— Ejss,
0 0 b

and ejs — Fa3. Set M = Mj3(R)/S2(R). Then M is a A-bimodule by identifying A with the
subalgebra So(R) of M3(R). The free R-module M has a basis {E11, F12, E13, Eo1, E31, F32}. By
Proposition ] it suffices to calculate the cohomology of the complex {Homge (r®™, M), 6"}, where
E = Rej1 @ Regs = R(E11 + EQQ) @ RE33 and » = Reys = RE»3. Since r® = ( for n > 2, the

0
complex is isomorphic to 0 — MF LN Hompge(r, M) — 0 — 0 — ---. It is easy to see that MF =
RFE11 ® RE12 ® RE>; and that Hompge (T, M) =~ REi3 by Hompge (T, M) =) f — f(EQg) € REy3. By
direct calculation, 6°(E11) = 6°(E21) = 0 and 6°(E12) = —E13. Hence we have

i ~ RE\; ® RFE> = R? (i=0)
(2 (1) Ma(R)/52() = { ; o
a b c
5.6. The case A = Sy(k). Set S4(R) = 0 a O a,b,c € R » for a commutative ring
0 0 a

R. We set A = S4(R) and M = M3(R). In this subsection we calculate the Hochschild cohomology
H*(A,M/A) of A with coefficients in M/A. For this purpose, we construct a spectral sequence
which converges to H*(A, M /A). We show that the spectral sequence collapses at the Eo-page and
there is no extension problem.

Let J be the two-sided ideal of A given by J = €A|bceR ;. We set

o o o

b
0
0

SO0

T = A/J, which is an A-bimodule over R.

First, we describe the Hochschild cohomology H*(A,T) of A with coefficients in T. We have an
isomorphism T'® 4 T = T of A-bimodules over R. This implies that 7" is a monoid object in the
category of A-bimodules over R. The unit u: A — T = A/J is given by the projection. Hence
H*(A,T) has the structure of a graded associative algebra over R.

We set [ = F11 + FEay + E33, U = E19 and V = Ej3. The set {U,V} forms a basis of the free
R-module A = A/RI. Let e € T be the image of I under the unit v : A — 7. We denote by
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U*Vv*e ' (A, T) the maps A — T of R-modules given by

« o e ifn=U
Un) = { 0 ifn=V.
. - e ifn=V
Vi) = { 0 ifn=U.
We see that U* and V* are 1-cocycles in the cochain complex c" (A,T). We denote by
o,f € H'(A,T)

the elements represented by the 1-cocycles U*, V*, respectively. It is easy to calculate the coho-
mology H*(A,T) and we obtain the following lemma.

Lemma 5.5. There is an isomorphism H*(A,T) = R{«, B) of graded associative algebras over R,
where R{a, B) is the free graded associative algebra over R generated by o and 3.

Proof. The lemma follows from the observation that c" (A, T) is isomorphic to a differential graded
algebra which is the free graded associative R-algebra R(U*,V*) generated by U*, V* with trivial
differential. 0

In order to construct a spectral sequence, we introduce a filtration on M/A. We set F° = M/A.
Let L be the R-submodule of M = M3(R) consisting of matrices in which the (3, 1)-entry is 0. We
set F'' = L/A and F? = B/A, where B = B3(R) = {(a;j;) € M3(R) | a;; = 0 for i > j}. We have
obtained a filtration

0=FCcF*cF'cF'=M/A
of A-bimodules. We denote by Gr”(M/A) the p-th associated graded module F?/FPT!. By
Proposition 2.3l we obtain a spectral sequence

EP? = HPTI(A, GiP(M/A)) = HPTI(A, M/A)
with
d, : BP9y Brera—rl
for r > 1. Note that E7"? = 0 unless 0 < p < 2 and p+q > 0. Thus, the spectral sequence collapses
at the Es-page.

The A-bimodule Gr?(M/A) is isomorphic to the direct sum of finitely many copies of T'. Since
H*(A,T) = R(«, B), we obtain that

EP*P >~ Rla, B) @r GrP (M /A).

First, we calculate d; : Elo’q — E}’q for ¢ > 0. We have Elo’* = H*(A, M /L) which is isomorphic
to R(, ) @ g REs1, and E;”* ™' = H*(A, L/B) which is isomorphic to R{c, ) @ g (RE2 ® REsy).
Let § be the connecting homomorphism HY(A, M/L) — HY' (A, L/B). We can identify d; :
EY? — E]? with § and we obtain that

(51) dl (Z X E31) = (—1)q+1201 X E32,

where z € H9(A,T') is a monomial of & and /3.

Next, we calculate dy : By — E277! for ¢ > 0. We have E;"*"' = H*(A, L/B), which is
isomorphic to R{c, ) ®r (RFa1 @ REs3). We have E2*~% = H*(A, B/A) which is isomorphic to
R{a,B) @ F2. Since the differential d; : B} — E}?7" can be identified with the connecting
homomorphism 6 : HY(A, L/B) — H%1(A, B/A), we obtain that

di(z® F21) = az®Ej+ (=120 ® By + (—1)17128 ® Fas,

(5:2) di(z® E33) = 0,
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where z € H1(A,T) is a monomial of « and /3.

