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APPLICATIONS OF HOCHSCHILD COHOMOLOGY TO THE MODULI OF

SUBALGEBRAS OF THE FULL MATRIX RING

KAZUNORI NAKAMOTO AND TAKESHI TORII

Abstract. Let Moldn,d be the moduli of rank d subalgebras of Mn over Z. For x ∈ Moldn,d,
let A(x) ⊆ Mn(k(x)) be the subalgebra of Mn corresponding to x, where k(x) is the residue field
of x. In this article, we apply Hochschild cohomology to Moldn,d. The dimension of the tangent
space TMoldn,d/Z,x

of Moldn,d over Z at x can be calculated by the Hochschild cohomology

H1(A(x),Mn(k(x))/A(x)). We show that H2(A(x),Mn(k(x))/A(x)) = 0 is a sufficient condition
for the canonical morphism Moldn,d → Z being smooth at x. We also calculate Hi(A,Mn(k)/A)
for several R-subalgebras A of Mn(R) over a commutative ring R. In particular, we summarize
the results on Hi(A,Mn(k)/A) for all k-subalgebras A of Mn(k) over an algebraically closed field
k in the case n = 2, 3.

1. Introduction

By a rank d mold A of degree n on a scheme X , we mean a subsheaf of OX -algebras of Mn(OX)
such that A is a rank d subbundle of Mn(OX) (Definition 3.1). Let Moldn,d be the moduli of rank
d molds of degree n over Z (Definition and Proposition 3.4). Roughly speaking, Moldn,d is the
moduli of d-dimensional subalgebras of the full matrix ring Mn over Z. The moduli Moldn,d is a
closed subscheme of the Grassmann scheme Grass(d,Mn) and has rich information on subalgebras
of the full matrix ring Mn.

Let A be the universal mold on Moldn,d. For x ∈Moldn,d, denote by A(x) = A⊗OMoldn,d
k(x) ⊂

Mn(k(x)) the mold corresponding to x, where k(x) is the residue field of x. For investigating
Moldn,d, it is useful to calculate Hochschild cohomology Hi(A(x),Mn(k(x))/A(x)) for each point
x ∈ Moldn,d. The dimension of the tangent space TMoldn,d/Z,x of Moldn,d over Z at x can be
calculated by the following theorem:

Theorem 1.1 (cf. Corollary 3.13). For each point x ∈Moldn,d,

dimk(x) TMoldn,d/Z,x = dimk(x)H
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x)N(A(x)),

where N(A(x)) = {b ∈ Mn(k(x)) | [b, a] = ba− ab ∈ A(x) for any a ∈ A(x)}.

By using H2(A(x),Mn(k(x))/A(x)), we obtain a sufficient condition for the canonical morphism
Moldn,d → Z being smooth at x:

Theorem 1.2 (Theorem 3.22). Let x ∈ Moldn,d. If H2(A(x),Mn(k(x))/A(x)) = 0, then the
canonical morphism Moldn,d → Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a PGLn,S-
orbit {P−1AP | P ∈ PGLn,S} in Moldn,d ⊗Z S, where PGLn,S = PGLn ⊗Z S. By using
H1(A(x),Mn(k(x))/A(x)), we also have:

Date: June 14, 2020 (version 1.0.0).
2010 Mathematics Subject Classification. Primary 16E40; Secondary 14D22, 16S50, 16S80.
Key words and phrases. Hochschild cohomology, Subalgebra, Matrix ring, Moduli of molds.
The first author was partially supported by JSPS KAKENHI Grant Numbers JP15K04814, JP20K03509. The

second author was partially supported by JSPS KAKENHI Grant Numbers JP22540087, JP25400092, JP17K05253.

1

http://arxiv.org/abs/2006.07870v1


2 KAZUNORI NAKAMOTO AND TAKESHI TORII

Theorem 1.3 (Corollary 3.30). Assume that H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S. Then
the PGLn,S-orbit {P−1AP | P ∈ PGLn,S} is open in Moldn,d ⊗Z S.

These theorems are useful to investigate the moduli Moldn,d. We will describe the moduli Moldn,d
in the case n = 3 in [11].

For k-subalgebras A,B ⊆ Mn(k) over a field k, we say that A and B are equivalent if there
exists P ∈ GLn(k) such that P−1AP = B (Definition 3.3). In the case n = 2, there exist 5
equivalence classes of k-subalgebras of M2(k) over an algebraically closed field k (Proposition 5.1).
In the case n = 3, there exist 26 equivalence classes of k-subalgebras of M3(k) over an algebraically
closed field k (Theorem 5.2). For each k-subalgebra A ⊆ Mn(k) (n = 2, 3), we calculate the
Hochschild cohomology Hi(A,Mn(k)/A) in Section 5. We will use the results on Hi(A,Mn(k)/A)
for describing Moldn,d in the case n = 3 in [11].

This article is the detailed version of [9] and [10]. In the proof of Theorem 5.11 of this paper,
the Fibonacci numbers appear as the ranks of free modules in the cochain complex for calculating
Hn(S11(R),M3(R)/S11(R)), which seems strange to us, while we have shown another proof of
Theorem 5.11 using spectral sequence in [10]. We need to point out that our results are closely
related with the variety Algn of n-dimensional algebras in the sense of Gabriel in [2]. Our results
can be regarded as a reformulation of Gabriel’s theory in the k-subalgebra case. We will explain
the relation between Algn and Moldn,n in another paper.

The organization of this paper is as follows: in Section 2, we review Hochschild cohomology. For
calculating Hi(A,Mn/A), we introduce several results on Hochschild cohomology. In Section 3,
we review the moduli of molds. For describing the moduli of molds, we introduce several applica-
tions of Hochschild cohomology to the moduli of molds such as Theorems 1.1–1.3 (Corollary 3.13,
Theorem 3.22, Corollary 3.30, etc.). In Section 4, we explain how to calculate Hochschild coho-
mology. By using Ciblis’s result (Proposition 4.1), we can calculate Hochschild cohomology for
several cases. We also explain several techniques and perform several calculations. In Section 5,
we introduce the classification of k-subalgebras of Mn(k) over an algebraically closed field k in the
case n = 2, 3. For each k-subalgebra A of Mn(k) (n = 2, 3), we calculate Hi(A,Mn(k)/A) for i ≥ 0.
In Section 6, we summarize the results on Hi(A,Mn(R)/A) for R-subalgebras A of Mn(R) over a
commutative ring R in the case n = 2, 3 as Tables 1 and 2.

For a commutative ring R, we denote by In the identity matrix of Mn(R). We denote by
Eij ∈ Mn(R) the matrix with entry 1 in the (i, j)-component and 0 the other components. Set
[In] = (In mod R× · In) ∈ PGLn(R) = GLn(R)/(R

× · In) for a local ring R. We also denote by
(R,m, k) the triple of a local ring R, a maximal ideal m of R, and k = R/m. By a module M over
an associative algebra A, we mean a left module M over A, unless stated otherwise.

2. Preliminaries on Hochschild cohomology

In this section we give a review of Hochschild cohomology groups (cf. [3] and [14]). Throughout
this section, R denotes a commutative ring, A an associative algebra over R, andM an A-bimodule
over R.

Definition 2.1. Assume that A is a projective module over R. Let Ae = A ⊗R Aop be the
enveloping algebra of A. For A-bimodules A and M over R, we can regard them as Ae-modules.
We define the i-th Hochschild cohomology group Hi(A,M) as ExtiAe(A,M).

We denote by B∗(A,A,A) the bar resolution of A as A-bimodules over R. For p ≥ 0, we have

Bp(A,A,A) = A⊗R

p︷ ︸︸ ︷
A⊗R · · · ⊗R A⊗RA.
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For an A-bimodule M over R, we define a cochain complex C∗(A,M) to be

HomAe(B∗(A,A,A),M).

We can identify Cp(A,M) with an R-module

HomR(

p︷ ︸︸ ︷
A⊗R · · · ⊗R A,M).

Under this identification, the coboundary map dp : Cp(A,M)→ Cp+1(A,M) is given by

dp(f)(a1 ⊗ · · · ⊗ ap+1) = a1 · f(a2 ⊗ · · · ⊗ ap+1)

+

p∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap+1)

+(−1)p+1f(a1 ⊗ · · · ⊗ ap) · ap+1

for f ∈ Cp(A,M). The Hochschild cohomology group H∗(A,M) of A with coefficients in M can
be calculated by taking the cohomology of the cochain complex C∗(A,M):

H∗(A,M) = H∗(C∗(A,M)).

Remark 2.2. In Definition 2.1, the assumption that A is a projective module over R is needed
for ExtiAe(A,M) ∼= Hi(C∗(A,M)) for i ≥ 0.

Let N be another A-bimodule over R. We define a map

∪ : C∗(A,M)× C∗(A,N) −→ C∗(A,M ⊗A N)

by
(f ∪ g)(a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq) = f(a1 ⊗ · · · ⊗ ap)⊗ g(b1 ⊗ · · · ⊗ bq)

for f ∈ Cp(A,M) and g ∈ Cq(A,N). The map ∪ is R-bilinear and satisfies

dp+q(f ∪ g) = dp(f) ∪ g + (−1)pf ∪ dq(g).

Hence the map ∪ induces a map

Hp(A,M)⊗R H
q(A,N) −→ Hp+q(A,M ⊗A N)

of R-modules.
By the above construction, we see that the Hochschild cohomology H∗(A,−) defines a lax

monoidal functor from the monoidal category of A-bimodules over R to the monoidal category
of graded R-modules. Hence, H∗(A,M) is a graded associative algebra over R if M is a monoid
object in the category of A-bimodules over R.

Suppose that the unit map R → A is a split monomorphism. We set A = A/RI, where I ∈ A
is the image of 1 ∈ R under the unit map. Let B∗(A,A,A) be the reduced bar resolution of A as
A-bimodules over R. We have

Bp(A,A,A) ∼= A⊗R

p︷ ︸︸ ︷
A⊗R · · · ⊗R A⊗RA

for p ≥ 0. For an A-bimoduleM overR, we denote the cochain complex HomAe(B∗(A,A,A),M) by

C
∗
(A,M). The cochain complex C

∗
(A,M) is a subcomplex of C∗(A,M). Recall that the reduced

bar resolution B∗(A,A,A) is chain homotopy equivalent to the bar resolution B∗(A,A,A), and

hence that the inclusion C
∗
(A,M)→ C∗(A,M) induces an isomorphism

H∗(C(A,M)) ∼= H∗(A,M).

We observe that the map ∪ : C∗(A,M)×C∗(A,N)→ C∗(A,M ⊗AN) induces an R-bilinear map

∪ : C
∗
(A,M)× C

∗
(A,N) −→ C

∗
(A,M ⊗A N),
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where N is another A-bimodule over R. Hence the map ∪ : C
∗
(A,M)×C

∗
(A,N) −→ C

∗
(A,M⊗A

N) induces the same map Hp(A,M)⊗RHq(A,N) −→ Hp+q(A,M ⊗AN) of R-modules as before.

The following proposition is a basic result.

Proposition 2.3. Let A be a finite-dimensional associative algebra over a field k. Let M be an
A-bimodule over k. For an extension field K of k, we have Hi(A⊗kK,M⊗kK) ∼= Hi(A,M)⊗kK
for i ≥ 0.

Proof. The bar complex Ci(A ⊗k K,M ⊗k K) = HomK((A ⊗k K)⊗i,M ⊗k K) is isomorphic to
Ci(A,M)⊗k K. Hence Hi(A⊗k K,M ⊗k K) ∼= Hi(A,M)⊗k K for i ≥ 0. �

Corollary 2.4. Let A,M, k,K be as in Proposition 2.3. Then Hi(A,M) = 0 if and only if
Hi(A⊗k K,M ⊗k K) = 0.

For an A-bimodule M over R, suppose that there exists a filtration of A-bimodules over R:

0 = Fm ⊂ Fm−1 ⊂ · · · ⊂ F 1 ⊂ F 0 =M.

We denote by Grp(M) the p-th associated graded module F p/F p+1. The filtration induces a long
exact sequence

· · · → Hp+q(A,F p+1)→ Hp+q(A,F p)→ Hp+q(A,Grp(M))→ Hp+q+1(A,F p+1)→ · · · .

We set
Dp,q = Hp+q(A,F p)
Ep,q = Hp+q(A,Grp(M))

We obtain an exact couple

D
i

// D

j
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

E

k

``❅❅❅❅❅❅❅❅

where D = ⊕p,qDp,q and E = ⊕p,qEp,q. By standard construction, we obtain a spectral sequence:

Proposition 2.5. For a filtration of A-bimodules over R:

0 = Fm ⊂ Fm−1 ⊂ · · · ⊂ F 1 ⊂ F 0 =M,

there exists a spectral sequence

Ep,q1 = Hp+q(A,Grp(M)) =⇒ Hp+q(A,M)

of R-modules with

dr : E
p,q
r −→ Ep+r,q−r+1

r

for r ≥ 1, where Grp(M) = F p/F p+1. Here d1 : Ep,q1 −→ Ep+1,q
1 is identified with the connecting

homomorphism Hp+q(A,Grp(M))→ Hp+q+1(A,Grp+1(M)) of the long exact sequence

· · · → H∗(A,Grp+1(M))→ H∗(A,F p/F p+2)→ H∗(A,Grp(M))→ H∗+1(A,Grp+1(M))→ · · ·

induced by the short exact sequence 0 → Grp+1(M) → F p/F p+2 → Grp(M) → 0. Moreover, the
spectral sequence collapses at the Em-page.

Proof. See, for example, [6, §2.2] for construction of spectral sequences. �
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3. Applications of Hochschild cohomology groups to the moduli of molds

In this section, we apply Hochschild cohomology to the moduli Moldn,d of molds, that is, the
moduli of subalgebras of the full matrix ring. In Section 3.1, we give a review of the moduli of
molds. In Section 3.2, we show that the tangent space of the moduli of molds over Z at each point
x can be calculated by H1(A(x),Mn(k(x))/A(x)) (Corollary 3.13). In Section 3.3, we construct
an obstruction for the canonical morphism Moldn,d → Z to be smooth at x as a cohomology
class of H2(A(x),Mn(k(x))/A(x)). Hence H2(A(x),Mn(k(x))/A(x)) = 0 is a sufficient condition
for Moldn,d → Z being smooth at x (Theorem 3.22). In Section 3.4, we discuss the morphism
φA : PGLn,S → Moldn,d⊗Z S defined by P 7→ P−1AP for a rank d mold A ⊆ Mn(OS) on a locally
noetherian scheme S, where PGLn,S = PGLn ⊗Z S. We show that φA is smooth if and only if
H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S (Theorem 3.29).

3.1. The moduli of molds. In this subsection, we introduce the notion of mold. We use [7] as
our main reference.

Definition 3.1 ([7, Definition 1.1]). Let X be a scheme. A subsheaf of OX -algebras A ⊆Mn(OX)
is said to be a mold of degree n on X if A and Mn(OX)/A are locally free sheaves on X . We
denote by rankA the rank of A as a locally free sheaf on X. For a commutative ring R, we say that
an R-subalgebra A ⊆ Mn(R) is a mold of degree n over R if A is a mold of degree n on SpecR.

Definition 3.2 ([7, Definition 1.2]). Let A and B be molds of degree n on a scheme X . We
say that A and B are locally equivalent if for each x ∈ X there exist a neighborhood U of x and
Px ∈ GLn(OX(U)) such that P−1

x (A |U )Px = B |U⊆ Mn(OU ).

When X is Speck with a field k, we define:

Definition 3.3. Let k be a field. Let A and B be k-subalgebras of Mn(k). We say that A and B
are equivalent (or A ∼ B) if there exists P ∈ GLn(k) such that P−1AP = B.

We can construct the moduli of molds:

Definition and Proposition 3.4 ([7, Definition and Proposition 1.1]). The following contravari-
ant functor is representable by a closed subscheme of the Grassmann scheme Grass(d,Mn):

Moldn,d : (Sch)op → (Sets)
X 7→ {A | a mold of degree n on X with rankA = d}.

We denote by Moldn,d the scheme representing the functor Moldn,d.

Here we review Mold2,d for d = 1, 2, 3, 4.

Example 3.5 ([7, Example 1.1]). In the case n = 2, we have

Mold2,1 = SpecZ,

Mold2,2 = P
2
Z
,

Mold2,3 = P
1
Z
,

Mold2,4 = SpecZ.