By (1), EY? = 0 for all . Furthermore, by (5.1) and (5.2), we see that £, " and E39"2 are
free R-modules for all ¢ > 0. Thus, the spectral sequence collapses at the Fs-page and there is no
extension problem.

Theorem 5.6. The R-module H"(A, M/A) is free for all n > 0. The rank of H"(A, M/A) over
R is given by
4 (n=0),

rankp H™(A, M/A) = { 3.2 (n>1).

Proof. We know that the spectral sequence collapses at the Fs-page and that E5? is a free R-
module for all p and ¢. In what follows we calculate the rank of E5? over R.
Since E12’q_2 is isomorphic to HY(A, B/A), it is a free R-module of rank 3 - 27 for all ¢ > 0. In

2,-2 o 2,2

particular, since F, , we obtain that

rankp E22’_2 = 3.
By (52), the image of dy? ' : B} 97" — EP97 ! is a direct summand of B3 and a free R-module
of rank 27 for all ¢ > 0. Since rankg F3?" " = rankg E;9 " — rankg Imd; ™", we obtain that
rankp E% " = 5. 21

for all ¢ > 0.

Since E}'?"! is isomorphic to H(A, L/B), it is a free R-module of rank 2¢+! for all ¢ > 0.
From the fact that rankp Imd;?~" = 29, we see that rankg Kerd; 9" = 27 for all ¢ > 0. Since
EY? is isomorphic to HI(A, M/L), we have rankp EV'? = 29 for all ¢ > 0. By (5.1)), we see that
rankz Imd>? = 29 for all ¢ > 0. Since rankg Ey %' = rankg Kerd; ' — rankg Imd>? !, we
obtain that

qg—1
rankp By 17" = { 2 (> Og’

1 (g =0).
The theorem follows from the fact that
rankp H"(A, M/A) = rankp Ey" "' + rankg B ?
for all n > 0. O

5.7. The case A = S¢(k). Let us consider the quiver

Q: a::el B 62'

2

Let RQ be the path algebra of @) over a commutative ring R. Set I = (o, o) C RQ. Then we
a ¢ d

can regard A = RQ/I = Re; & Rea & Ra @ R as Ss(R) = 0 a O) a,b,c,d € R
0 0 b

by e1 — Fi1 + E22, ey E33, o = Elg, and ﬁ — Fis. Set M = Mg(R)/Sﬁ . Then M
is a A-bimodule by identifying A with the subalgebra Sg(R) of M3(R). The free R—module M
has a basis {Ea1, Eao, Fa3, E31, E32}. By Proposition 1] it suffices to calculate the cohomology
of the complex {Hompge(r®" M),5"}, where E = Rey @ Res = R(FE11 + Ea3) @ RE33 and r =
Ra® Rﬂ = RE12 D RElg. Obviously, ME = RE21 D REQQ. Since ﬂ X = ﬂeg Xa = ﬂ X egax = 0
and B P = Pea @B = BRexf = 0, 7®" = Ra®" @ R(a®" V) @ B) and rankgrr®" = 2 for
n > 1. By using a®" = e;a®"%; and a®D @ f = e1(a® 1) @ B)es, we see that f(a®") €
e1tMe; = RFEy @ REoy and f(a®("1) @ 3) € eyMey = REb3 for f € Hompe(r®", M). Let
(@®M)* (a®(=1) @ B)* € Hompg(r®", R) be the dual basis of a®",a®"~1 @ 8 € r®. Then we
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can write HomEe (’I”®n, M) = (R(O&®n)* ® Ezl) S (R(Oz®n)* ® E22) &) (R(O&®(n71) ® ﬂ)* ® Ezg). In
particular, rankgHomge (r®*, M) = 3 for n > 1.
First, let us calculate 6 : M¥ = REy; @ RFE2s — Hompe(r, M). By direct calculation,

§%(Fa1)() = aFEa — Eyja = E19E9 — Eo1E1g = B11 — Eog = —2E
6%(F21)(B) = PBE2 — Exf3 = E13E2 — Fo1E13 = —Eas
6%(Fa2)(@) = «FEs — By = E19E2 — ExE1a = FE12 =0
§Y(Exn)(B) = BEx — ExnfB = FEi3E3 — ExE3 =0.
With respect to the bases {Ea1, Ea2} and {a* @ Ea1, a* @ Eag, 3* @ Fas}, 6° can be described as
0 O
=1 -2 0
-1 0

Hence HO(Sg(R), Ms(R)/S¢(R)) = R.
Next, let us calculate 6™ : Hompge (r®", M) — Hompg. (r®+D M). By direct calculation,
" ((@®™)* @ E)(a®MD) = aBEy 4+ (1) Eya = —(1+ (1)) Eay
5 ((a®")* @ Ea)(@®" @ B) = (=1)""Exnf = (-1)"""Eqy
O ((@®™)* ® Ega)(a® ) = aFEg + (—1)" " Exa=F1;2 =0
5" ((a®")* @ Eg)(@®" @) = (=1)""Enf=0
5" ((@®" ™ @ B)* @ Ea3)(a®"tY) 0
(P Y @ B)* @ Ep3)(a®" ®B) = aByy = Ei3=0.
(

With respect to the bases {(a®")* ® Fa, (®™)* @ Ea, (a®("~1 @ 8)* @ Eaz} and {(a®+1))* @
Egl, (Oé®(n+1))* X EQQ, (a®” X ﬂ)* X E23}, 0™ can be described as

0 0 0 0 0 0
=10 0 0 J(n: odd)andé” =] =2 0 0 | (n: even).
1 0 0 -1 0 0

Finally, let us calculate H"™(Sg(R), M3(R)/S¢(R)). It is easy to see that
H"™(S6(R), M3(R)/Se(R)) == ((R(a®")* ® Ea) ® (R(a®"") @ B)* @ Eas))/Im 5"~

for any n > 0, where Im 6"~ ' = R((1 + (=1)""1)(a®")* @ Egy + (=1)""1(a®(=1) @ B)* @ Ea3).
Summarizing the results, we have H"(Sg(R), M3(R)/Se(R)) = R for n > 0.

5.8. The case A = S;(k). Let us consider the quiver

B
Let RQ@ be the path algebra of @@ over a commutative ring R. Then we can regard A = RQ =
a 0 c
Re1®Res® Ra® R as S7(R) = 0 a d a,b,c,d € R by e1 — Fq11+ Ea9, es — Ess,
0 0 b

a+— Ei3, and 8 — Ea3. Set M = M3(R)/S7(R). Then M is a A-bimodule by identifying A with
the subalgebra S7(R) of M3(R). The free R-module M has a basis {F12, Eo1, Eaa, E31, E32}. By
PropositionE.T] it suffices to calculate the cohomology of the complex {Homge (r®™, M), 5}, where
E = Rey @ Rey = R(E11 + E22) ® RFEs3 and r = Ra® RS = RE13 ® RFE>3. Since r®n = ( for
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0
n > 2, the complex is isomorphic to 0 — MPF LN Hompge(r, M) =0 — 0 — ---. It is easy to see
that M¥ = RE1» @ REy ® REs3 and Hompge(r, M) = 0 by r = e;res and e; Mey = 0. Hence we
have

H(S7(R). Ma(R) /S1(R)) = { b © Rl 0 R S 1=

5.9. The case A = Sy9(k). Let us consider the quiver

€1 B €2
Q = « C>—<—o .
Let RQ be the path algebra of Q over a commutative ring R. Set I = (a?) C RQ and v = a3. Then
a b ¢
we canregard A = RQ/I = Rey®Rea®Ra®RBD Ry as S19(R) = 0 a d a,b,c,d € R
0 0 e

by e1 — Fi1 +E22, ey > E33, o = Elg, ﬁ — E23, and v o= FEis. Set M = M3(R)/810(R)
Then M is a A-bimodule by identifying A with the subalgebra Sig(R) of M3(R). The free R-
module M has a basis {E21, Eaa, F31, E32}. By Proposition 1] it suffices to calculate the co-
homology of the complex {Hompge (r®™, M), 5"}, where E = Rey @ Rea = R(E11 + Eaa) @ RFEs3
and r = Ra ©® Rﬂ (&) R’}/ = RE12 (&%) RE23 D RElg. Since eire; = Ra and e1rep = Rﬂ D R’}/,
r@pr = (Ra®?) @ (Ra®B)®(Ra®7y). Similarly, 7®" = (Ra®")@ (Ra®™ Y@ 3)@(Ra®™ Y @y)
for n > 2. Let {(a®")*, (a®=D @ B)* (a®= D ® ~4)*} € Hompg(r®", R) be the dual basis of
{a®™, 21 @ B,a®(=1) @ 4} C @, Note that M” = REy ® REq, e;Me; = REy @ RE»,
and e; Mey = 0. Tt is easy to see that Hompe (r®", M) = (R(a®™)* @ E91) ® (R(a®")* @ Ea3) for
n > 1.

First, let us calculate 6° : M¥ = REy ® REsy — Hompge(r, M) = (Ra* ® Ea1) ® (Ra* @ Fa»).
By direct calculation,

§%(Fa1)(e) = aFEo — Eyja = E19E9 — Eo1E1g = B11 — Eog = —2E
6%(Fa2)(@) = «Ea — FBysa = E12F9 — ExgE1p = F12 = 0.
With respect to the bases {Ea1, Ea2} and {a* ® Ea1,a* @ Ega}, 6° can be described as

0o _ 0 O
2o (50)

Hence H%(S10(R), M3(R)/S10(R)) = R @ Ann(2), where Ann(2) = {a € R | 2a = 0}.
Next, let us calculate 6" : Hompge (r®™, M) — Hompge (r®™+1) M) for n > 1. By direct calcula-
tion,

5"((Oé®n)* & E21)(CY®(”+1)) = aEzl + (—1)"+1E21a = —(1 + (-1)”)E22
5" ((a®™)* @ Eap)(@®™V)) = aBp + (-1)" "' Expa = Ep = 0.