3.2. Tangent spaces of the moduli of molds. Let k be a field. Let A0 ∈ Moldn,d(k). In other
words, A0 is a d-dimensional k-subalgebra of Mn(k). Let R be the category of Artin local rings
with residue field k and local homomorphisms.
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Definition 3.6. We define the covariant functor DefA0
: R→ (Sets) by

DefA0
(R) =




A ∈ Moldn,d(R)

A⊗R k
∼=
→ A0

A satisfies that ←֓ � ←֓

Mn(R)⊗R k
∼=→ Mn(k)





for R ∈ R. We also define the covariant functor G : R→ (Groups) by

G(R) = {P ∈ PGLn(R) | P ≡ [In] mod m} ,

where m is the maximal ideal of R ∈ R and (Groups) is the category of groups. Then G(R) acts
on DefA0

(R) from the right by

DefA0
(R)×G(R) → DefA0

(R)
(A,P ) 7→ P−1AP.

Definition 3.7. Denote by (Groupoids) the category of groupoids. We can regard (DefA0
(R), G(R)) ∈

(Groupoids) for R ∈ R. We define the covariant functor F : R→ (Groupoids) by

F : R → (Groupoids)
R 7→ (DefA0

(R), G(R)).

We also define the covariant functor π0 : (Groupoids)→ (Sets) by

π0 : (Groupoids) → (Sets)
G 7→ { isomorphism classes of objects of G}.

Then we have the following composition

π0 ◦ F : R → (Sets)
R 7→ DefA0

(R)/G(R).

We define the k-vector space of derivations Derk(A0,Mn(k)/A0) by Derk(A0,Mn(k)/A0) = {f ∈
Homk(A0,Mn(k)/A0) | f(ab) = af(b) + f(a)b for a, b ∈ A0}.

Proposition 3.8. There exists an isomorphism

DefA0
(k[ǫ]/(ǫ2)) ∼= Derk(A0,Mn(k)/A0).

Proof. For θ ∈ Derk(A0,Mn(k)/A0), take a k-linear map θ′ : A0 → Mn(k) as a lift of θ. We define
A(θ) = (k[ǫ]/(ǫ2)){ a+ θ′(a)ǫ | a ∈ A0} ⊂ Mn(k[ǫ]/(ǫ

2)). It is easy to check that the definition of
A(θ) does not depend on the choice of θ′. We define a map Derk(A0,Mn(k)/A0)→ DefA0

(k[ǫ]/(ǫ2))
by θ 7→ A(θ). We can easily prove that this map is bijective. �

Definition 3.9 ([4, 16.5.13], [13, Definition 0B2C]). Let f : X → S be a morphism of schemes.
Let x ∈ X and s = f(x) ∈ S. We denote by k(x) and k(s) the residue fields of x and s, respectively.

The field extension k(s) ⊆ k(x) induces k(s)-algebra homomorphisms k(s)
ϕ1
→ k(x)[ǫ]/(ǫ2)

ϕ2
→ k(x)

such that ϕ1(a) = a+ 0 · ǫ for a ∈ k(s), ϕ2(b + cǫ) = b for b, c ∈ k(x), and ϕ2 ◦ ϕ1 is the inclusion
k(s) →֒ k(x). By ϕ1 and ϕ2, we obtain morphisms Spec k(x)→ Spec k(x)[ǫ]/(ǫ2)→ Spec k(s). By
a tangent vector of X/S at x, we mean an S-morphism ψ : Spec k(x)[ǫ]/(ǫ2) → X such that the
following diagram is commutative:

Spec k(x)
↓ ϕ∗

2 ց

Spec k(x)[ǫ]/(ǫ2)
ψ
→ X

↓ ϕ∗
1 ↓

Spec k(s) → S.
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We call the set of tangent vectors of X/S at x the tangent space TX/S,x of X over S at x, which
has a canonical k(x)-vector space structure.

Remark 3.10 ([4, 16.5.13.1], [13, (0BEA) and Lemma 0B2D]). Let Xs be the scheme-theoretic
fiber f : X → S over s = f(x). Then there exists a canonical isomorphism TX/S,x ∼= TXs/Spec k(s),x

as k(x)-vector spaces. Let ΩX/S be the sheaf of relative differentials of X over S. We also have a
canonical isomorphism

TX/S,x ∼= HomOX,x(ΩX/S,x, k(x))

as k(x)-vector spaces, where ΩX/S,x is the stalk of ΩX/S at x.

Let A be the universal mold on Moldn,d. For a point x of Moldn,d, we denote by A(x) =
A⊗OMoldn,d

k(x) ⊆Mn(k(x)) the mold corresponding to x.

Corollary 3.11. Let x be a point of Moldn,d. The tangent space TMoldn,d/Z,x of Moldn,d over Z

at x is isomorphic to Derk(x)(A(x),Mn(k(x))/A(x)) as k(x)-vector spaces.

Proof. We see that TMoldn,d/Z,x
∼= DefA(x)(k(x)[ǫ]/(ǫ

2)) ∼= Derk(x)(A(x),Mn(k(x))/A(x)) by the
definition of tangent space and Proposition 3.8. We also see that TMoldn,d/Z,x is canonically iso-
morphic to Derk(x)(A(x),Mn(k(x))/A(x)) as k(x)-vector spaces. �

Let us define d : Mn(k) → Derk(A0,Mn(k)/A0) by d(X)(a) = ([X, a] mod A0) = (Xa − aX
mod A0) for X ∈Mn(k) and a ∈ A0. It is easy to check that d(X) ∈ Derk(A0,Mn(k)/A0).

Proposition 3.12. There exists an isomorphism

H1(A0,Mn(k)/A0) ∼= Derk(A0,Mn(k)/A0)/Im d.

Proof. Let us consider the bar complex

0→ C0(A0,Mn(k)/A0)
d0
→ C1(A0,Mn(k)/A0)

d1
→ C2(A0,Mn(k)/A0)→ · · · .

Note that Ker d1 = Derk(A0,Mn(k)/A0) ⊇ Im d0 = Im d. Hence we have H1(A0,Mn(k)/A0) ∼=
Derk(A0,Mn(k)/A0)/Im d. �

Let N(A0) = {X ∈ Mn(k) | [X, a] ∈ A0 for any a ∈ A0}. The k-linear map d : Mn(k) →
Derk(A0,Mn(k)/A0) induces a k-linear map d : Mn(k)/A0 → Derk(A0,Mn(k)/A0). Then we have

Corollary 3.13. There exists an exact sequence

0→ N(A0)/A0 → Mn(k)/A0
d
→ Derk(A0,Mn(k)/A0)→ H1(A0,Mn(k)/A0)→ 0.

In particular, dimk(x) TMoldn,d/Z,x = dimk(x)H
1(A(x),Mn(k(x))/A(x))+n

2−dimk(x)N(A(x)) for
any point x ∈Moldn,d.

Proof. By Proposition 3.12, Mn(k)/A0
d
→ Derk(A0,Mn(k)/A0)→ H1(A0,Mn(k)/A0)→ 0 is exact.

The kernel of d is equal to N(A0)/A0. Hence we have the exact sequence above. The last statement
follows from the fact that TMoldn,d/Z,x

∼= Derk(x)(A(x),Mn(k(x))/A(x)) by Corollary 3.11. �

By the definition, G(k[ǫ]/(ǫ2)) = {[In + Xǫ] ∈ PGLn(k[ǫ]/(ǫ
2)) | X ∈ Mn(k)}. Note that

[In + Xǫ] = [In + Y ǫ] if and only if there exists c ∈ k such that X = Y + cIn. Hence we
have a group isomorphism G(k[ǫ]/(ǫ2)) ∼= Mn(k)/kIn defined by [In + Xǫ] 7→ (X mod kIn).
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Recall A(θ) ∈ DefA0
(k[ǫ]/(ǫ2)) defined in Proposition 3.8 for θ ∈ Derk(A0,Mn(k)/A0). For P =

[In +Xǫ] ∈ G(k[ǫ]/(ǫ2)),

P−1A(θ)P = [In −Xǫ]A(θ)[In +Xǫ]

= (k[ǫ]/(ǫ2)){a+ (θ′(a) + aX −Xa)ǫ | a ∈ A0}

= A(θ − d(X)),

where θ′ : A0 → Mn(k) is a lift of θ. Hence we have

Proposition 3.14. We have isomorphisms

H1(A0,Mn(k)/A0) ∼= DefA0
(k[ǫ]/(ǫ2))/G(k[ǫ]/(ǫ2)) ∼= π0 ◦ F (k[ǫ]/(ǫ

2)).

Proof. By the discussion above and Propositions 3.8 and 3.12, we can prove the statement. �

Let us consider H0(A0,Mn(k)/A0).

Definition 3.15. We define the trivial deformation Aǫ = A0 ⊗k (k[ǫ]/(ǫ2)) ∈ DefA0
(k[ǫ]/(ǫ2)) of

A0 to k[ǫ]/(ǫ2). Note that Aǫ = A(0), where 0 ∈ Derk(A0,Mn(k)/A0). We also define Gǫ = {P ∈
G(k[ǫ]/(ǫ2)) | P−1AǫP = Aǫ}. Then Gǫ is equal to the stabilizer group AutF (k[ǫ]/(ǫ2))(Aǫ) of Aǫ in

the groupoid F (k[ǫ]/(ǫ2)) = (DefA0
(k[ǫ]/(ǫ2)), G(k[ǫ]/(ǫ2))).

Proposition 3.16. There exists an exact sequence

0→ I → Gǫ → H0(A0,Mn(k)/A0)→ 0,

where I = {P ∈ G(k[ǫ]/(ǫ2)) | P = [In +Xǫ], X ∈ A0}.

Proof. Recall the isomorphism G(k[ǫ]/(ǫ2)) ∼= Mn(k)/kIn given by [In+Xǫ] 7→ (X mod kIn). For
P = [In + Xǫ] ∈ G(k[ǫ]/(ǫ2)), P−1AǫP = P−1A(0)P = A(−d(X)). Hence we have Gǫ = {P ∈
G(k[ǫ]/(ǫ2)) | P = [In +Xǫ], d(X) = 0} ∼= {X ∈ Mn(k) | [A0, X ] ⊆ A0}/kIn. Let d : Mn(k)/A0 →
Derk(A0,Mn(k)/A0) be the k-linear map induced by d : Mn(k) → Derk(A0,Mn(k)/A0). By the

bar complex, H0(A0,Mn(k)/A0) = Ker d = {[X ] ∈Mn(k)/A0 | [A0, X ] ⊆ A0}. The canonical pro-
jection Mn(k)/kIn → Mn(k)/A0 induces a surjective homomorphism p : Gǫ → H0(A0,Mn(k)/A0).
The kernel of p is I = {P ∈ G(k[ǫ]/(ǫ2)) | P = [In +Xǫ], X ∈ A0} ∼= A0/kIn. This complete the
proof. �

3.3. Smoothness of Moldn,d. Let (R̃, m̃, k) be an Artin local ring. Let I be an ideal of R̃

such that m̃I = 0. Set R = R̃/I and m = m̃/I. Then (R,m, k) is also an Artin local ring.
Let A ∈ Moldn,d(R). In other words, A ⊂ Mn(R) is a rank d mold. Since R is a local ring,
A and Mn(R)/A are free modules over R. Take a basis a1, a2, . . . , ad of A over R. For 1 ≤

i ≤ d, choose a lift S(ai) ∈ Mn(R̃) of ai. Since aiaj ∈ A = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Rad, we can

choose a lift S(aiaj) ∈ R̃S(a1) ⊕ R̃S(a2) ⊕ · · · ⊕ R̃S(ad) of aiaj for 1 ≤ i, j ≤ d. Note that
S(aiaj)− S(ai)S(aj) ∈ Mn(I). Let us define an R-linear map c′ : A⊗R A→ Mn(I) ∼= Mn(k)⊗k I

by c′(
∑

1≤i,j≤d rijai ⊗ aj) =
∑

1≤i,j≤d r̃ij(S(aiaj)− S(ai)S(aj)), where r̃ij ∈ R̃ is a lift of rij ∈ R.
The R-module structure of Mn(k)⊗k I is given by a · (X⊗x) = (p(a)X)⊗x for a ∈ R,X ∈ Mn(k),

and x ∈ I, where p : R→ R/m = R̃/m̃ = k is the canonical projection. By using I2 = 0, we easily
see that the definition of c′ does not depend on the choice of lifts r̃ij of rij .

Set A0 = A ⊗R k ⊆ Mn(k). Since A = ⊕di=1Rai, we can write A0 = ⊕di=1kai, where ai = (ai

mod m). We denote by c′′ the composition A⊗R A
c′
→ Mn(k)⊗k I → (Mn(k)/A0)⊗k I. It is easy

to see that c′′ : A ⊗R A → (Mn(k)/A0) ⊗k I goes through A0 ⊗k A0. Hence we have a k-linear
map c : A0 ⊗k A0 → (Mn(k)/A0) ⊗k I. By a · (X ⊗ x) · b = (aXb) ⊗ x for X ∈ Mn(k)/A0,
x ∈ I and a, b ∈ A0, we can regard (Mn(k)/A0) ⊗k I as an A0-bimodule. For the A0-bimodule
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(Mn(k)/A0)⊗k I, let us consider the bar complex (Ci, di)i∈Z, where C
i = Ci(A0, (Mn(k)/A0) ⊗k

I) = Homk(A
⊗i
0 , (Mn(k)/A0)⊗k I) and di : Ci → Ci+1 is a differential.

Lemma 3.17. The k-linear map c : A0 ⊗k A0 → (Mn(k)/A0)⊗k I is a 2-cocyle in C2.

Proof. Let us show that d2(c) = 0, where d2 : C2 → C3. It suffices to show that d2(c)(ai⊗aj⊗al) =
0 for 1 ≤ i, j, l ≤ d. By the definition,

d2(c)(ai ⊗ aj ⊗ al) = aic(aj ⊗ al)− c(aiaj ⊗ al) + c(ai ⊗ ajal)− c(ai ⊗ aj)al.

For 1 ≤ i, j ≤ d, there exist csij ∈ R such that aiaj =
∑d

s=1 c
s
ijas ∈ A. Putting c

s
ij = (csij mod m),

we have aiaj =
∑d

s=1 c
s
ijas ∈ Mn(k). For verifying d2(c)(ai ⊗ aj ⊗ ak) = 0 in (Mn(k)/A0) ⊗k I =

(Mn(k)⊗k I)/(A0⊗k I), we calculate S(ai)c′(aj⊗al), c′(aiaj⊗al), c′(ai⊗ajal), and c′(ai⊗aj)S(al)

in Mn(k)⊗kI = Mn(I) ⊂Mn(R̃). We can write S(aiaj) =
∑d

s=1 c̃
s
ijS(as) ∈ ⊕

d
s=1R̃S(as) ⊆ Mn(R̃),

where c̃sij ∈ R̃ is a lift of csij . Since

S(ai)c
′(aj ⊗ al) = S(ai)(S(ajal)− S(aj)S(al))

= S(ai)S(ajal)− S(ai)S(aj)S(al),

c′(aiaj ⊗ al) = c′

(
d∑

s=1

csijas ⊗ al

)

=

d∑

s=1

c̃sij(S(asal)− S(as)S(al))

=

d∑

s,t=1

c̃sij c̃
t
slS(at)−

d∑

s=1

c̃sijS(as)S(al)

=

d∑

s,t=1

c̃sij c̃
t
slS(at)− S(aiaj)S(al),

c′(ai ⊗ ajal) = c′

(
d∑

s=1

csjlai ⊗ as

)

=
d∑

s=1

c̃sjl(S(aias)− S(ai)S(as))

=
d∑

s,t=1

c̃sjlc̃
t
isS(at)−

d∑

s=1

c̃sjlS(ai)S(as)

=

d∑

s,t=1

c̃sjlc̃
t
isS(at)− S(ai)S(ajal),

and

c′(ai ⊗ aj)S(al) = (S(aiaj)− S(ai)S(aj))S(al)

= S(aiaj)S(al)− S(ai)S(aj)S(al),
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we have

S(ai)c
′(aj ⊗ al)− c

′(aiaj ⊗ al) + c′(ai ⊗ ajal)− c
′(ai ⊗ aj)S(al)(3.1)

=
d∑

s,t=1

(c̃tisc̃
s
jl − c̃

s
ij c̃

t
sl)S(at).

The associativity ai(ajal) = (aiaj)al implies that
∑d

s=1(c̃
t
isc̃

s
jl− c̃

s
ij c̃

t
sl) ∈ I for each 1 ≤ t ≤ d. The

right hand side of (3.1) is contained in
∑d
i=1 IS(ai) = A0 ⊗k I ⊂ Mn(k)⊗k I = Mn(I). Thus, we

have d2(c)(ai ⊗ aj ⊗ al) = 0. �

For lifts S(ai) ∈ Mn(R̃) of ai (1 ≤ i ≤ d) and lifts S(aiaj) ∈ R̃S(a1) ⊕ · · · ⊕ R̃S(ad) of aiaj
(1 ≤ i, j ≤ d), we can define a 2-cocycle cS ∈ C2 by Lemma 3.17. We denote by [cS ] the cohomology
class of cS in H2(A0, (Mn(k)/A0)⊗k I).