With respect to the bases {(a®")* ® Ea1, (a®")* ® Ea} and {(a® )" @ By, (a® D) @ By},
0™ can be described as

n_ (00 . n_ (0 0 .
5_<O O>(n.0dd)and5—<_2 O>(n.even).
Finally, let us calculate H™(S19(R), M3(R)/S10(R)). For n > 0, we easily see that

H Sl My(R)/So() = { 18 A (n: ove)
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5.10. The case A = Sii(k). In this subsection, we calculate H'(S11(R),M3(R)/S11(R)) for a
commutative ring R. In the following long proof of Theorem [B.11] the Fibonacci numbers appear,
which seems strange to us. For another proof using spectral sequence without the Fibonacci
numbers, see [10].

Let us consider the quiver

«

B
Let RQ be the path algebra of @ over a commutative ring R. Set I = (Sa) C RQ and v = 3. Then
c
d

Q o

a

we canregard A = RQ/I = Rei®Res®Ra@RA® Ry as S11(R) = 0
0 0 a

by e1 — By +E33, €9 — E22, o Elg, ﬁ — E23, and v = FEis. Set M = Mg(R)/Sll(R) Then M

is a A-bimodule by identifying A with the subalgebra S11(R) of M3(R). The free R-module M has

a basis {Ella E21, E31, E32}. Set £ = R€1 @Rez = R(Ell + Egg) @REQQ and r = Ra@Rﬂ@R’Y ==

a,b,c,d,e € R

% % %
RE152 ® RE23 @ REq3. Let B3(R) = 0 * x and M’ = B3(R)/S11(R). Then M’ is
0 0 =

an S11(R)-bimodule and there exists an exact sequence of Sij(R)-bimodules (that is, an exact
sequence of Sq1(R)°-modules):

(5.3) 0—>MI—>M—>M”=RF21@RF31€BRE32—>0.

Let us define the Sll(R)e—submodules Mgl and M32 of M” by Mgl = REQl and M32 = REBQ,
respectively. Put Mz; = M"/(Myy @ Msy) = RE3;. Note that the Sy (R)®-module Ms; is
isomorphic to M’ = RE;.

Let My, = {21 ®12® - @z, €7%" |21 Q@22 @+ @z, # 0, where z; = o, 3, or v} be the set
of non-zero monomials of length n in a, 8 and v. For n > 1, 7" = @,,c p, Rm and M,, is a basis
of the free module r®" over R, where the tensor products are over E. Because a ® a = B ® 3 =
a®v =0 and so on, rankgr®® < 3" for n > 1. Let M} = {m* € Homg(r®",R) | m € M,,} be
the dual basis of M,,.

Let us introduce the following lemmas.

Lemma 5.7. Let M’ = RE1; be as above. Then
n ~ R
H"(S11(R),M") = { 0 ((

Proof. Note that

a b c a b c
0 e d Ell ZCLFH :Ell 0 e d
0 0 a 0 0 a

It is easy to see that M’ = e;M’e; and that M'F = M’. For f € Hompge(r, M'), f(a) = f(aes)

f(a)ea = 0 and f(B) = f(e2f) = eaf(S) = 0. Thus, we have an isomorphism Hompge (r, M') —

M' = REy; by f + f(v). First, let us consider 6° : M'® = M’ — Hompge(r, M') = RE;. Since
8°(E11)(v) = vEu — Eny =0,

we have §° = 0. Hence H°(S11(R), M') = R.

Rl
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Next, let us consider ¢! : Hompe (r, M') 2 RE}; — Hompge(r @ r, M'). Let (a ® B)*,...,(y®
~v)* € Hompg(r ®g 1, R) be the dual basis of the basis a ® 8,...,7®~ of r ® r over R. By using
M’ = ey M’eq, we see that Hompge(r @ r, M') = R((a ® 8)* ® E11) ® R((y ®7)* ® E11). In a
similar way, we can write Hompge (r, M’) = R(y* ® E11). Since

SV eEn)(a®pB) = —En
My 9En)(v®y) = YEnu+Eny=0,

51(’}/* ®E11) = —(Oé & ﬂ)* ®E11 and Ker 51 = 0. Hence Hl(Sll(R), M/) =0.