Lemma 3.18. The cohomology class [cS ] in H2(A0, (Mn(k)/A0) ⊗k I) is independent from the

choice of the lifts S(ai) ∈ Mn(R̃) of ai (1 ≤ i ≤ d) and the lifts S(aiaj) ∈ R̃S(a1)⊕ · · · ⊕ R̃S(ad)
of aiaj (1 ≤ i, j ≤ d).

Proof. Let T (ai) ∈ Mn(R̃) and T (aiaj) ∈ R̃T (a1) ⊕ · · · ⊕ R̃T (ad) be other lifts of ai (1 ≤ i ≤ d)
and aiaj (1 ≤ i, j ≤ d), respectively. We denote by cS , cT : A0 ⊗k A0 → (Mn(k)/A0) ⊗k I the
2-cocycles defined by the lifts {S(ai)}∪{S(aiaj)} and {T (ai)}∪{T (aiaj)}, respectively. We define
the k-linear map θ : A0 → (Mn(k)/A0) ⊗k I = (Mn(k) ⊗k I)/(A0 ⊗k I) by ai 7→ (T (ai) − S(ai)
mod A0 ⊗k I) for 1 ≤ i ≤ d. Note that T (ai) − S(ai) ∈ Mn(I) = Mn(k) ⊗k I. Let us calculate
d1(θ)(ai ⊗ aj) = aiθ(aj) − θ(aiaj) + θ(ai)aj . Put aiaj =

∑
s=1 c

s
ijas for csij ∈ R and csij = (csij

mod m) ∈ k. We can write S(aiaj) =
∑d
s=1 c̃

s
ijS(as) and T (aiaj) =

∑d
s=1 d̃

s
ijT (as) for 1 ≤ i, j ≤ d,

where c̃sij , d̃
s
ij ∈Mn(R̃) are lifts of csij . Using c̃

s
ij − d̃

s
ij ∈ I and (c̃sij − d̃

s
ij)T (as) ∈ A0 ⊗k I, we have

θ(aiaj) = θ

(
d∑

s=1

csijas

)

=

d∑

s=1

c̃sij(T (as)− S(as)) mod A0 ⊗k I

=

d∑

s=1

d̃sijT (as)−
d∑

s=1

c̃sijS(as) +

d∑

s=1

(c̃sij − d̃
s
ij)T (as) mod A0 ⊗k I

=

d∑

s=1

d̃sijT (as)−
d∑

s=1

c̃sijS(as) mod A0 ⊗k I

= T (aiaj)− S(aiaj) mod A0 ⊗k I.

Since aiX = S(ai)X and Xaj = XT (aj) for each X ∈ Mn(I), we have

d1(θ)(ai ⊗ aj)

= aiθ(aj)− θ(aiaj) + θ(ai)aj

= S(ai)(T (aj)− S(aj))− (T (aiaj)− S(aiaj)) + (T (ai)− S(ai))T (aj) mod A0 ⊗k I

= cS(ai ⊗ aj)− cT (ai ⊗ aj).

Hence we have cS − cT = d1(θ), which implies that [cS ] = [cT ]. �
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For lifts S(ai) ∈ Mn(R̃) of ai (1 ≤ i ≤ d) and lifts S(aiaj) ∈ R̃S(a1) ⊕ · · · ⊕ R̃S(ad) of aiaj
(1 ≤ i, j ≤ d), it seems that the 2-cocycle cS depends on the choice of an R-basis a1, . . . , ad of A.
In fact, we see that the cohomology class [cS ] is independent from the choice of an R-basis of A by
the following lemma.

Lemma 3.19. The cohomology class [cS ] is independent from the choice of an R-basis {a1, . . . , ad}
of A.

Proof. Suppose that a1, . . . , ad and b1, . . . , bd are bases of A over R. Then there exists P = (pij) ∈
GLd(R) such that

(a1, . . . , ad) = (b1, . . . , bd)P.

Let P̃ = (p̃ij) ∈ GLd(R̃) be a lift of P . Let us choose lifts S(ai) ∈Mn(R̃) of ai (1 ≤ i ≤ d) and lifts

S(aiaj) ∈ R̃S(a1) ⊕ · · · ⊕ R̃S(ad) of aiaj (1 ≤ i, j ≤ d). We define lifts T (b1), . . . , T (bd) ∈ Mn(R̃)
of b1, . . . , bd ∈ Mn(R) by

(T (b1), . . . , T (bd)) = (S(a1), . . . , S(ad))P̃
−1.

Then

S(ai) =
d∑

j=1

T (bj)p̃ji (1 ≤ i ≤ d)

holds. Take lifts T (aiaj) ∈ R̃T (a1)⊕ · · · ⊕ R̃T (ad) of aiaj for 1 ≤ i, j ≤ d.
We define c′S : A⊗R A→ Mn(I) by

c′S




d∑

i,j=1

rijai ⊗ aj


 =

d∑

i,j=1

r̃ij(S(aiaj)− S(ai)S(aj)),

where r̃ij ∈ R̃ is a lift of rij . Similarly, we also define c′T : A⊗R A→ Mn(I) by

c′T




d∑

i,j=1

rijbi ⊗ bj



 =

d∑

i,j=1

r̃ij(T (bibj)− T (bi)T (bj)).

Let c′′S , c
′′
T : A ⊗R A → (Mn(k)/A0) ⊗k I be the compositions of Mn(I) ∼= Mn(k) ⊗k I →

(Mn(k)/A0) ⊗k I with c′S and c′T , respectively. By lemma 3.18, we only need to show the claim
that c′′S = c′′T .

Assume that

aiaj =
d∑

k=1

αkijak, bibj =
d∑

k=1

βkijbk

for 1 ≤ i, j ≤ d, where αkij , β
k
ij ∈ R. We can write

S(aiaj) =

d∑

k=1

α̃kijS(ak), T (bibj) =

d∑

k=1

β̃kijT (bk),
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where α̃kij , β̃
k
ij ∈ R̃ are lifts of αkij and βkij , respectively. Since

aiaj =
d∑

k=1

αkijak

=
d∑

k=1

αkij

d∑

l=1

blplk

=

d∑

k,l=1

αkijplkbl

and

aiaj = (

d∑

l1=1

bl1pl1i)(

d∑

l2=1

bl2pl2j)

=

d∑

l1,l2=1

pl1ipl2jbl1bl2

=
d∑

l1,l2=1

pl1ipl2j

d∑

l=1

βll1l2bl

=

d∑

l,l1,l2=1

pl1ipl2jβ
l
l1l2bl,

we have

(3.2)

d∑

k=1

αkijplk =

d∑

l1,l2=1

pl1ipl2jβ
l
l1l2

for 1 ≤ i, j, l ≤ d. Let us show that c′S(x) − c′T (x) ∈ I ⊗k A0 for any x ∈ A ⊗R A. Let

x =

d∑

i,j=1

rijai ⊗ aj ∈ A⊗R A. Let r̃ij ∈ R̃ be a lift of rij ∈ R (1 ≤ i, j ≤ d). Then we have

c′S(x) = c′S




d∑

i,j=1

rijai ⊗ aj




=

d∑

i,j=1

r̃ij(S(aiaj)− S(ai)S(aj))

=

d∑

i,j=1

r̃ij

(
d∑

k=1

α̃kijS(ak)− S(ai)S(aj)

)

=




d∑

i,j,k=1

r̃ij α̃
k
ijS(ak)



 −




d∑

i,j=1

r̃ijS(ai)S(aj)





=




d∑

i,j,k=1

r̃ij α̃
k
ij

d∑

l=1

T (bl)p̃lk



−




d∑

i,j=1

r̃ij

(
d∑

l1=1

T (bl1)p̃l1i

)(
d∑

l2=1

T (bl2)p̃l2j

)


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=




d∑

i,j,k,l=1

r̃ij α̃
k
ij p̃lkT (bl)



−




d∑

i,j,l1,l2=1

r̃ij p̃l1ip̃l2jT (bl1)T (bl2)



.

On the other hand,

c′T (x) = c′T




d∑

i,j=1

rijai ⊗ aj




= c′T




d∑

i,j=1

rij

(
d∑

l1=1

bl1pl1i

)
⊗

(
d∑

l2=1

bl2pl2j

)


=

d∑

l1,l2=1

d∑

i,j=1

r̃ij p̃l1ip̃l2j(T (bl1bl2)− T (bl1)T (bl2))

=

d∑

l1,l2=1

d∑

i,j=1

r̃ij p̃l1ip̃l2j

(
d∑

l=1

β̃ll1l2T (bl)− T (bl1)T (bl2)

)

=




d∑

i,j,l,l1,l2=1

r̃ij p̃l1ip̃l2j β̃
l
l1l2T (bl)


−




d∑

i,j,l1,l2=1

r̃ij p̃l1ip̃l2jT (bl1)T (bl2)


.

By (3.2),
d∑

i,j,k=1

r̃ij α̃
k
ij p̃lk −

d∑

i,j,l1,l2=1

r̃ij p̃l1ip̃l2j β̃
l
l1l2 ∈ I

for 1 ≤ l ≤ d. Hence

c′S(x) − c
′
T (x) =

d∑

l=1




d∑

i,j,k=1

r̃ij α̃
k
ij p̃lk −

d∑

i,j,l1,l2=1

r̃ij p̃l1ip̃l2j β̃
l
l1l2


T (bl)

=

d∑

l=1




d∑

i,j,k=1

r̃ij α̃
k
ij p̃lk −

d∑

i,j,l1,l2=1

r̃ij p̃l1ip̃l2j β̃
l
l1l2


 bl ∈ I ⊗k A0,

where bl = (bl mod m). Therefore, c′′S = c′′T . �

By the lemmas above, we have a unique cohomology class [c] ∈ H2(A0, (Mn(k)/A0) ⊗k I) for

A ∈ Moldn,d(R) and (R̃, m̃, k). Here we introduce the following definition:

Definition 3.20. We call [c] ∈ H2(A0, (Mn(k)/A0) ⊗k I) the cohomology class defined by A and

(R̃, m̃, k).

Proposition 3.21. Let (R,m, k), (R̃, m̃, k), and I be as above. Let A ∈ Moldn,d(R) and A0 =

A ⊗R k. There exists Ã ∈ Moldn,d(R̃) such that Ã ⊗R̃ R = A if and only if the cohomology class

[c] defined by A and (R̃, m̃, k) is zero in H2(A0, (Mn(k)/A0)⊗k I).

Proof. Assume that there exists Ã ∈Moldn,d(R̃) such that Ã⊗R̃ R = A. For a basis a1, a2, . . . , ad

of A over R, there exists a basis ã1, ã2, . . . , ãd of Ã over R̃ such that π(ãi) = ai for i = 1, 2, . . . , d,

where π : Mn(R̃) → Mn(R) is the projection. Set S(ai) = ãi for 1 ≤ i ≤ d and S(aiaj) = ãiãj ∈
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R̃S(a1)⊕· · ·⊕R̃S(ad) = Ã for 1 ≤ i, j ≤ d. Put ai = (ai mod m) ∈ A0 for 1 ≤ i ≤ d. The 2-cocycle
c defined by lifts {S(ai)} and {S(aiaj)} satisfies c(ai⊗aj) = S(aiaj)−S(ai)S(aj) = ãiãj−ãiãj = 0.
Hence the cohomology class [c] is zero in H2(A0, (Mn(k)/A0)⊗k I).

Conversely, assume that the cohomology class [c] is zero in H2(A0, (Mn(k)/A0) ⊗k I). For

an R-basis a1, . . . , ad of A, choose lifts S(ai) ∈ Mn(R̃) of ai (1 ≤ i ≤ d) and lifts S(aiaj) ∈

R̃S(a1) ⊕ · · · ⊕ R̃S(ad) of aiaj (1 ≤ i, j ≤ d), respectively. The R-linear map c′S : A ⊗R A →
Mn(k) ⊗k I defined by ai ⊗ aj 7→ S(aiaj) − S(ai)S(aj) for 1 ≤ i, j ≤ d induces a 2-coboundary
cS : A0 ⊗ A0 → (Mn(k)/A0) ⊗k I by the assumption. In other words, there exists a k-linear map

θ : A0 → (Mn(k)/A0)⊗k I such that cS = d1(θ). Let us denote by θ′′ : A→ A0
θ
→ (Mn(k)/A0)⊗k I

the composition of θ with the projection A → A0. Choose an R-linear map θ′ : A → Mn(I) as a
lift of θ′′. Then there exist tlij ∈ I such that

S(aiaj)− S(ai)S(aj) = S(ai)θ
′(aj)− θ

′(aiaj) + θ′(ai)S(aj)−
d∑

l=1

tlijS(al)(3.3)

in Mn(I) for 1 ≤ i, j ≤ d. Put ãi = S(ai) + θ′(ai) ∈ Mn(R̃) and Ã =
∑d

i=1 R̃ãi ⊂ Mn(R̃). It is

easy to see that Ã and Mn(R̃)/Ã are free modules over R̃ and that rankR̃Ã = d. Let us show that

Ã is an R̃-subalgebra of Mn(R̃). For 1 ≤ i, j ≤ d, we can write S(aiaj) =
∑d
l=1 c̃

l
ijS(al) for some

c̃lij ∈ R̃. By using (3.3), we have

ãiãj = (S(ai) + θ′(ai))(S(aj) + θ′(aj))

= S(ai)S(aj) + S(ai)θ
′(aj) + θ′(ai)S(aj)

= S(aiaj) + θ′(aiaj) +

d∑

l=1

tlijS(al)

=

d∑

l=1

c̃lijS(al) +

d∑

l=1

c̃lijθ
′(al) +

d∑

l=1

tlijS(al)

=

d∑

l=1

(c̃lij + tlij)(S(al) + θ′(al))

=

d∑

l=1

(c̃lij + tlij)ãl ∈ Ã

for 1 ≤ i, j ≤ d. Thus, Ã is closed under multiplication. Since 1 ∈ A = ⊕di=1Rai, we can

write 1 =
∑d

i=1 riai for some ri ∈ R. Take a lift r̃i ∈ R̃ of ri for 1 ≤ i ≤ d, respectively. Put

ã =
∑d
i=1 r̃iãi =

∑d
i=1 r̃i(S(ai) + θ′(ai)) ∈ Ã. Then π(ã) = π(

∑d
i=1 r̃iãi) =

∑d
i=1 riai = 1 and

there exists x ∈Mn(I) such that ã = 1+x. Hence 2ã− ã2 = 2(1+x)−(1+x)2 = 1 ∈ Ã. Therefore,

Ã is an R̃-subalgebra of Mn(R̃). Obviously, Ã⊗R̃R = A. Thus, we have proved the statement. �

Theorem 3.22. Let x ∈Moldn,d. Let A be the universal mold on Moldn,d. Set A(x) = A⊗OMoldn,d

k(x). If H2(A(x),Mn(k(x))/A(x)) = 0, then the canonical morphism Moldn,d → Z is smooth at
x.
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Proof. Since Moldn,d → Z is a morphism of finite type of noetherian schemes, it suffices to show
that if

SpecR/I
f
→ Moldn,d

π ↓ ↓
Spec R → Spec Z

is a commutative diagram such that I is an ideal of an Artin local ring (R,m, k) with mI = 0, f
maps the special pointm/I to x, and k(x) = R/m = k, then there exists g : SpecR→ Moldn,d such

that g◦π = f (for details, see [13, Lemma 02HX]). Let A ⊂Mn(R/I) be the mold corresponding to
f . The cohomology class [c] defined by A and (R,m, k) is zero, since A⊗R/I k = A(x) ⊂ Mn(k) =

Mn(k(x)) and H2(A(x), (Mn(k(x))/A(x)) ⊗k(x) I) = H2(A(x),Mn(k(x))/A(x)) ⊗k(x) I = 0. By

Proposition 3.21, A has a lift A ⊂ Mn(R), and hence we have g : SpecR→ Moldn,d corresponding
to A such that g ◦ π = f . This completes the proof. �

Remark 3.23. Even if H2(A(x),Mn(k(x))/A(x)) 6= 0, the morphism Moldn,d → Spec Z may be
smooth at x ∈ Moldn,d. Indeed, assume that A(x) = Jn(k(x)) for x ∈ Moldn,n with n ≥ 2, where
Jn is defined in Definition 4.16 below. We will see that H2(Jn(k(x)),Mn(k(x))/Jn(k(x))) 6= 0 by
Corollary 4.20. However, x is contained in an open subscheme Moldregn,n of Moldn,n and Moldregn,n is
smooth over Z (for details, see [11]).

3.4. Smoothness of the morphism φA : PGLn,S → Moldn,d⊗ZS. Let S be a locally noetherian
scheme. For a rank d mold A of degree n on S, we obtain a morphism τA : S → Moldn,d ⊗Z S:

S
τA→ Moldn,d ⊗Z S → Moldn,d
ց ↓ ↓
idS S → Spec Z.

Let us consider the group scheme PGLn,S = PGLn ⊗Z S over S. We define the S-morphism
φA : PGLn,S → Moldn,d ⊗Z S by P 7→ P−1AP . For an S-scheme f : X → S, set AX = f∗A ⊆
Mn(OX). In particular, set AR = f∗A ⊆ Mn(R) in the case X = SpecR. For an X-valued point
P of PGLn,S , φA(P ) = P−1AXP .

Let us consider the question whether φA : PGLn,S → Moldn,d⊗Z S is (formally) smooth or not.
Let I be an ideal of an Artin local ring (R,m, k) with mI = 0. Assume that

SpecR/I
g
→ PGLn,S

ι ↓ ↓ φA

SpecR
ψ
→ Moldn,d ⊗Z S

(3.4)

is a commutative diagram. If there exists g : SpecR→ PGLn,S such that g = g ◦ ι and ψ = φA ◦ g
for any commutative diagram above, then φA is smooth since φA is locally of finite type (for details,
see [13, Lemma 02HX]).

Denote by B′(⊆ Mn(R)) the mold associated to ψ. We can identify PGLn(R) = GLn(R)/(R
× ·

In) with the set of R-valued points of the group scheme PGLn for a local ring R. Note that there
is a commutative diagram consisting of surjective group homomorphisms:

GLn(R) ։ GLn(R/I)

։ ։

PGLn(R) ։ PGLn(R/I).

Given diagram (3.4), we have P ∈ GLn(R/I) such that P
−1
AR/IP = B′ ⊗R (R/I). There exists

g : SpecR → PGLn,S satisfying g = g ◦ ι and ψ = φA ◦ g if and only if there exists P ∈ GLn(R)

such that P−1ARP = B′ and (P mod I) = P ∈ GLn(R/I). Take a lift P ′ ∈ GLn(R) of P . Set

B = P ′B′P ′−1 ⊆ Mn(R). Then B ⊗R (R/I) = P (B′ ⊗R (R/I))P
−1

= AR/I . Let us denote by
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In ∈ GLn(R/I) the identity matrix. There exists P ′′ ∈ GLn(R) such that P ′′−1ARP
′′ = B and

(P ′′ mod I) = In ∈ GLn(R/I) if and only if g exists. Hence, we only need to consider whether
there exists P ∈ GLn(R) such that P−1ARP = B and (P mod I) = In ∈ GLn(R/I) when
B ⊗R (R/I) = AR/I . Here we have:

Lemma 3.24. Let A be a rank d mold of degree n on a locally noetherian scheme S. The morphism
φA : PGLn,S → Moldn,d ⊗Z S defined by P 7→ P−1AP is smooth if and only if for any ideal I
of an Artin local ring (R,m, k) over S with mI = 0, and for any rank d mold B ⊂ Mn(R) with
B ⊗R (R/I) = AR/I , there exists P ∈ GLn(R) such that P−1ARP = B and (P mod I) = In ∈
GLn(R/I).

Assume that B⊗R (R/I) = AR/I . Let us define δ
′ : AR/I = AR⊗R (R/I)→ (Mn(R)/AR)⊗R I.

Take R-bases a1, a2, . . . , ad ∈ AR and b1, b2, . . . , bd ∈ B such that ai = bi in Mn(R/I) for 1 ≤ i ≤ d,
where ai = (ai mod I) and bi = (bi mod I). This is possible because AR and B are free modules
over a local ring R and B ⊗R (R/I) = AR/I . Set ci = bi − ai ∈ Mn(I) for 1 ≤ i ≤ d. For∑d

i=1 riai ∈ AR/I , we define

δ′

(
d∑

i=1

riai

)
=

(
d∑

i=1

rici mod AR ⊗R I

)
∈ (Mn(R)/AR)⊗R I = Mn(I)/(AR ⊗R I),

where ri ∈ R and ri = (ri mod I) ∈ R/I for 1 ≤ i ≤ d. Here note that
∑d

i=1 rici ∈Mn(I).
First, we show that δ′ does not depend on the choice of lifts ri of ri. Let r

′
i ∈ R be another lift

of ri for 1 ≤ i ≤ d. Set si = ri − r′i ∈ I. Note that sici = 0 for 1 ≤ i ≤ d because I2 = 0. Since

d∑

i=1

rici =
d∑

i=1

(r′i + si)ci =
d∑

i=1

r′ici +
d∑

i=1

sici =
d∑

i=1

r′ici,

we see that δ′ does not depend on the choice of lifts ri of ri.
Since I2 = 0, (Mn(R)/AR)⊗RI is anR/I-module. It is obvious that δ′ : AR/I → (Mn(R)/AR)⊗R

I is an R/I-linear map. Second, we show that δ′ does not depend on the choice of bi for 1 ≤ i ≤ d.
Let b′1, b

′
2, . . . , b

′
d be another basis of B ⊆ Mn(R) such that b′i − bi ∈ Mn(I) for 1 ≤ i ≤ n. We can

write b′i = bi +
∑d

j=1 xijbj for xij ∈ I. By using ci = bi − ai ∈ Mn(I) and I
2 = 0, we have

b′i = bi +
d∑

j=1

xijbj = bi +
d∑

j=1

xij(aj + cj) = bi +
d∑

j=1

xijaj .

Set c′i = b′i−ai ∈ Mn(I) for 1 ≤ i ≤ d. Since c′i = b′i−ai = bi−ai+
∑d
j=1 xijaj = ci+

∑d
j=1 xijaj ,

d∑

i=1

ric
′
i =

d∑

i=1

rici +

d∑

i=1

d∑

j=1

rixijaj.

Hence (
∑d

i=1 rici mod AR ⊗R I) = (
∑d
i=1 ric

′
i mod AR ⊗R I), which implies that δ′ does not

depend on the choice of a basis {b1, b2, . . . , bd} of B such that ai = bi in Mn(R/I) for 1 ≤ i ≤ d.
Third, we show that δ′ does not depend on the choice of a basis {a1, a2, . . . , ad} of AR over

R. Let {a′1, a
′
2, . . . , a

′
d} be another basis of AR over R. There exists P = (pij) ∈ GLn(R)

such that (a1, a2, . . . , ad) = (a′1, a
′
2, . . . , a

′
d)P . Let {b1, b2, . . . , bd} and {b′1, b

′
2, . . . , b

′
d} be bases

of B over R such that (b1, b2, . . . , bd) = (b′1, b
′
2, . . . , b

′
d)P and ci = bi − ai, c′i = b′i − a

′
i ∈ Mn(I)

for 1 ≤ i ≤ d. Then (c1, c2, . . . , cd) = (c′1, c
′
2, . . . , c

′
d)P . By using ai =

∑d
j=1 pjia

′
j , we have

∑d
i=1 riai =

∑d
i=1 ri(

∑d
j=1 pjia

′
j) =

∑d
j=1(

∑d
i=1 ripji)a

′
j . Similarly, by using ci =

∑d
j=1 pjic

′
j , we
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obtain
∑d

i=1 rici =
∑d
i=1 ri(

∑d
j=1 pjic

′
j) =

∑d
j=1(

∑d
i=1 ripji)c

′
j . Hence we see that δ′ does not

depend on the choice of a basis {a1, a2, . . . , ad} of AR over R.
Since I2 = 0, we can regard (Mn(R)/AR)⊗R I as a bimodule over AR/I = AR⊗R (R/I). Fourth,

we show that the R/I-linear map δ′ : AR/I → (Mn(R)/AR) ⊗R I is a derivation. For proving it,

we only need to verify that δ′(aiaj) = δ′(ai)aj + aiδ
′(aj) for 1 ≤ i, j ≤ d. Let aiaj =

∑d
k=1 c

k
ijak.

Because ai = bi and aiaj = bibj in Mn(R/I), there exist d
k
ij ∈ I such that bibj =

∑d
k=1(c

k
ij+d

k
ij)bk

for 1 ≤ i, j ≤ d. By the definition of δ′,

δ′(ai)aj + aiδ
′(aj) = (ciaj + aicj mod AR ⊗R I) .

By using cicj = 0 for ci = bi − ai ∈Mn(I), we see that

ciaj + aicj = (bi − ai)aj + (bi − ci)cj

= biaj − aiaj + bicj

= bi(bj − cj)− aiaj + bicj

= bibj − aiaj

=

d∑

k=1

(ckij + dkij)bk −
d∑

k=1

ckijak

=

d∑

k=1

ckijck +

d∑

k=1

dkijbk

in Mn(I) ⊂ Mn(R). Since d
k
ijck = 0, we have dkijbk = dkij(ak + ck) = dkijak ∈ AR ⊗R I. Thereby,

δ′(ai)aj + aiδ
′(aj) =

(
d∑

k=1

ckijck mod AR ⊗R I

)

in (Mn(R)/AR)⊗R I = Mn(I)/(AR ⊗R I). On the other hand,

δ′(aiaj) = δ′(

d∑

k=1

ckijak)

=

(
d∑

k=1

ckijck mod AR ⊗R I

)
,

where ckij = (ckij mod I) ∈ R/I. Hence δ′(aiaj) = δ′(ai)aj + aiδ
′(aj).

Let us consider the d-dimensional subalgebra A0 = AR ⊗R k ⊆ Mn(k). Since I is finitely
generated over R and mI = 0, I is a finite-dimensional k-vector space. Then

(Mn(R)/AR)⊗R I = (Mn(R)/AR)⊗R (R/m)⊗R I

= (Mn(R)/AR)⊗R k ⊗k k ⊗R I

= (Mn(k)/A0)⊗k I.

It is easy to see that the derivation δ′ : AR/I → (Mn(R)/AR) ⊗R I = (Mn(k)/A0) ⊗k I factors
through AR/I ⊗R/I k = A0. Hence we obtain a k-linear map δ : A0 → (Mn(k)/A0) ⊗k I. Set
[ai] = (ai mod AR⊗Rm) ∈ A0 = AR⊗R k = AR/(AR⊗Rm). Note that δ([ai]) = (ci mod AR⊗R
I) ∈ Mn(I)/(AR ⊗R I) = (Mn(k)/A0) ⊗k I for 1 ≤ i ≤ d. We regard (Mn(k)/A0) ⊗k I as an A0-

bimodule by a(X ⊗ x)b = aXb ⊗ x for a, b ∈ A0, X ∈ Mn(k), and x ∈ I, where X = (X
mod A0) and aXb = (aXb mod A0) in Mn(k)/A0. We easily see that δ is a derivation, that is,
δ(ab) = δ(a)b + aδ(b) for a, b ∈ A0. Then δ is a 1-cocycle in C1(A0, (Mn(k)/A0)⊗k I).
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Definition 3.25. Let δ : A0 → (Mn(k)/A0) ⊗k I be as above. We say that δ is the derivation
associated to a rank d mold B ⊂ Mn(R) with B ⊗R (R/I) = AR/I . Note that δ does not depend
on the choice of an R-basis {ai} of A and an R-basis {bi} of B with ai − bi ∈Mn(I) for 1 ≤ i ≤ d.

Let x1, x2, . . . , xr ∈ I be a basis of I over k. We can write δ =
∑r

i=1 xiδi, where δi ∈
C1(A0,Mn(k)/A0) is a derivation for 1 ≤ i ≤ r. The cohomology class [δ] is expressed by
[δ] =

∑r
i=1[δi]⊗ xi in H

1(A0, (Mn(k)/A0)⊗k I) = H1(A0,Mn(k)/A0)⊗k I.

Lemma 3.26. In the situation above, there exists P ∈ GLn(R) such that P−1ARP = B and (P
mod I) = In ∈ GLn(R/I) if and only if [δ] = 0 in H1(A0, (Mn(k)/A0)⊗k I).

Proof. Suppose that [δ] = 0. For 1 ≤ i ≤ r, [δi] = 0 in H1(A0,Mn(k)/A0). By the exact sequence

0→ N(A0)/A0 → Mn(k)/A0
d
→ Derk(A0,Mn(k)/A0)→ H1(A0,Mn(k)/A0)→ 0

in Corollary 3.13, there exists Xi ∈ Mn(k) such that δi(a) = ([Xi, a] mod A0) ∈ Mn(k)/A0 for
a ∈ A0. Set X =

∑r
i=1 xiXi ∈ Mn(I). Then δ([ai]) = ([X, ai] mod AR ⊗R I) in Mn(I)/(AR ⊗R

I) = (Mn(k)/A0) ⊗k I for 1 ≤ i ≤ d. On the other hand, δ([ai]) = (ci mod AR ⊗R I) by the
definition of δ. There exists di ∈ AR ⊗R I such that [X, ai] = ci + di for 1 ≤ i ≤ d. Put
P = In − X ∈ GLn(R). Note that (P mod I) = In ∈ GLn(R/I). Using P−1 = In + X and
ci = bi − ai ∈Mn(I), we have

P−1aiP = (In +X)ai(In −X) = ai + [X, ai]

= ai + ci + di = ai + bi − ai + di = bi + di.

For x ∈ I, ai ⊗ x ∈ AR ⊗R I ⊂ AR ⊆ Mn(R). Since ai ⊗ x = aix = (bi − ci)x = bix ∈ B for
1 ≤ i ≤ d, AR ⊗R I ⊆ B. Hence P−1aiP = bi + di ∈ B, which implies that P−1ARP ⊆ B. By
Lemma 3.27 below, P−1ARP = B.

Conversely, suppose that there exists P ∈ GLn(R) such that P−1ARP = B and (P mod I) =
In ∈ GLn(R/I). We can write P = In − X , where X ∈ Mn(I). For a basis a1, a2, . . . , ad
of AR over R, set bi = P−1aiP . Note that bi = (In + X)ai(In − X) = ai + [X, ai] and that
b1, b2, . . . , bd is a basis of B over R such that (ai mod I) = (bi mod I) ∈Mn(R/I). The derivation
δ′ : AR/I → Mn(I)/(AR ⊗ I) can be written by δ′(ai) = ([X, ai] mod AR ⊗R I) for 1 ≤ i ≤ d.

Then δ : A0 → (Mn(k)/A0)⊗k I is a 1-coboundary in C1(A0, (Mn(k)/A0)⊗k I). Hence [δ] = 0 in
H1(A0, (Mn(k)/A0)⊗k I). �

The following lemma has been used in Lemma 3.26.

Lemma 3.27. Let A and B be subbundles of rank d of a locally free sheaf E of rank m on a scheme
X. If A ⊆ B, then A = B. In particular, if A,B ⊆ Mn(OX) are rank d molds of degree n on a
scheme X and if A ⊆ B, then A = B.

Proof. By the assumption that A and B are subbuldes of E , E/A and E/B are locally free sheaves
of rank m− d on X . If A ⊆ B, then we have the following commutative diagram with rows exact:

0
↓

0 → A → E → E/A → 0
∩ ‖ ↓ ψ

0 → B → E → E/B → 0
↓
0 .
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For ψ : E/A → E/B, set K = Kerψ. For proving that A = B, it suffices to show that K = 0. Let
x ∈ X . Taking the stalks at x, we have an exact sequence

0→ Kx → Ex/Ax
ψx
→ Ex/Bx → 0.