We claim that Hompge (r®", M’) is a free R-module. Set F,, = rankgHompge(r®", M’) under
this claim. Note that F; = 1 and F», = 2. Since Hompg.(E,M') = M'F = M' = REy;, set
Fy = 1. By M' = egM’e; and r®" = (e17®"e1) @ (e17®"es) @ (e2r®e1) @ (ear®™ey), we have
Hompge (r®", M'") = Hompge (e;7®"e1, RE11) = Hompg(e17®"e1, R). Set L, = {11 @12 ® - @1, €
e1r®er | 1y @ a2 @ -+ ® xy # 0, where 2; = a, 3, or v} € M,,. Then Hompge (r®™, M’) is a free
R-module of rank F,, = §£,,. Indeed, Hompe(r®™ M’) has an R-basis L} ® E1; = {m* ® Ey |
m € Ly}, where £ = {m* € Hompg(e17®"e1, R) | m € L,,} is the dual basis of £,, C e;r®"e;.

Note that £1 = {y} and L3 = {a® B,y®~}. Forn >3, L, = (y® Lp-1)U (e ®@ LR L,_2),
where Y@ L1 ={y@m|meL, 1}and a®@ R L, s ={a®@@m' |m € L, 5}. Thus, we
have F,, = F,,_1 + F,,_>. We call a monomial in a ® 8 ® L,,_2 and in 7 ® L,_1 type I and type
II, respectively. Let us consider the lexicographic order on both M,, and £,, such that a > 8 > ~.
For example, a ® f® v > 7®a®f > v ® v ® v with respect to the lexicographic order on
L3={a®@R7,70a®B,7y@y®y} Ifm>m'in M,, thena@m >a@m/, feam>Fem,
and y®m > v ®m’ unless they are zero. We also define the lexicographic order on £ ® E1; such
that m* ® E1; > m”* ® Eq, if and only if m > m’ in £,. If m € £, is of type I or II, then we
call m* ® Eq; type I or II, respectively. When m; and my in £, are of type I and II, respectively,
m*{ ®F11 > m§ ®E11.

For n > 1, let us describe 6" : Hompge (r®", M') — Hompe (r®™+1) M') with respect to the
ordered bases £}, ® E1y and L}, ® Ey1. Forn=1,6'(v* ® E11) = —(a ® )* ® E1; and

-1

1 _

"=(7)

with respect to £ ® E; = {y"®E1;} and L3 @FE ={(a®B)*®Ei1,(y®7)* ® E11}. For
n = 2, we have

F((a®p) @En)(a®B®y) = —Eiy=0
F((e®p)* @ En)(y®a® fB) YE11 =0
F((e@@p) @ En)(y®y®y) = 0
F((ve)* @En)(a®pfey) = —En
F((vey) @En)(y®a®p) = En
F((v@y) @En)(y®y®y) = vEun—Eny=0.
Hence we can write
0 -1
=10 1
0 O

with respect to L3 ®_E11 = {(a® B)* ®_E11, (Y®y)*®@Entand L50En = {(a®B®7)" ®
Ei1,(7®a®B)* @ FE11,(y®7®7)" ® E11}. We easily see that H?(S11(R), M') = 0.
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=& o)
with respect to £ ® E1p = { typeI } U { type Il } and £}, ,; ® E1; = { type I } U { type II },

where A,,, B, C,,, D,, are matrices of size F,,_1 X Fy,_o, F,_1 X F,_1, F}, X F},_o, and F, X F,,_1,
respectively. For m € L,_2, m’,m” € L,_1 and | € L,,, we have

For n > 3, we put

Mapom)* @En)(a®@pBem!) = "% (m* @ Ey)(m')
Me®@Bom)* @En)(y®l) = 0
n 1\ % Fnl " _ _Ell (m/ = m”)
4 ((7®m) ®E11)(a®ﬁ®m) = { 0 (m/#m//)
S ((yem) @En)(yel) = =" (m™ @ En)().

Thus, we obtain A, =6"2, B, = —Ip,_,, C, =0, and D,, = —6""!. Hence

n __ o2 _IFn—l
0 —< R )

Multiplying 6™ by invertible matrices, we have

IFn—l O 571 0 IFn—2 . IFn71 O
—n—1 IFn —IFn71 o2 o 0 0 ’

Thereby, Ker 6™ and Im 6" are R-free modules of rank F;,_5 and Fj,_1, respectively. We also
see that the induced surjection Hompge (r®", M')/Im 6"~ ! — Hompge (r®", M')/Ker 6" is an R-
homomorphism of free R-modules of the same rank F,,_1. Hence, the surjection is an isomorphism
and Ker 6" = Im §" 1. Therefore, H"(S11(R), M’) = 0 for n > 3. This completes the proof. [

Lemma 5.8. Let My, = RFEo1 be as above. Then

n ~J R (n=1)
H (Sll(R),Mm)—{ 0 (n#1)
Proof. Note that
a b ¢ - o o a b ¢ o
0 e d E21:€E21, E21 0 e d :aEzl.
0 0 a 0 0 a

It is easy to see that My, = ez Maje; and that ME = 0. For f € Hompe(r, May), f(a) = f(aes) =
fla)es = 0 and f(7) = f(ery) = e1f(7) = 0. Thus, we have an isomorphism Homge (r, May) —
Myy = REs; by f +— f(B). First, let us consider §° : M = 0 — Hompge(r, Ma1) = RE5;. Since
§° =0, H°(S11(R), Ma1) = 0.

Next, let us consider §' : Hompge (r, M) = RE9 — Hompge (r@gpr, Moy). Let (a®B)*,...,(v®
~v)* € Homp(r @ r, R) be the dual basis of the basis a« ® 8,...,7®y of r @ r over R. By using
My = eaMyyeq, we see that Hompe (r @ 7, M) = R((8® v)* ® E21). In a similar way, we can
write Hompge (7, Mo;) = R(B* ® Eo1). Since

§'(B* @ FEn)(B©y) = Exnvy=0,
51 =0 and Hl(Sll(R),le) = REQl =~ R.

We claim that Hompge (r®™, May) is a free R-module. Set F!, = rankgHompge (r®", Ms;) under
this claim. Note that F] =1 and Fj = 1. Since Hompe (E, Ma;) = M% = 0, set F, = 0. By My, =
eaMsier and r®" = (e17%"e1) @ (e17%"e2) @ (e2r®™e1) @ (ear®eq), we have Hompge (r®™, My;) =
Hompge (e2r®" ey, RE21) = Homp(e2r®"e1, R). Set L/, = {11 @12 ® - @1y € e2r%e; |21 Q22 @
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<@z, # 0,where x; = «, 8, or v} € M,,. Then Hompge (r®", M) is a free R-module of rank
F! = 4L . Indeed, Hompe (r®", M;) has an R-basis L), ® Eo1 = {m* ® Ea; | m € L}, where
L7 ={m* € Hompg(ear®" ey, R) | m € L]} is the dual basis of £/, C ear®"e;.

Note that £} = {8}, L, = {B®~}, and L = {f®@a®p,b@y®~}. Forn >3, L) = (L,_, @)U
(Ll _,@a®p), where LI, @y ={m®vy|me L, _}and L, ,@a®f={m'@axf|m €L _,}.
Thus, we have F! = F! | + F!_,. We call a monomial in £, s ® a® 8 and in £L,,_1 ® 7 type I
and type II, respectively. Set « > > 7. For 21 @ 22 ® -+ @ Ty, 41 QY2 @ - - Q@ Y, € L, o M.y,
we say that £1 ® 2o ® - Rz, > Y1 QY2 ® -+ R y, if there exists k such that z,, = y,,xp-1 =
Yn—1y--+>Tht1 = Ykr1, and xp > yg. For example, SR7Qa®F>LRaQR[FR7>LRIVRYR Yy
on L ={072a®3,Ra0BR7,7y27R@v}t Ifm>m'in M,, then m@a >m' ® a,
m® B >m'® B, and m®@v > m’ @~ unless they are zero. We define an order on £’ ® E5; such
that m* ® Ea; > m’* ® Ea if and only if m > m’ in £/,. If m € £/, is of type I or II, then we
call m* ® Fa type I or II, respectively. When m; and my in £, are of type I and II, respectively,
Tnf@?j§21:>7n36§252y

For n > 1, let us describe 6" : Hompe (r®", My;) — Hompge (r® 1) My;) with respect to the
ordered bases L', ® Eoy and L', ®FE»;. Forn =1, §' = (0) with respect to £']®FEa = {8*®FEa }
and L5 ® Eo1 = {(B®7)* ® Ea1}. For n = 2, we have

F((BeY) @En)(Bea®p) = Exn
P((BRY) @En)(B®Y®Y) = —Eay=0.

- (2)

with respect to L'5® Ea; = {(3®7)*®F21 } and L'53@ Eey = {(B®a®p)*®@Fa1, (BRY®7)* @ Ea }.
=0.

Hence H?(S11(R), Ma:)
no__ ‘A" ‘B"
0" = < C, D, )

For n > 3, we put
with respect to £’ ® Eo1 = { type I } U{ type Il } and L', ., ® Eo1 = { type I } U { type II },
where A,,, B,,, Cy,, D,, are matrices of size F/, | x F! o F! | x F, |, F/ x F! o and F! x F_,,
respectively. For m € £, _,, m',m” € L/,_; and | € L], we have

We can write

M(mea@pf) @Ex)(m @a®b) = 8" 2(m* @ By )(m)
MM(mea®p)*@En)(®y) = 0
(' 9) @ B mawp) = { CHER =)
§*((m' @) @ En)(l©y) = & '(m"™ @ Exn)().

Thus, we obtain A, = "2, B, = (=)"Ig_,Cp=0,and D, = o1, Hence

P 6n—2 (_Jjn]fl,l
0 6n—1
for n > 3. Multiplying 6™ by invertible matrices, we have

Ip: | 0 5 0 (_1)n+1IFT’Wz _ Ip: 0
(=D tton=t Ipy (=1)"IFr 6n—2 0o 0/

1
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Thereby, Ker 6™ and Im §" are R-free modules of rank F),_, and F_,, respectively. We also
see that the induced surjection Homge (r®™, My;)/Im 6"~ — Hompge (r®"™, My;)/Ker 6" is an R-
homomorphism of free R-modules of the same rank F ;. Hence, the surjection is an isomorphism
,Ms1) =0 for n > 3. This completes the proof.

and Ker 6" = Im §"~*. Hence H"(S11(R)

In the same way as Lemma [5.8] we can prove the following lemma.