Since Ex/Bx is free over the local ring OX,x, Ex/Ax ∼= (Ex/Bx) ⊕ Kx. In particular, Kx is a
finitely generated module over OX,x. By taking the tensor products with the residue field k(x) =
OX,x/mx, we obtain (Ex/Ax)⊗OX,x k(x)

∼= ((Ex/Bx)⊗OX,x k(x))⊕ (Kx⊗OX,x k(x)). Because both
(Ex/Ax)⊗OX,x k(x) and (Ex/Bx)⊗OX,x k(x) have dimensionm−d, Kx⊗OX,x k(x) = Kx/mxKx = 0.
By Nakayama’s lemma, Kx = 0, which implies that K = 0. Hence A = B. �

Let k be a field over the residue field k(x) of a point x ∈ S. For a rank d mold A on S, put
A0 = A ⊗OS k ⊆ Mn(k), which is a d-dimensional k-subalgebra of Mn(k). Let R = k[ǫ]/(ǫ2),
and let I = (ǫ). We regard SpecR and SpecR/I as S-schemes by Spec k = SpecR/I → SpecR →
Spec k → Spec k(x) → S induced by the canonical homomorphisms k(x) → k → R → R/I. Set
A = A0⊗kR ⊆ Mn(k[ǫ]/(ǫ

2)). Then A is the pull-back of A on the S-scheme SpecR. Take a basis
a1, a2, . . . , ad of A0 over k. We can also regard a1, a2, . . . , ad as an R-basis of the rank d mold A
by ai = ai + 0ǫ ∈Mn(k) ⊆ Mn(k)⊕Mn(k)ǫ = Mn(k[ǫ]/(ǫ

2)) = Mn(R).
Let us show that for any δ ∈ Derk(A0,Mn(k)/A0), there exists a rank d mold B ⊆Mn(R) such

that B⊗R (R/I) = A⊗R (R/I) = A0 and δ : A0 → (Mn(k)/A0)⊗k I ∼= Mn(k)/A0 is the derivation

associated to B. For a derivation δ ∈ Derk(A0,Mn(k)/A0), choose a lift δ̃ : A0 → Mn(k) of δ as

a map. Set bi = ai + δ̃(ai)ǫ ∈ Mn(k[ǫ]/(ǫ
2)) and B = Rb1 ⊕ Rb2 ⊕ · · · ⊕ Rbd ⊆ Mn(k[ǫ]/(ǫ

2)).
Note that biǫ = aiǫ ∈ B and that A0 ⊗k kǫ = A0ǫ ⊆ B in Mn(k[ǫ]/(ǫ

2)). We claim that the

definition of B does not depend on the choice of a lift δ̃ of δ. Indeed, let us choose another lift

δ̃′ : A0 → Mn(k) of δ. Set b
′
i = ai+ δ̃′(ai)ǫ and B

′ = Rb′1⊕Rb
′
2⊕ · · · ⊕Rb

′
d ⊆ Mn(k[ǫ]/(ǫ

2)). Since

b′i − bi = (δ̃′(ai) − δ̃(ai))ǫ ∈ A0ǫ ⊆ B, we have B′ ⊆ B. Similarly, we can verify that B ⊆ B′.

Hence B = B′, which implies that the definition of B does not depend on the choice of lifts δ̃ of

δ. Note that a+ δ̃(a)ǫ ∈ B for any a ∈ A0 and that B is generated by {a+ δ̃(a)ǫ | a ∈ A0} as an
R-module.

Let us prove that B is an R-subalgebra of Mn(k[ǫ]/(ǫ
2)). Calculating bibj, we have

bibj = (ai + δ̃(ai)ǫ)(aj + δ̃(aj)ǫ)

= aiaj + (aiδ̃(aj) + δ̃(ai)aj)ǫ

= aiaj + (δ̃(aiaj) + c)ǫ

for some c ∈ A0. Since a+ δ̃(a)ǫ ∈ B for any a ∈ A0, aiaj+(δ̃(aiaj))ǫ ∈ B. By using cǫ ∈ A0ǫ ⊆ B,
we see that bibj ∈ B. We easily see that 1 ∈ B. Hence B is an R-subalgebra of Mn(k[ǫ]/(ǫ

2)). We
also see that B is a rank d mold on R such that B ⊗R k = A⊗R k = A0.

We denote by ψ : SpecR → Moldn,d ⊗Z S the morphism induced by the rank d mold B. We
also denote by g : SpecR/I = Spec k → PGLn,S the morphism given by the identity [In]. Then we
obtain commutative diagram (3.4). Diagram (3.4) induces a derivation δ′ : AR/I = A⊗R (R/I) =

A0 → (Mn(k)/A0)⊗k I, that is, δ′(ai) = bi − ai = (δ̃(ai) mod A0) ⊗ ǫ = δ(ai) ⊗ ǫ for 1 ≤ i ≤ d.
Hence δ : A0 → (Mn(k)/A0) ⊗k I ∼= Mn(k)/A0 is the derivation associated to B. Therefore, we
have the following lemma.

Lemma 3.28. Let k be a field over the residue field k(x) of a point x ∈ S. Let R = k[ǫ]/(ǫ2), and
let I = (ǫ). Put A0 = A ⊗OS k ⊆ Mn(k). Set AR = A0 ⊗k R and AR/I = A0 ⊗k (R/I) = A0.
For any δ ∈ Derk(A0,Mn(k)/A0), there exists a rank d mold B ⊆ Mn(R) such that δ : A0 →
(Mn(k)/A0)⊗k I ∼= Mn(k)/A0 is the derivation associated to B with B ⊗R (R/I) = AR/I .
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Now we have:

Theorem 3.29. Let A be a rank d mold of degree n on a locally noetherian scheme S. Set A(x) =
A⊗OSk(x) ⊆Mn(k(x)), where k(x) is the residue field of a point x ∈ S. Put PGLn,S = PGLn⊗ZS.
Let us define the S-morphism φA : PGLn,S → Moldn,d ⊗Z S by P 7→ P−1AP . Then φA is smooth
if and only if H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S.

Proof. Assume that H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S. Let I be an ideal of an
Artin local ring (R,m, k) over S with mI = 0. Suppose that B ⊆ Mn(R) is a rank d mold
with B ⊗R (R/I) = AR/I . By Lemma 3.24, it suffices to prove that there exists P ∈ GLn(R)

such that P−1ARP = B and (P mod I) = In ∈ GLn(R/I). Let δ : A0 → (Mn(k)/A0) ⊗k I
be the derivation associated to B. Denote by x ∈ S the image of m by the canonical morphism
SpecR → S. Then k is a field over k(x) and A0 = A(x) ⊗k(x) k ⊆ Mn(k). By the assumption

that H1(A(x),Mn(k(x))/A(x)) = 0 and Proposition 2.3, H1(A0,Mn(k)/A0) = H1(A(x) ⊗k(x)
k, (Mn(k(x))/A(x))⊗k(x)k) = H1(A(x),Mn(k(x))/A(x))⊗k(x)k = 0. HenceH1(A0, (Mn(k)/A0)⊗k
I) = H1(A0,Mn(k)/A0)⊗k I = 0 and the cohomology class [δ] is 0. By Lemma 3.26, there exists
P ∈ GLn(R) such that P−1ARP = B and (P mod I) = In ∈ GLn(R/I).

Conversely, assume that φA is smooth. Let x ∈ S. By Corollary 3.13, there exists a surjection
Derk(x)(A(x),Mn(k(x))/A(x)) → H1(A(x),Mn(k(x))/A(x)) → 0. It suffices to show that [δ] = 0

in H1(A(x),Mn(k(x))/A(x)) for any δ ∈ Derk(x)(A(x),Mn(k(x))/A(x)). Let k = k(x) and A0 =
A ⊗OS k = A(x) ⊆ Mn(k). By Lemma 3.28, there exists a rank d mold B ⊆ Mn(R) such that
δ : A0 → (Mn(k)/A0) ⊗k I ∼= Mn(k)/A0 is the derivation associated to B with B ⊗R (R/I) =
AR/I , where R = k[ǫ]/(ǫ2), I = (ǫ), AR = A0 ⊗k R, and AR/I = A0 ⊗k (R/I) = A0. Using

Lemma 3.24, we have P ∈ GLn(R) such that P−1ARP = B and (P mod I) = In ∈ GLn(R/I),
because φA is smooth. Hence, Lemma 3.26 implies that [δ] = 0 in H1(A0, (Mn(k)/A0) ⊗k I) ∼=
H1(A(x),Mn(k(x))/A(x)). Thereby, H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S. �

Corollary 3.30. In the situation of Theorem 3.29, assume that H1(A(x),Mn(k(x))/A(x)) = 0
for each x ∈ S. Then ImφA is open in Moldn,d ⊗Z S.

Proof. By Theorem 3.29, the assumption implies that φA : PGLn,S → Moldn,d⊗Z S is smooth. In
particular, φA is flat morphism locally of finite presentation. Hence φA is open, which completes
the proof. �

4. How to calculate Hochschild cohomology groups

In this section, we introduce how to calculate Hochschild cohomology groups. By using Cibils’s
result (Proposition 4.1), we can calculate Hochschild cohomology for several cases. As a result, we
see that if Λ is the incidence algebra of an ordered quiver Q with n = |Q0|, then Hi(Λ,Mn(R)/Λ) =
0 for i ≥ 0 (Theorem 4.6). We also explain several techniques and perform several calculations.

Let Q be a finite quiver. Denote by Q0 the set of vertices of Q. Let RQ be the path algebra
over a commutative ring R. We define the arrow ideal F as the two-sided ideal of RQ generated by
the paths of positive length of Q. A two-sided ideal of I of RQ is called admissible if Fn ⊆ I ⊆ F
for a positive integer n and F/I is an R-free module which has an R-basis consisting of oriented
paths. For an admissible ideal I, set Λ = RQ/I and r = F/I. Denote by E the R-subalgebra of
Λ generated by Q0.
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Proposition 4.1 ([1], Proposition 1.2). Let M be a Λ-bimodule. The Hochschild cohomology
R-modules Hi(Λ,M) are the cohomology groups of the complex

0→ME δ0
→ HomEe(r,M)

δ1
→ HomEe(r ⊗E r,M)

δ2
→ · · ·

· · ·
δi−1

→ HomEe(r⊗i,M)
δi

→ HomEe(r⊗i+1,M)
δi+1

→ · · · ,

where the tensor products are over E,

ME = {m ∈M | sm = ms for each s ∈ Q0} = ⊕s∈Q0
sMs,

δ0(m)(x) = xm−mx for m ∈ME and x ∈ r,

and

δi(f)(x1 ⊗ · · · ⊗ xi+1) = x1f(x2 ⊗ · · · ⊗ xi+1) +

i∑

j=1

(−1)jf(x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi+1)

+ (−1)i+1f(x1 ⊗ · · · ⊗ xi)xi+1

for f ∈ HomEe(r⊗i,M) and x1 ⊗ · · · ⊗ xi+1 ∈ r⊗i+1.

Remark 4.2. Set r⊗0 = E. Then HomEe(r⊗0,M) = ME . Hence the complex above can be
written by {HomEe(r⊗n, E), δn}.

Denote by Q1 the set of arrows of a finite quiver Q. For each oriented path α of Q, we denote
by h(α) and t(α) the head and the tail of α, respectively.

Definition 4.3. Let Q be a finite quiver without oriented cycles. We say that Q is ordered if there
exists no oriented path other than α joining t(α) to h(α) for each arrow α ∈ Q1.

Definition 4.4. Let Q be an ordered quiver. Let I be the two-sided ideal of RQ generated by

{γ − δ ∈ RQ | γ and δ are oriented paths with h(γ) = h(δ) and t(γ) = t(δ)}.

We call Λ = RQ/I an incidence R-algebra. Note that I is an admissible ideal.

For an ordered quiver Q, set n = |Q0|. For a, b ∈ Q0, we define a ≥ b if a = b or there exists
an oriented path α such that t(α) = a and h(α) = b. Then (Q0,≥) is a partially ordered set
(i.e. poset). Let Λ = RQ/I be the incidence algebra associated to Q. For a ≥ b, let eba be the
equivalence class of oriented paths from a to b in Λ. We can write Λ = ⊕a≥bReba. Fix a numbering
on Q0. By regarding eba as Eba, Λ can be considered as an R-subalgebra of Mn(R) = ⊕a,b∈Q0

REba,
where Eba is the matrix unit. We can write E = ⊕a∈Q0

Reaa and Ee = E⊗REop = ⊕a,b∈Q0
Reaa⊗

ebb. We also have r = F/I = ⊕a>bReba. (In the sequel, we denote Eba ∈ Mn(R) by eba for
simplicity.)

Lemma 4.5. For i ≥ 0, HomEe(r⊗i,Mn(R)/Λ) = 0.

Proof. As E-bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResis0 . On the other hand, Mn(R)/Λ ∼=
⊕a 6≥bReba. Hence we have HomEe(r⊗i,Mn(R)/Λ) ∼= ⊕s0>s1>···>si, a 6≥b HomEe(Resis0 , Reba).
Since HomEe(Resis0 , Reba)

∼= esisi(Reba)es0s0 = 0, HomEe(r⊗i,Mn(R)/Λ) = 0. �

Summarizing the discussion above, we have the following theorem.

Theorem 4.6. Let Q be an ordered quiver with n = |Q0|. Let Λ be the incidence algebra associated
to Q. Then Hi(Λ,Mn(R)/Λ) = 0 for i ≥ 0.
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Proof. By Proposition 4.1 and Lemma 4.5, we can prove the statement. �

We show several examples of Hochschild cohomology groups Hi(A,Mn(R)/A) for R-subalgebras
A of Mn(R). We also refer to the moduli Moldn,d of molds. LetA be the universal mold on Moldn,d.
For x ∈Moldn,d, we set A(x) = A⊗OMoldn,d

k(x), where k(x) is the residue field of x.

Example 4.7. Let R be a commutative ring, and let us consider the following quiver Q:

1←− 2←− 3←− · · · ←− n.

Let Λ = RQ/I be the incidence algebra associated to Q over a commutative ring R. Then
Λ = ⊕1≤i≤j≤nReij . We can regard Λ as the upper triangular matrix ring Bn(R) = {(aij) ∈
Mn(R) | aij = 0 for i > j}. By Theorem 4.6, Hi(Bn(R),Mn(R)/Bn(R)) = 0 for i ≥ 0.

This result is compatible with the fact that the connected component containing Bn in Moldn,d
is isomorphic to GLn/Bn, where d = n(n + 1)/2 and Bn = {(aij) ∈ GLn | aij = 0 for i > j} (For
details, see [7, Theorem 1.1]). Indeed, the image of the morphism φBn : PGLn → Moldn,d associ-
ated to the mold Bn(Z) on Spec Z is open by Corollary 3.30, since H1(Bn(R),Mn(R)/Bn(R)) = 0
for any commutative ring R. It is easy to see that ImφBn = GLn/Bn is irreducible, open and
closed, and hence that GLn/Bn is an irreducible component and a connected component. We also
see that H2(Bn(R),Mn(R)/Bn(R)) = 0 is compatible with the fact that GLn/Bn is smooth over
Z (see Theorem 3.22). If A(x) = Bn(k(x)) for a point x ∈ Moldn,d, then dimk(x) TMoldn,d/Z,x =

dimk(x)H
1(Bn(k(x)),Mn(k(x))/Bn(k(x))) + n2 − dimk(x)N(Bn(k(x))) = n2 − dimk(x) Bn(k(x)) =

dimGLn(k(x))/Bn(k(x)) = n(n−1)/2 by Corollary 3.13, since N(Bn(k(x))) = Bn(k(x)). For more
general result, see Example 4.15.

Example 4.8. Let R be a commutative ring, and let A = RIn ⊂ Mn(R). The bar complex

Ci(RIn,Mn(R)/RIn) is isomorphic to 0 → Mn(R)/RIn
d0
→ Mn(R)/RIn

d1
→ Mn(R)/RIn

d2
→ · · · ,

where di = 0 if i is even and di = idMn(R)/RIn if i is odd. Hence we have

Hi(RIn,Mn(R)/RIn) ∼=

{
Mn(R)/RIn (i = 0)

0 (i > 0).

The moduli Moldn,1 is smooth over Z, since it is isomorphic to Spec Z. This is compatible with
the fact that H2(RIn,Mn(R)/RIn) = 0 (see Theorem 3.22). Note that A(x) = k(x)In for each
point x ∈ Moldn,1. Then dimk(x) TMoldn,1/Z,x = dimk(x)H

1(k(x)In,Mn(k(x))/k(x)In) + n2 −

dimk(x)N(k(x)In) = n2 − dimk(x) Mn(k(x)) = 0 by Corollary 3.13, since N(k(x)In) = Mn(k(x)).

Example 4.9. Let R be a commutative ring, and let A = Mn(R). Since Mn(R)/Mn(R) =
0, Hi(Mn(R),Mn(R)/Mn(R)) = 0 for i ≥ 0. The moduli Moldn,n2 is isomorphic to Spec Z

(see [7, Proposition 1.1]), and hence it is smooth over Z. This is compatible with the fact
that H2(Mn(R),Mn(R)/Mn(R)) = 0 (see Theorem 3.22). We see that dimk(x) TMoldn,n2/Z,x =

dimk(x)H
1(Mn(k(x)),Mn(k(x))/Mn(k(x))) + n2 − dimk(x)N(Mn(k(x))) = 0 for x ∈ Moldn,n2 by

Corollary 3.13.