KAMOTO AND TAKESHI TORII

Lemma 5.9. Let M3y, = RFE4o be as above. Then

H"(S11(R)

(R (n=1)
’M32):{ 0 (n#1).

By Lemmas and [5.9] we have the following corollary.

Corollary 5.10. Let M" = M3(R)/B3(R

H™(Su1(R), M") = {

Proof. Let r = Ra@®RBF® Ry be as above.
REQl, we have M”E = €1M”€1 = REgl.
Hompge (r, M")

f

( «
8" (E31)(8)
8(Es)(v) =

Ker 6 = 0. Hence H°(S11(R), M") = 0.

Similarly, we have an isomorphism

O (Esn)(a) =
1

Hompge (r @ r, M") 5
f =

By calculating §' : Hompge (1, M") = R(a*
we have

SR RS
ENESNEY °
0y ® ® oy

2LE2s2Eze2li2

[\
—=

=

P
R R ® ® ® @ @
|

|
)
&
)

R (n=1)
0 (n#1).

Since €1MN61 = REgl, €1MN62 = REgQ, and 62M”61 =
On the other hand, there exists an isomorphism

S REs @ REy @ REs
= (f(a), £(8), f(7)-
Let us calculate 0° : M""F = RE3; — Hompe(r, M") = RE3;, ® RE2 @ RE3;. Since

OéEsl - EBla = —E32
BE31 — E518 = Ex

vE31 — E317 = E11 — E33 =0,

RE31 @& RE9 @ RE3» @ RE+,
(fla®B), f(Ba), f(y@a), f(y®7)).
QE32)BR(B*@E0 ) D R(yv*®E3,) — Hompge (r@r, M"),

= E3f=FE3;=0
= 0
= YB3 =FE12=0
0
aFo1 =E11 =0
Eyny=FE»3=0

= 0

= 0

= —En

= fEsi =FEy
= Fzia= FE3

= 4E31 + E31y=FE11 + E33=0.

) = RE3 @ RE3; © RE35 be as above. Then
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Since Ker 0 = R(a*®FE32)DR(8*®FE21) and Im 6° = R(—a*®@E3s+3*®FEa1), H(S11(R), M") =
R.
The short exact sequence 0 — Ma1 @& Mso — M" — M3; — 0 induces a long exact sequence

e — H"(Sll(R),Mm D Mgg) — Hn(sll(R),MH) — Hn(sll(R),M;n) — e

For n > 2, we see that H"(S11(R), Ma1® Ms2) = H™(S11(R), M21)® H™(S11(R), M32) = 0 and that
H™(S11(R), M31) = H™(S11(R), M) = 0 by Lemmas 5.7 B8 and 59 Hence H™(S11(R),M") =0
for n > 2. This completes the proof. O

By the discussions above, we have

Theorem 5.11.
H"(S11(R),M3(R)/S11(R)) = { 1(1)% (E”anzoé)l)

Proof. The short exact sequence 0 — M’ — M — M" — 0 induces a long exact sequence:

0 — HO(SH(R),MI) — HO(SH(R),M) — HO(SH(R),M”)
— Hl(Sll(R),MI) — Hl(Sll(R),M) — Hl(Sll(R),M”)
— H2(811(R),M/) — HQ(SH(R),M) — HQ(SH(R),M”) — e
Using Lemma 5.7 and Corollary 5.0, we have
0 - R— HO(SH(R),M)

—0
—0— HY(S11(R),M) = R
—0— H*(S11(R),M) =0 — ---.

Thereby, H°(S11(R), M) =2 H*(S11(R), M) = R. By using Lemma [5.7] and Corollary E.I0 again,
H™(S11(R), M") = H™(S1,(R), M") = 0 for n > 2. Hence H"(S11(R), M) = 0 for n > 2. O

5.11. The case A = Sy3(k). Let us consider the quiver
a €2
Q= <e

B es3

Let A be the incidence algebra associated to the ordered quiver @) over a commutative ring R. Then

x % %
we can regard A 2 RQ) = Req @ Rea @ Res @ Ra® RS as S13(R) = 0 = 0 by e — FEi1,
0 0 =«

€9 E22, ez +—r E33, (0 d Elg, and ﬁ — Fi3. By Theoremm Hn(Slg,(R),Mg,(R)/Sl?,(R)) =0
for n > 0.