Example 4.10. Let R be a commutative ring, and let A = Dn(R) = {(aij) ∈ Mn(R) | aij =
0 for i 6= j} ⊂ Mn(R). In other words, Dn(R) is the R-subalgebra of diagonal matrices in Mn(R).
Let Q be a quiver with Q0 = {1, 2, . . . , n} and Q1 = ∅. Then Dn(R) = RQ = ⊕i=1Reii ⊂Mn(R) =
⊕ni,j=1Reij and Mn(R)/Dn(R) = ⊕i6=jReij. The arrow ideal F of RQ is 0. Set I = F = 0. Then

Λ = RQ/I = RQ = Dn(R), r = F/I = 0, and E = Dn(R). The complex in Proposition 4.1 for
M = Mn(R)/Dn(R) is the zero cochain complex, since r = 0 andME = (Mn(R)/Dn(R))

Dn(R) = 0.
Hence Hi(Dn(R),Mn(R)/Dn(R)) = 0 for i ≥ 0. This result also follows from that Dn(R) is a
separable R-algebra.
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Definition 4.11. Let n1, n2, . . . , ns be positive integers with
∑s

i=1 ni = n. We define the R-
subalgebra Pn1,n2,...,ns(R) of Mn(R) over a commutative ring R by

Pn1,n2,...,ns(R) = {(aij) ∈Mn(R) | aij = 0 if

t∑

k=1

nk < i ≤
t+1∑

k=1

nk and j ≤
t∑

k=1

nk}.

To simplify notation, we write Pn(R) instead of Pn1,n2,...,ns(R) for n = (n1, n2, . . . , ns). Set

E =








X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · Xs



∈ Pn(R) Xi ∈Mni(R) for 1 ≤ i ≤ s





and

r =








0 X12 X13 · · · X1s

0 0 X23 · · · X2s

0 0 0 · · · X3s

...
...

. . .
. . .

...
0 0 0 · · · 0



∈ Pn(R)

Xij ∈Mni,nj (R)
for 1 ≤ i < j ≤ s





,

where Mi,j(R) is the set of (i× j)-matrices over R. Note that E is an R-subalgebra of Pn(R) and
that Pn(R) = E ⊕ r as E-bimodules. We also set

rii =









X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · Xs



∈ E

Xi ∈ Mni(R), but Xj equals 0
in Mnj (R) for j 6= i






for 1 ≤ i ≤ s and

rij =









0 X12 X13 · · · X1s

0 0 X23 · · · X2s

0 0 0 · · · X3s

...
...

. . .
. . .

...
0 0 0 · · · 0



∈ r

Xij ∈Mni,nj (R), but Xkl equals 0
in Mnk,nl

(R) for (k, l) 6= (i, j)






for 1 ≤ i < j ≤ s. We easily see that rij is an E-bimodule and that Pn(R) = ⊕1≤i≤j≤srij and
r = ⊕1≤i<j≤srij as E-bimodules.

To calculate Hi(Pn(R),Mn(R)/Pn(R)), we need to make several preparations.

Proposition 4.12. For 1 ≤ i ≤ j ≤ s, rij is a projective E-bimodule. In particular, Pn(R) and r
are projective E-bimodules.

Proof. The E-bimodule E⊗RE = ⊕1≤i,j≤srii⊗R rjj is isomorphic to E⊗Eop as Ee = E⊗REop-
modules. Hence rii ⊗R rjj is a projective E-bimodule for 1 ≤ i, j ≤ s. For 1 ≤ i ≤ j ≤ s, we can

easily check that rii ⊗R rjj ∼= r
⊕ninj

ij as E-bimodules. Therefore, rij is a projective E-bimodule.

The last statement follows from that Pn(R) = ⊕1≤i≤j≤srij and r = ⊕1≤i<j≤srij . �
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Proposition 4.13. For a commutative ring R, put P = Pn(R). Let E and r be as in Definition
4.11. The following complex gives a projective resolution of P in the category of P -bimodules:

· · · → P ⊗E r
⊗i ⊗E P

di→ P ⊗E r
⊗i−1 ⊗E P → · · · → P ⊗E r ⊗E P

d1→ P ⊗E P
d0→ P → 0,

where r⊗i = r ⊗E · · · ⊗E r (i times), di : P ⊗E r⊗i ⊗E P
di→ P ⊗E r⊗i−1 ⊗E P is the P -bimodule

homomorphism determined by di(1 ⊗ x1 ⊗ · · · ⊗ xi ⊗ 1) = x1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ 1 +
∑i−1

j=1(−1)
j1⊗

x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi ⊗ 1 + (−1)i1⊗ x1 ⊗ x2 ⊗ · · · ⊗ xi, and d0 : P ⊗E P → P is defined by
d0(a⊗ b) = ab.

Proof. As E-bimodules, rij ⊗E rjl ∼= ril and rij ⊗E rkl ∼= 0 for j 6= k. We see that r⊗i ∼=
⊕1≤j1<j2<···<ji+1≤s rj1j2 ⊗E · · · ⊗E rjiji+1

∼= ⊕1≤j1<j2<···<ji+1≤s rj1ji+1
. (For convenience, set

r⊗0 = E.) By Proposition 4.12, r⊗i is a projective E-bimodule for i ≥ 0. There exists an
Ee = E ⊗R Eop-module M such that r⊗i ⊕M ∼= (E ⊗R Eop)⊕q as Ee-modules for some q ∈ Z.
Then we have

(P ⊗E r
⊗i ⊗E P )⊕ (P ⊗E M ⊗E P ) ∼= P ⊗E (r⊗i ⊕M)⊗E P

∼= (P ⊗E (E ⊗R E
op)⊗E P )

⊕q

∼= (P ⊗R P )
⊕q.

Since P ⊗R P is a projective P -bimodule, P ⊗E r⊗i⊗E P is also a projective P -bimodule for i ≥ 0.
Let us show that the complex is exact. For λ ∈ P = E⊕ r, we write λ = λE+λr, where λE ∈ E

and λr ∈ r. For i ≥ 1, we define the R-homomorphism ti : P ⊗E r⊗i−1 ⊗E P → P ⊗E r⊗i ⊗E P
by ti(λ ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ µ) = 1 ⊗ λr ⊗ x1 ⊗ · · ·xi−1 ⊗ µ. We also define t0 : P → P ⊗E P by
λ 7→ 1 ⊗ λ. By d0t0(λ) = d0(1 ⊗ λ) = λ, we have d0t0 = id. Next, let us check t0d0 + d1t1 = id.
By t0d0(λ⊗ µ) = t0(λµ) = 1⊗ λµ and d1t1(λ ⊗ µ) = d1(1⊗ λr ⊗ µ) = λr ⊗ µ− 1⊗ λrµ,

(t0d0 + d1t1)(λ ⊗ µ) = 1⊗ λµ+ λr ⊗ µ− 1⊗ λrµ

= 1⊗ (λE + λr)µ+ λr ⊗ µ− 1⊗ λrµ

= 1⊗ λEµ+ λr ⊗ µ

= λE ⊗ µ+ λr ⊗ µ

= λ⊗ µ.

This implies that t0d0 + d1t1 = id.
Finally, let us prove that tidi + di+1ti+1 = id for i ≥ 1. Since

di(λ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ)

= λx1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ

+
i−1∑

j=1

(−1)jλ⊗ x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi ⊗ µ+ (−1)iλ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xiµ,

tidi(λ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ)(4.1)

= 1⊗ (λx1)r ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ+

i−1∑

j=1

(−1)j1⊗ λr ⊗ x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi ⊗ µ

+(−1)i1⊗ λr ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xiµ.
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On the other hand,

di+1ti+1(λ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ)(4.2)

= di+1(1⊗ λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ)

= λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ− 1⊗ λrx1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ

+

i−1∑

j=1

(−1)j+11⊗ λr ⊗ x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi ⊗ µ

+(−1)i+11⊗ λr ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xiµ.

By (4.1) and (4.2),

(tidi + di+1t1+1)(λ ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ)

= 1⊗ (λx1)r ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ+ λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ− 1⊗ λrx1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ

= 1⊗ (λE + λr)x1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ+ λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ− 1⊗ λrx1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ

= 1⊗ λEx1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ+ λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ

= λE ⊗ x1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ µ+ λr ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ

= λ⊗ x1 ⊗ · · · ⊗ xi ⊗ µ.

Here we used (λx1)r = λx1 = (λE + λr)x1. Hence tidi + di+1ti+1 = id for i ≥ 1. Thus, we have
proved that the complex is exact. �

Proposition 4.14. Let R be a commutative ring. Let Pn(R) be as in Definition 4.11. Then
Hi(Pn(R),Mn(R)/Pn(R)) = 0 for i ≥ 0.

Proof. Put P = Pn(R). We use the same notation in the proof of Proposition 4.13. For 1 ≤ j <
i ≤ s, we set

rij =








0 0 0 · · · 0
X21 0 0 · · · 0
X31 X32 0 · · · 0
...

...
. . .

. . .
...

Xs1 Xs2 Xs3 · · · 0



∈Mn(R)

Xij ∈Mni,nj (R), but Xkl equals 0
in Mnk,nl

(R) for (k, l) 6= (i, j)





.

Note that Mn(R)/P ∼= ⊕1≤j<i≤s rij as E-bimodules.
Let us consider the projective resolution of P in Proposition 4.13:

· · · → P ⊗E r
⊗i ⊗E P

di→ P ⊗E r
⊗i−1 ⊗E P → · · · → P ⊗E r ⊗E P

d1→ P ⊗E P
d0→ P → 0.

To calculate Hi(Pn(R),Mn(R)/Pn(R)), it suffices to take the cohomology of the following complex

0→ HomP e(P ⊗E P,Mn(R)/P )→ HomP e(P ⊗E r ⊗E P,Mn(R)/P )→ · · ·

→ HomP e(P ⊗E r
⊗i−1 ⊗E P,Mn(R)/P )→ HomP e(P ⊗E r

⊗i ⊗E P,Mn(R)/P )→ · · · .

For i ≥ 1, we see that

HomP e(P ⊗E r
⊗i ⊗E P,Mn(R)/P ) ∼= HomEe(r⊗i,Mn(R)/P )

∼= HomEe(⊕1≤j1<j2<···<ji+1≤s rj1ji+1
,⊕1≤j<i≤s rij)

∼= 0.
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We also see that

HomP e(P ⊗E P,Mn(R)/P ) ∼= HomEe(E,Mn(R)/P )
∼= HomEe(⊕si=1rii,⊕1≤j<i≤s rij)
∼= 0.

Hence we have Hi(Pn(R),Mn(R)/Pn(R)) = 0 for i ≥ 0. �

Example 4.15. Proposition 4.14 is compatible with the fact that the connected component con-
taining Pn = Pn1,n2,...,ns in Moldn,d is isomorphic to GLn/Pn1,n2,...,ns

∼= Flagn1,n2,...,ns
, where

d =
∑

1≤i≤j≤s ninj and Pn1,n2,...,ns = {(aij) ∈ GLn | aij = 0 if
∑t
k=1 nk < i ≤

∑t+1
k=1 nk and j ≤

∑t
k=1 nk} (for details, see [7, Theorem 1.1]). Indeed, since H1(Pn(R),Mn(R)/Pn(R)) = 0 for any

commutative ring R, the image of the morphism φPn
: PGLn → Moldn,d associated to the mold

Pn(Z) on Spec Z is open by Corollary 3.30. It is easy to see that Im φPn
= GLn/Pn1,n2,...,ns is

irreducible, open and closed, and hence that GLn/Pn1,n2,...,ns is an irreducible component and a
connected component. We also see that H2(Pn(R),Mn(R)/Pn(R)) = 0 is compatible with the
fact that GLn/Pn1,n2,...,ns is smooth over Z (see Theorem 3.22). If A(x) = Pn(k(x)) for a point
x ∈Moldn,d, then

dimk(x) TMoldn,d/Z,x

= dimk(x)H
1(Pn(k(x)),Mn(k(x))/Pn(k(x))) + n2 − dimk(x)N(Pn(k(x)))

= n2 − dimk(x) Pn(k(x))

= dimGLn(k(x))/Pn1,n2,...,ns(k(x))

by Corollary 3.13, since N(Pn(k(x))) = Pn(k(x)).

Definition 4.16. Let R be a commutative ring. We define x ∈ Mn(R) by

x =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0
. . . 1

0 0 0 0 · · · 0




.

Let Jn(R) be the R-subalgebra of Mn(R) generated by x. Then Jn(R) ∼= R[x]/(xn) as R-algebras.

To calculateHi(Jn(R),Mn(R)/Jn(R)), we need to make several preparations. LetA = R[x]/(xn).
We introduce the following proposition without proof. This gives a projective resolution of A over
Ae = A⊗R Aop.

Proposition 4.17 ([5, Proposition 1.3], [12, Example 2.6]). The following complex gives a projec-
tive resolution of A over Ae:

· · · → Ae
dn→ Ae → · · · → Ae

d1→ Ae
µ
→ A→ 0,

where

di(a⊗ b) =

{ (∑n−1
j=0 x

j ⊗ xn−1−j
)
(a⊗ b) (i : even )

(1⊗ x− x⊗ 1)(a⊗ b) (i : odd )

and µ(a⊗ b) = ab.
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Set M = Mn(R)/Jn(R). For calculating Hi(Jn(R),M), it suffices to take the cohomology of
the complex

0→ HomAe(Ae,M)
d∗1→ HomAe(Ae,M)→ · · · → HomAe(Ae,M)

d∗n→ HomAe(Ae,M)→ · · · ,

which is isomorphic to

0→M
b1
→M → · · · →M

bn
→M → · · · ,

where

bi(m) =

{ ∑n−1
j=0 x

jmxn−1−j (i : even)

mx− xm (i : odd).

Let Eij ∈ Mn(R) be the matrix unit. We can write x ∈ Jn(R) by x = E12 + E23 + · · · + En−1,n.
Note that

Eijx =

{
Ei,j+1 (j ≤ n− 1)

0 (j = n)

and

xEij =

{
Ei−1,j (i ≥ 2)

0 (i = 1).

First, let us calculate bi : M → M for even i. For Ekl ∈ M , bi(Ekl) =
∑n−1

j=0 x
jEklx

n−1−j =
∑k−1

j=l−1 Ek−j,l+n−1−j =
∑k−l+1
j=1 Ej,n−1+l−k+j = xn+l−k−1 = 0 in M (if k < l, then there is no

term in the sum). Hence if i is even, then bi = 0.
Next, let us calculate bi :M →M for odd i. The rank of the R-free module M is n(n− 1). We

can choose an R-basis En1, En2, . . . , Enn, En−1,1, En−1,2, . . . , En−1,n, . . . , E2,1, E2,2, . . . , E2,n ofM .
Set b = b1 = b3 = b5 = · · · .

Lemma 4.18. With respect to the R-basis

En1, En2, . . . , Enn, En−1,1, En−1,2, . . . , En−1,n, . . . , E2,1, E2,2, . . . , E2,n

of M , the matrix B representing b :M →M is given by

B =




J 0 0 · · · 0 Jn−1

−In J 0 · · · 0 Jn−2

0 −In J · · · 0 Jn−3

...
...

. . .
. . .

...
...

0 0 0
. . . J J2

0 0 0 · · · −In 2J




∈ Mn(n−1)(R),

where

J =




0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . 0 0

0 0 0 · · · 1 0




∈ Mn(R).

Proof. For 3 ≤ i ≤ n,

b(Eij) =

{
Ei,j+1 − Ei−1,j (j ≤ n− 1)
−Ei−1,n (j = n).
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For 1 ≤ j ≤ n − 2, b(E2j) = E2,j+1 − E1j = 2E2,j+1 + E3,j+2 + · · ·+ En−j+1,n. We also see that
b(E2,n−1) = E2,n − E1,n−1 = 2E2,n and that b(E2n) = −E1n = 0. By these results, we can check
the statement. �

By multiplying



In J 0 · · · 0 0
0 In 0 · · · 0 0
0 0 In · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . In 0

0 0 0 · · · 0 In







In 0 0 · · · 0 0
0 In J · · · 0 0
0 0 In · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . In 0

0 0 0 · · · 0 In




· · ·




In 0 0 · · · 0 0
0 In 0 · · · 0 0
0 0 In · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . In J

0 0 0 · · · 0 In




by B, we have 


0 0 0 · · · 0 nJn−1

−In 0 0 · · · 0 (n− 1)Jn−2

0 −In 0 · · · 0 (n− 2)Jn−3

...
...

. . .
. . .

...
...

0 0 0
. . . 0 3J2

0 0 0 · · · −In 2J




.

Furthermore, we can obtain the following Smith normal form of B by multiplying elementary
matrices (although R may not be a principal ideal domain, we use the terminology ”Smith normal
form”): 



In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0
0 0 · · · 0 X



, where X =




n 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ∈ Mn(R).