6. APPENDIX: RESULTS ON H(A, M, (R)/A)

In this appendix, we show the tables on Hochschild cohomology H* (A, M2(R)/A) for R-subalgebras
A of M,,(R) over a commutative ring R in the case n = 2,3. The ‘A column denotes the equivalence
classes of “A. The N(A) column denotes the normalizer N(A) = {b € M,,(R) | [b,a] = ba — ab €
A for any a € A} of A. We also define S;(R), N3(R), J3(R), etc. for a commutative ring R in the
same way as the case that R is a field.
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TABLE 1. Hochschild cohomology H*(A, My(R)/A) for R-subalgebras A of Ma(R)
A d = rankA H* = H*(A,M3(R)/A) TA N(A) dim Tyiola, /2,4

M, (R) 4 H' =0 fori >0 M, (R) M, (R) 0
Bg(R):{( g : )} 3 H*=0fori>0 By (R) By (R) 1
D2(R):{< (’; S )} 2 H' =0fori>0 Dy (R) Dy (R) 2
N2(R)={< ot )} 2 Hi%{ ggﬁ;‘/’;%)) ((ii‘:e()vj(’i‘)) N2 (R) { ( o ) ‘ 2a=0 } 2

. 3 P
C2(R):{< o 0 )} 1 H%e{ r 8223 Ca(R) Ma (R) 0
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TABLE 2. Hochschild cohomology H*(A, M5(R)/A) for R-subalgebras A of M3(R)

d = rankA H* = H(A, M3(R)/A) A N(A) @im Tatordy /20
M;(R 9 H =0fori>0 M;(R) M;(R) 0
Poa(R {( * * * )} 7 H' =0fori>0 Pi2(R) Ps1(R) 2
0 0 =
Pio(R {( 0 & )} 7 Hi=0fori>0 Pyi(R) P14(R) 2
0 * x
Bs(R) = {( 0+ )} 6 Hi=0fori>0 Bs(R) Bs(R) 3
0 0 =
* % 0
(My x Dy)(R) {( £ % 0 ) } 5 Hi=0fori>0 (My x D1)(R) (Ms % D1)(R) 4
0 0 =
a b ¢ * ok k
- . i~ R®Am(2) (i:even) . -
Sw(m{(g ‘ ‘j)} b H*{Rg(}z/m (i : odd) Si2(R) { (g : ;) 2“0} 4
a b c .
. i~ R (i=0,1) .
Su(R) = (8 ¢ Z)} 5 " ,{ b Su(R) By(R) 4
a b ¢ X * %k
_ . i~ ) R®Ann(2) (i:even) .k _
Sia(R) = (8 ¢ 5)} 5 H,{RMR/QR) o S10(R) { (8 . *) % o} 1
Si3(R) = (0 * 0)} 5 H =0fori>0 S14(R) S13(R) 4
0 0 =
* 0 %
S1(R) = (o x ok 5 Hi=0fori>0 S1s(R) S1(R) 4
0 0 =
* x 0
(By x Dy)(R) = {( 0+ 0 )} 4 Hi=0fori>0 (By x Dy)(R) (By x Dy)(R) 5
0 0 =
a b c : .
ey " ) i~ R* (i=0) . ‘ 5
o {0 [ el | e
a c d
Se(R) = {( 0 a 0 )} 4 Hi~Rfori>0 So(R) S13(R) 5
0 0 b
a 0 ¢ .
. _ a ~ [ R (i=0) .
57(R){( 8 0 Z)} ' " _{ 0 (iz1) Sa(R) Pan(R) ’
a ¢ d
_ i [ BO(i=0) _
Ss(R) = {( g g 2 )} 4 H 7{ 0 (i>1) S7(R) P12(R) 2
a 0 c
So(R) = {( 0 b d )} 4 H = Rfori>0 Se(R) S11(R) 5
00 b
* 0 0
Ds(R) = {( 0« 0 )} 3 Hi=0fori>0 Ds(R) Ds(R) 6
0 0 =
Nox DR =4[ 0 0 3 Hi%{ R&Am(2) (izeven) |y A N 6
0 0 R®(R/2R) (i :odd) 0o
a b ¢ a * *
B " . i~ J R*®Ann(3) (i:even) ¢ a ) a,b,ce R
JS(R){(g ‘ 2) 3| " —{ R2& (R/3R) (i :odd) Ja(F) { (0 _*Cb o 3c=0 } 6
a 0 0 * 0 0
= a ¢ L= R (_U) * k% ~
(PN T ey | {(W)} 4
a 0 ¢
_ in [ R (i=0)
Ss(R) = (8 8 2) 3 H 7{ 0 (>0 So(R) Sw(R 4
a b ¢ .
_ . i~ R* (i=0)
Si(R) = (8 8 2)} 3 H 7{ R (i>1) Ss(R) P1o(R) 8
Ss(R) = SOb 3 mi= B0=0 Su(R Poi(R 8
5(R) = ' 8 ;’ 7{}?” (i>1) 1(R) 21(R)
a 0 0 L[ R (i=0)
©xP)@ =1 0 a0 2 H :{ A (Co x Dy)(B) (M x D) (R) "
a b 0 LR 0) * % %
sim=q( 0 a0 2 " :{ vy S1(R) 0 e 0 ) B 4
am=1 (o .0 1 HW{ B (i=0) Ca(R) M (R) 0
o 0« Lo @D i '
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