By the discussion above, we have the following proposition:

Proposition 4.19. Let Jn(R) be as above. Then

Hi(Jn(R),Mn(R)/Jn(R)) ∼=

{
Rn−1 ⊕ Ann(n) (i : even )
Rn−1 ⊕ (R/nR) (i : odd ),

where Ann(n) = {a ∈ R | an = 0}.

Proof. Let us consider the complex

0→M
b
→M

0
→M

b
→M

0
→M

b
→ · · · .

By the Smith normal form of B, KerB = Rn−1 ⊕ Ann(n) and CokerB = Rn−1 ⊕ (R/nR). The
statement follows from this result. �

Corollary 4.20. Let k be a field. For each i ≥ 0,

Hi(Jn(k),Mn(k)/Jn(k)) ∼=

{
kn−1 (ch(k) 6 | n)
kn (ch(k) | n).

For calculating the dimension of the tangent space of Moldn,n over Z at Jn, we determine
the normalizer N(Jn(k)) = {z ∈ Mn(k) | [z, y] ∈ Jn(k) for any y ∈ Jn(k)} for a field k, where
[z, y] = zy − yz.
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Proposition 4.21. Let k be a field. Let x ∈ Jn(k) be as in Definition 4.16. Put A0 = In and
Ai = xi for 1 ≤ i ≤ n− 1. We define Bi, C ∈Mn(k) by

Bi =

n−i−1∑

j=1

jEj+1,i+j+1 = E2,i+2 + 2E3,i+3 + 3E4,i+4 + · · ·+ (n− i− 1)En−i,n for 0 ≤ i ≤ n− 2

and

C =

n−1∑

j=1

jEj+1,j = E2,1 + 2E3,2 + 3E4,3 + · · ·+ (n− 1)En,n−1.

Then

N(Jn(k)) =

{
(⊕n−1

i=0 kAi)⊕ (⊕n−2
i=0 kBi) (ch(k) 6 | n)

(⊕n−1
i=0 kAi)⊕ (⊕n−2

i=0 kBi)⊕ kC (ch(k) | n).

In particular,

dimkN(Jn(k)) =

{
2n− 1 (ch(k) 6 | n)
2n (ch(k) | n).

Proof. Note that N(Jn(k)) = {z ∈ Mn(k) | [z, x] ∈ Jn(k)}. Set Mℓ = ⊕j−i=lkEij ⊂ Mn(k). Then

Mn(k) = ⊕
n−1
l=−(n−1)Ml. Since [Eij , x] = Ei,j+1 − Ei−1,j , [z, x] ∈ Ml+1 if z ∈ Ml. For z ∈ Mn(k),

we can write z = z−(n−1)+ · · ·+ z0+ · · ·+ zn−1, where zi ∈ Mi. It is easy to see that z ∈ N(Jn(k))
if and only if zi ∈ N(Jn(k)) for −(n− 1) ≤ i ≤ n− 1. It suffices to determine N(Jn(k)) ∩Mi.

For −(n − 1) ≤ i ≤ −2, if 0 6= zi ∈ Mi, then 0 6= [zi, x] ∈ Mi+1. Hence N(Jn(k)) ∩Mi = 0
for −(n − 1) ≤ i ≤ −2. Let z−1 = a2E21 + a3E32 + · · · + anEn,n−1 ∈ M−1. Since [z−1, x] =
−a2E11 + (a2 − a3)E22 + (a3 − a4)E33 + · · · + (an−1 − an)En−1,n−1 + anEnn, z−1 ∈ N(Jn(k)) if
and only if

−a2 = a2 − a3 = a3 − a4 = · · · = an−1 − an = an.(4.3)

Suppose that (4.3) holds. Putting an = −t, we have a2 = t, a3 = a2 + t, a4 = a3 + t, . . . , an =
an−1 + t. Hence a2 = t, a3 = 2t, . . . , an−1 = (n− 2)t, an = (n− 1)t. By an = −t, we obtain nt = 0.
If ch(k) 6 | n, then t = 0. In this case, a2 = a3 = · · · = an = 0 and z−1 = 0. If ch(k) | n, then
z−1 = tC. Conversely, z−1 = tC ∈ N(Jn(k)). Thus, we have

N(Jn(k)) ∩M−1 =

{
0 (ch(k) 6 | n)
kC (ch(k) | n).

Let us investigate N(Jn(k)) ∩ M0. Let z0 = a1E11 + a2E22 + · · · + anEnn ∈ M0. Since
[z0, x] = (a1 − a2)E12 + (a2 − a3)E23 + · · ·+ (an−1 − an)En−1,n, z0 ∈ N(Jn(k)) if and only if

a1 − a2 = a2 − a3 = · · · = an−1 − an.(4.4)

Suppose that (4.4) holds. Putting a1 = s and a1 − a2 = −t, we have a1 = s, a2 = s + t, a3 =
s+2t, . . . , an = s+(n−1)t. Then z0 = sIn+ tB0 = sA0+ tB0. Conversely, if z0 = sA0+ tB0, then
z0 ∈ N(Jn(k)). Hence N(Jn(k))∩M−1 = kA0⊕kB0. Similarily, we can show that N(Jn(k))∩Mi =
kAi ⊕ kBi for 1 ≤ i ≤ n− 2 and that N(Jn(k)) ∩Mn−1 = kAn−1. Therefore, we have proved the
statement. �

Example 4.22. If A(x) = Jn(k(x)) for a point x ∈Moldn,n, then

dimk(x) TMoldn,d/Z,x

= dimk(x)H
1(Jn(k(x)),Mn(k(x))/Jn(k(x))) + n2 − dimk(x)N(Jn(k(x)))

= n2 − n

by Corollary 3.13, since dimkN(Jn(k)) − dimkH
1(Jn(k),Mn(k)/Jn(k)) = n for any field k by

Corollary 4.20 and Proposition 4.21.
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To calculate several Hochschild cohomology groups, we introduce several propositions.

Proposition 4.23. Let R be a commutative ring. Let A and B be R-subalgebras of Mm(R) and
Mn(R), respectively. Assume that A and B are projective R-modules. We regard the product A×

B as the R-subalgebra

{ (
X 0
0 Y

)
∈Mm+n(R) X ∈ A, Y ∈ B

}
of Mm+n(R). Then Hi(A ×

B,Mm+n(R)/(A×B)) ∼= Hi(A,Mm(R)/A)⊕Hi(B,Mn(R)/B) as R-modules for each i.

Proof. Set Λ = A × B. Put eA =

(
Im 0
0 0

)
and eB =

(
0 0
0 In

)
. Note that eA and eB are

contained in the center of Λ and that 1 = eA + eB, e
2
A = eA, e

2
B = eB, and eAeB = eBeA = 0.

There is a projective resolution P∗ → A → 0 of A in the category of A-bimodules. There is also
a projective resolution Q∗ → B → 0 of B in the category of B-bimodules. Then we obtain a
projective resolution P∗⊕Q∗ → Λ ∼= A⊕B → 0 of Λ in the category of Λ-bimodules, since P∗⊕Q∗

is a projective Λ-bimodule for each ∗. Putting M = Mm+n(R)/Λ = Mm+n(R)/(A × B), we see
that

M = eAMeA ⊕ eAMeB ⊕ eBMeA ⊕ eBMeB
∼= Mm(R)/A⊕Mm,n(R)⊕Mn,m(R)⊕Mn(R)/B,

where Mm,n(R) and Mn,m(R) are the R-modules of (m × n)-matrices and (n ×m)-matrices, re-
spectively. By the isomorphism

HomΛe(P∗ ⊕Q∗,M) ∼= HomAe(P∗,Mm(R)/A)⊕HomBe(Q∗,Mn(R)/B),

we have Hi(A×B,Mm+n(R)/(A×B)) ∼= Hi(A,Mm(R)/A)⊕Hi(B,Mn(R)/B) for each i. �

Proposition 4.24. Let A be an R-subalgebra of Mn(R) over a commutative ring R. Assume that
A is a projective module over R. For P ∈ GLn(R), set B = P−1AP . Then Hi(A,Mn(R)/A) ∼=
Hi(B,Mn(R)/B) as R-modules for each i.

Proof. Let φ : Mn(R)→ Mn(R) be the isomorphism defined by X 7→ P−1XP . The commutative
diagram

A
∼=
→ B

↓ ↓

Mn(R)
φ
→ Mn(R)

is induced by φ. Then we obtain an isomorphism C∗(A,Mn(R)/A) ∼= C∗(B,Mn(R)/B) of com-
plexes. This implies the statement. �

Proposition 4.25. Let A be an R-subalgebra of Mn(R) over a commutative ring R. Assume that
A is a projective module over R. Set tA = {tX | X ∈ A} ⊆ Mn(R). Then Hi(A,Mn(R)/A) ∼=
Hi(tA,Mn(R)/

tA) as R-modules for each i.

Proof. Let Aop be the opposite R-algebra of A. In other words, Aop = {aop | a ∈ A} and
aopbop = (ba)op for a, b ∈ A. For an A-bimodule M , we define the Aop-bimodule Mop = {mop |
m ∈ M} by aopmopbop = (bma)op for aop, bop ∈ Aop and mop ∈ Mop. Let us choose a projective
resolution · · · → P1 → P0 → A→ 0 of A in the category of A-bimodules. We canonically obtain a
projective resolution · · · → P op1 → P op0 → Aop → 0 of Aop in the category of Aop-bimodules. Then
HomA−bimod(P∗,M) and HomAop−bimod(P

op
∗ ,Mop) are isomorphic as complexes of R-modules.

Hence Hi(A,M) ∼= Hi(Aop,Mop) for each i.
We define a canonical R-algebra isomorphism φ : Aop → tA by aop 7→ ta. Note that Aop

and tA are projective modules over R. The tA-bimodule Mn(R)/
tA can be regarded as an Aop-

bimodule through φ, which is isomorphic to (Mn(R)/A)
op. This implies that Hi(A,Mn(R)/A) ∼=

Hi(Aop, (Mn(R)/A)
op) ∼= Hi(tA,Mn(R)/

tA) for each i. �
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Definition 4.26 (cf. Definitions 3.2 and 3.3). Let R be a commutative ring. Let A,B ⊆ Mn(R)
be R-subalgebras. We say that A and B are (globally) equivalent (or A ∼ B) if there exists
P ∈ GLn(R) such that P−1AP = B.

Corollary 4.27. Let A and B be R-subalgebras of Mn(R) over a commutative ring R. Assume
that A and B are projective modules over R. If A ∼ B or A ∼ tB, then Hi(A,Mn(R)/A) ∼=
Hi(B,Mn(R)/B) as R-modules for each i.

Proof. The statement follows from Propositions 4.24 and 4.25. �

5. The calculation of Hi(A,Mn(k)/A) for n = 2, 3

Let A be a k-subalgebra of Mn(k) over a field k. In this section, we discuss the Hochschild coho-
mology Hi(A,Mn(k)/A) for n = 2 and 3. For an algebraic closure k of k, Hi(A⊗k k,Mn(k)/(A⊗k
k)) ∼= Hi(A,Mn(k)/A)⊗kk for i ≥ 0 by Proposition 2.3. Thereby, for studying Hi(A,Mn(k)/A), it
only suffices to investigate the case that k is an algebraically closed field. For an algebraically closed
field k, we have the classification of equivalence classes of k-subalgebras of Mn(k) for n = 2, 3. Here
we calculate all cases of k-subalgebras for n = 2 and 3.

5.1. The case n = 2. In this subsection, we calculate Hi(A,M2(k)/A) for k-subalgebras A of
M2(k) over a field k. In the case n = 2, we have the following classification.

Proposition 5.1 ([8, Proposition 35] and [11, Proposition 2.2]). Let k be an algebraically closed
field. Any subalgebras of M2(k) are equivalent to one of the following:

(1) M2(k)

(2) B2(k) =

{(
∗ ∗
0 ∗

)}

(3) D2(k) =

{(
∗ 0
0 ∗

)}

(4) N2(k) =

{ (
a b
0 a

)
a, b ∈ k

}

(5) C2(k) =

{ (
a 0
0 a

)
a ∈ k

}
.

Let k be a (not necessarily algebraically closed) field. We summarize the results onHi(A,M2(k)/A)
in the cases (1)–(5) in Proposition 5.1. For details, see Table 1 in Section 6.

(1) For A = M2(k), we have Hi(A,M2(k)/A) = 0 for i ≥ 0 by Example 4.9.
(2) For A = B2(k), we have Hi(A,M2(k)/A) = 0 for i ≥ 0 by Example 4.7.
(3) For A = D2(k), we have Hi(A,M2(k)/A) = 0 for i ≥ 0 by Example 4.10.
(4) For A = N2(k), A coincides with J2(k) in Definition 4.16. Then we have

Hi(A,M2(k)/A) ∼=

{
k (ch(k) 6= 2)
k2 (ch(k) = 2).

for i ≥ 0 by Corollary 4.20.
(5) For A = C2(k), we have

Hi(A,M2(k)/A) ∼=

{
M2(k)/C2(k) ∼= k3 (i = 0)

0 (i > 0).

by Example 4.8.



32 KAZUNORI NAKAMOTO AND TAKESHI TORII

5.2. The case n = 3. In this subsection, we calculate Hi(A,M3(k)/A) for k-subalgebras A of
M3(k) over a field k. In the case n = 3, we have the following classification.

Theorem 5.2 ([8, Theorem 2] and [11, Theorem 2.1]). Let k be an algebraically closed field. Any
subalgebras of M3(k) are equivalent to one of the following:

(1) M3(k)

(2) P2,1(k) =








∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ∈ M3(k)






(3) P1,2(k) =








∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 ∈ M3(k)





(4) B3(k) =








∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ∈M3(k)






(5) C3(k) =








a 0 0
0 a 0
0 0 a



 a ∈ k





(6) D3(k) =








∗ 0 0
0 ∗ 0
0 0 ∗


 ∈ M3(k)






(7) (C2 ×D1)(k) =








a 0 0
0 a 0
0 0 b



 a, b ∈ k





(8) (N2 ×D1)(k) =









a c 0
0 a 0
0 0 b


 a, b, c ∈ k






(9) (B2 ×D1)(k) =








∗ ∗ 0
0 ∗ 0
0 0 ∗



 ∈ M3(k)





(10) (M2 ×D1)(k) =








∗ ∗ 0
∗ ∗ 0
0 0 ∗


 ∈M3(k)






(11) J3(k) =








a b c
0 a b
0 0 a



 a, b, c ∈ k





(12) N3(k) =









a b c
0 a d
0 0 a


 a, b, c, d ∈ k






(13) S1(k) =








a b 0
0 a 0
0 0 a



 a, b ∈ k





(14) S2(k) =









a 0 0
0 a c
0 0 b


 a, b, c ∈ k





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(15) S3(k) =








a 0 c
0 b 0
0 0 b



 a, b, c ∈ k





(16) S4(k) =









a b c
0 a 0
0 0 a


 a, b, c ∈ k






(17) S5(k) =








a 0 b
0 a c
0 0 a



 a, b, c ∈ k





(18) S6(k) =









a c d
0 a 0
0 0 b


 a, b, c, d ∈ k






(19) S7(k) =








a 0 c
0 a d
0 0 b



 a, b, c, d ∈ k





(20) S8(k) =









a c d
0 b 0
0 0 b


 a, b, c, d ∈ k






(21) S9(k) =








a 0 c
0 b d
0 0 b



 a, b, c, d ∈ k





(22) S10(k) =









a b c
0 a d
0 0 e


 a, b, c, d, e ∈ k






(23) S11(k) =








a b c
0 e d
0 0 a



 a, b, c, d, e ∈ k





(24) S12(k) =









a b c
0 e d
0 0 e


 a, b, c, d, e ∈ k






(25) S13(k) =








∗ ∗ ∗
0 ∗ 0
0 0 ∗



 ∈M3(k)





(26) S14(k) =








∗ 0 ∗
0 ∗ ∗
0 0 ∗


 ∈M3(k)






Let k be a (not necessarily algebraically closed) field. We summarize the results onHi(A,M2(k)/A)
in the cases (1)–(26) in Theorem 5.2. For details, see Table 2 in Section 6.

(1) For A = M3(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0 by Example 4.9.
(2) For A = P2,1(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0 by Proposition 4.14.
(3) For A = P1,2(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0 by Proposition 4.14.
(4) For A = B3(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0 by Example 4.7.
(5) For A = C3(k), we have

Hi(A,M3(k)/A) ∼=

{
M3(k)/C3(k) ∼= k8 (i = 0)

0 (i > 0).
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by Example 4.8.
(6) For A = D3(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0 by Example 4.10.
(7) For A = (C2 ×D1)(k), we have

Hi(A,M3(k)/A) ∼=

{
M2(k)/C2(k) ∼= k3 (i = 0)

0 (i > 0).

Indeed, Hi(A,M3(k)/A) ∼= Hi(C2(k),M2(k)/C2(k))⊕Hi(D1(k),M1(k)/D1(k)) by Propo-
sition 4.23. By Example 4.9 (or by Example 4.10), Hi(D1(k),M1(k)/D1(k)) = 0. Hence
we can calculate Hi(A,M3(k)/A) by using the result on Hi(C2(k),M2(k)/C2(k)).

(8) For A = (N2 ×D1)(k), we have

Hi(A,M3(k)/A) ∼=

{
k (ch(k) 6= 2)
k2 (ch(k) = 2).

for each i. Indeed, Hi(A,M3(k)/A) ∼= Hi(N2(k),M2(k)/N2(k))⊕Hi(D1(k),M1(k)/D1(k))
by Proposition 4.23. By Example 4.9 (or by Example 4.10), Hi(D1(k),M1(k)/D1(k)) = 0.
Hence we can calculate Hi(A,M3(k)/A) by using the result on Hi(N2(k),M2(k)/N2(k)).

(9) For A = (B2 ×D1)(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0. Indeed, Hi(A,M3(k)/A) ∼=
Hi(B2(k),M2(k)/B2(k))⊕H

i(D1(k),M1(k)/D1(k)) = 0 by Proposition 4.23, Examples 4.7
and 4.9 (or Example 4.10).

(10) For A = (M2×D1)(k), we have H
i(A,M3(k)/A) = 0 for i ≥ 0. Indeed, Hi(A,M3(k)/A) ∼=

Hi(M2(k),M2(k)/M2(k))⊕Hi(D1(k),M1(k)/D1(k)) = 0 by Proposition 4.23 and Example
4.9 (or Example 4.10).

(11) For A = J3(k), we have

Hi(J3(k),M3(k)/J3(k)) ∼=

{
k2 (ch(k) 6= 3)
k3 (ch(k) = 3)

for i ≥ 0 by Corollary 4.20.
(12) For A = N3(k), we have

Hi(A,M3(k)/A) ∼=

{
k2 (i = 0)
ki+1 (i > 0).

For details, see Section 5.3.
(13) For A = S1(k), we have

Hi(A,M3(k)/A) ∼=

{
k4 (i = 0)
k (i > 0).

For details, see Section 5.4.
(14) For A = S2(k), we have

Hi(A,M3(k)/A) ∼=

{
k2 (i = 0)
0 (i > 0).

For details, see Section 5.5.
(15) For A = S3(k), we have

Hi(A,M3(k)/A) ∼=

{
k2 (i = 0)
0 (i > 0)

by the result on Hi(S2(k),M3(k)/S2(k)) and Corollary 4.27, since S3(k) ∼
tS2(k).

(16) For A = S4(k), we have

Hi(A,M3(k)/A) ∼=

{
k4 (i = 0)

k3×2i (i > 0).
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For details, see Section 5.6.
(17) For A = S5(k), we have

Hi(A,M3(k)/A) ∼=

{
k4 (i = 0)

k3×2i (i > 0)

by the result on Hi(S4(k),M3(k)/S4(k)) and Corollary 4.27, since S5(k) ∼ tS4(k).
(18) For A = S6(k), we have Hi(A,M3(k)/A) ∼= k for i ≥ 0. For details, see Section 5.7.
(19) For A = S7(k), we have

Hi(A,M3(k)/A) ∼=

{
k3 (i = 0)
0 (i > 0).

For details, see Section 5.8.
(20) For A = S8(k), we have

Hi(A,M3(k)/A) ∼=

{
k3 (i = 0)
0 (i > 0)

by the result on Hi(S7(k),M3(k)/S7(k)) and Corollary 4.27, since S8(k) ∼ tS7(k).
(21) For A = S9(k), we have H

i(A,M3(k)/A) ∼= k for i ≥ 0. Indeed, this follows from the result
on Hi(S6(k),M3(k)/S6(k)) and Corollary 4.27, since S9(k) ∼

tS6(k).
(22) For A = S10(k), we have

Hi(A,M3(k)/A) ∼=

{
k (ch(k) 6= 2)
k2 (ch(k) = 2)

for i ≥ 0. For details, see Section 5.9.
(23) For A = S11(k), we have

Hi(A,M3(k)/A) ∼=

{
k (i = 0, 1)
0 (i ≥ 2).

For details, see Section 5.10.
(24) For A = S12(k), we have

Hi(A,M3(k)/A) ∼=

{
k (ch(k) 6= 2)
k2 (ch(k) = 2)

for i ≥ 0. Indeed, this follows from the result on Hi(S10(k),M3(k)/S10(k)) and Corollary
4.27, since S12(k) ∼ tS10(k).

(25) For A = S13(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0. For details, see Section 5.11.
(26) For A = S14(k), we have Hi(A,M3(k)/A) = 0 for i ≥ 0. Indeed, this follows from the

result on Hi(S13(k),M3(k)/S13(k)) and Corollary 4.27, since S14(k) ∼
tS13(k).

5.3. The case A = N3(k). Set N3(R) =








a b c
0 a d
0 0 a



 a, b, c, d ∈ R



 for a commutative

ring R. We denote N3(R) by N for simplicity. Let J be the two-sided ideal of N given by

J =








0 b c
0 0 d
0 0 0


 ∈ N b, c, d ∈ R



 .

We set T = N/J , which is an N -bimodule over R. First, we calculate the Hochschild cohomology
H∗(N, T ) of N with coefficients in T . We note that there is an isomorphism T ⊗N T ∼= T of
N -bimodules over R. This implies that T is a monoid object in the category of N -bimodules over
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R. The unit u : N → T = N/J is given by the projection. Hence H∗(N, T ) has the structure of a
graded associative algebra over R.

We set I = E11 + E22 + E33, U = E12, V = E23 and W = E13. We let N = N/RI. The set
{U, V,W} forms a basis of the free R-module N . Let B∗(N,N,N) be the reduced bar resolution
of N as N -bimodules over R. We have

Bp(N,N,N) ∼= N ⊗R

p︷ ︸︸ ︷
N ⊗R · · · ⊗R N ⊗RN

for p ≥ 0. We denote the cochain complex HomNe(B∗(N,N,N), T ) by C
∗
(N, T ). The cohomology

of C
∗
(N, T ) is isomorphic to the Hochschild cohomology H∗(N, T ) (see Section 2).

Let e ∈ T be the image of I under the unit u : N → T . We denote by U∗, V ∗ ∈ C
1
(N, T ) the

maps N → T of R-modules given by

U∗(n) =

{
e if n = U
0 if n = V,W

V ∗(n) =

{
e if n = V
0 if n = U,W,

respectively. The maps U∗ and V ∗ are 1-cocycles in the cochain complex C
∗
(N, T ). We denote by

α, β ∈ H1(N, T )

the cohomology classes represented by the 1-cocycles U∗, V ∗, respectively.

Let W ∗ ∈ C
1
(N, T ) be the map N → T of R-modules given by

W ∗(n) =

{
e if n =W
0 if n = U, V .

We observe that

U∗ ∪ V ∗ = −δ1(W ∗),

where δ1 : C
1
(N, T )→ C

2
(N, T ) is the coboundary map. Thus, we obtain that

αβ = 0

in H2(N, T ).
Let R〈α, β〉 be the free associative algebra over R generated by α and β. There is a map

R〈α, β〉/(αβ) −→ H∗(N, T )

of graded associative algebras over R, where (αβ) is the two-sided ideal of R〈α, β〉 generated by
αβ.

Lemma 5.3. We have an isomorphism H∗(N, T ) ∼= R〈α, β〉/(αβ) of graded associative algebras
over R.

Proof. We observe that the cochain complex C
∗
(N, T ) is isomorphic to the differential graded

algebra which is the free associative algera

R〈U∗, V ∗,W ∗〉

generated by U∗, V ∗,W ∗ with differential

δ(U∗) = δ(V ∗) = 0, δ(W ∗) = −U∗V ∗.
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We let C∗
V U be the subcomplex of R〈U∗, V ∗,W ∗〉 given by

C∗
V U =

∞⊕

n=0

⊕

i + j = n
i, j ≥ 0

R

i︷ ︸︸ ︷
V ∗ · · ·V ∗

j︷ ︸︸ ︷
U∗ · · ·U∗

with trivial differential. We also let C∗
W be the subcomplex of R〈U∗, V ∗,W ∗〉 given by

CiW =





RW ∗ (i = 1),
RU∗V ∗ (i = 2),
0 (i 6= 1, 2),

with differential δ(W ∗) = −U∗V ∗. We observe that there is an isomorphism of cochain complexes
between R〈U∗, V ∗,W ∗〉 and

C∗
V U ⊗R

⊕

r≥0

r︷ ︸︸ ︷
(C∗

W ⊗R C
∗
V U )⊗R · · · ⊗R (C∗

W ⊗R C
∗
V U ),

where we set

r︷ ︸︸ ︷
(C∗

W ⊗R C
∗
V U )⊗R · · · ⊗R (C∗

W ⊗R C
∗
V U ) = (0 → R

δ0
→ 0

δ1
→ 0

δ2
→ · · · ) if r = 0. Since

C∗
W is acyclic and C∗

V U has a trivial differential, we obtain an isomorphism of R-modules

H∗(C(N, T )) ∼=

∞⊕

n=0

⊕

i + j = n
i, j ≥ 0

R

i︷ ︸︸ ︷
V ∗ · · ·V ∗

j︷ ︸︸ ︷
U∗ · · ·U∗

This implies that the R-algebra homomorphism R〈α, β〉 → H∗(N, T ) induces an isomorphism
H∗(N, T ) ∼= R〈α, β〉/(αβ) of graded associative algebras over R. �

We set M = M3(R). Let us calculate the Hochschild cohomology H∗(N,M/N) of N with
coefficients in M/N . For this purpose, we construct a spectral sequence which converges to
H∗(N,M/N). We show that the spectral sequence collapses at the E2-page and there is no
extension problem.

In order to construct the spectral sequence, we introduce a filtration on M/N . We set F 0 =
M/N . Let L be the R-submodule of M = M3(R) consisting of matrices in which the (3, 1)-entry
is 0. We set F 1 = L/N and F 2 = B/N , where B = B3(R) = {(aij) ∈ M3(R) | aij = 0 for i > j}.
We have obtained a filtration

0 = F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 =M/N

of N -bimodules over R. We denote by Grp(M/N) the p-th associated graded module F p/F p+1.
By Proposition 2.5, we obtain a spectral sequence

Ep,q1 = Hp+q(N,Grp(M/N)) =⇒ Hp+q(N,M/N)

with

dr : E
p,q
r −→ Ep+r,q−r+1

r

for r ≥ 1. Note that Ep,q1 = 0 unless 0 ≤ p ≤ 2 and p+q ≥ 0. Thus, the spectral sequence collapses
at the E3-page. Since H

∗(N, T ) ∼= R〈α, β〉/(αβ) and the N -bimodule Grp(M/N) is isomorphic to
the direct sum of finitely many copies of T , we obtain that

Ep,∗−p1
∼= R〈α, β〉/(αβ) ⊗R Grp(M/N).
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First, we calculate d1 : E0,q
1 → E1,q

1 for q ≥ 0. We have E0,∗
1 = H∗(N,M/L) which is isomorphic

to R〈α, β〉/(αβ) ⊗R RE31, and E1,∗−1
1 = H∗(N,L/B) which is isomorphic to R〈α, β〉/(αβ) ⊗R

(RE21 ⊕RE32). We set

c(i, j) =

i︷ ︸︸ ︷
β · · ·β

j︷ ︸︸ ︷
α · · ·α ∈ Hi+j(N, T )

for i, j ≥ 0. The set {c(i, j)| i, j ≥ 0, i+j = n} forms a basis of the free R-module Hn(N, T ) for all

n ≥ 0. Since the differential d1 : E0,∗
1 → E1,∗

1 can be identified with the connecting homomorphism
δ : H∗(N,M/L)→ H∗+1(N,L/B), we obtain

d1(c(i, j)⊗ E31) = c(i + 1, j)⊗ E21 + (−1)i+j+1c(i, j + 1)⊗ E32.

Next, we calculate d1 : E1,q−1
1 → E2,q−1

1 for q ≥ 0. We have E1,∗−1
1 = H∗(N,L/B), which

is isomorphic to R〈α, β〉/(αβ) ⊗R (RE21 ⊕ RE32). We have E2,∗−2
1 = H∗(N,B/N) which is

isomorphic to R〈α, β〉/(αβ) ⊗R F 2. Since the differential d1 : E1,q−1
1 → E2,q−1

1 can be identified
with the connecting homomorphism δ : Hq(N,L/B)→ Hq+1(N,B/N), we obtain

d1(c(i, j)⊗ E21) =

{
(−1)i+j+1c(i, j + 1)⊗ E22 (i > 0),
c(0, j + 1)⊗ (E11 + (−1)j+1E22) (i = 0),

d1(c(i, j)⊗ E32) =

{
c(i+ 1, j)⊗ E22 (j > 0),
c(i+ 1, 0)⊗ (E22 + (−1)i+1E33) (j = 0).

By the above calculation of d1, E
0,q
2 = E1,q−1

2 = 0 and E2,q−1
2 is a free R-module of rank q + 2

for all q ≥ 0. Hence the spectral sequence collapses at the E2-page. Since E
p,q
∞ is a free R-module

for all p, q, there is no extension problem. Hence we obtain the following theorem.

Theorem 5.4. The R-module Hn(N,M/N) is free for all n ≥ 0. The rank of Hn(N,M/N) over
R is given by

rankRH
n(N,M/N) =

{
2 (n = 0),

n+ 1 (n ≥ 1).

5.4. The case A = S1(k). Let A = R[x]/(x2) ∼= S1(R) =









a b 0
0 a 0
0 0 a


 a, b ∈ R




. Here

R is a commutative ring and x corresponds to E12 ∈ S1(R). By Proposition 4.17, there exists a
projective resolution of A as Ae-modules:

· · · → Ae
dn→ Ae → · · · → Ae

d1→ Ae
µ
→ A→ 0,

where

di(a⊗ b) =

{
(1⊗ x+ x⊗ 1)(a⊗ b) (i : even)
(1⊗ x− x⊗ 1)(a⊗ b) (i : odd)

and µ(a⊗b) = ab. SetM = M3(R)/S1(R). By applying HomAe(−,M) to the projective resolution
above, we have

0→ HomAe(Ae,M)
d∗1→ HomAe(Ae,M)→ · · · → HomAe(Ae,M)

d∗n→ HomAe(Ae,M)→ · · · ,

which is isomorphic to

0→M
b1
→M → · · · →M

bn
→M → · · · ,

where

bi(m) =

{
mx+ xm (i : even)
mx− xm (i : odd).
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We can choose a basis {E13, E21, E22, E23, E31, E32, E33} of the R-free module M . With respect
to this basis, we have

bi =




0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0




(i : odd) and bi =




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 −1 0 0 0 0 0




(i : even).

Thereby, we easily verify that

Hi(S1(R),M3(k)/S1(R)) ∼=





RE13 ⊕RE22 ⊕RE32 ⊕RE33
∼= R4 (i = 0)

(RE22 ⊕RE33)/R(2E22 + E33) ∼= R (i : odd > 0)
RE22

∼= R (i : even > 0).

5.5. The case A = S2(k). Let us consider the quiver Q = 1 ←− 2. Let Λ = RQ/I be the
incidence algebra associated to Q over a commutative ring R. Then Λ = Re11 ⊕ Re22 ⊕ Re12.

We can regard Λ as S2(R) =








a 0 0
0 a c
0 0 b



 a, b, c ∈ R



 by e11 7→ E11 + E22, e22 7→ E33,

and e12 7→ E23. Set M = M3(R)/S2(R). Then M is a Λ-bimodule by identifying Λ with the
subalgebra S2(R) of M3(R). The free R-module M has a basis {E11, E12, E13, E21, E31, E32}. By
Proposition 4.1, it suffices to calculate the cohomology of the complex {HomEe(r⊗n,M), δn}, where
E = Re11 ⊕ Re22 = R(E11 + E22) ⊕ RE33 and r = Re12 = RE23. Since r⊗n = 0 for n ≥ 2, the

complex is isomorphic to 0→ ME δ0

→ HomEe(r,M)→ 0→ 0→ · · · . It is easy to see that ME =
RE11⊕RE12⊕RE21 and that HomEe(r,M) ∼= RE13 by HomEe(r,M) ∋ f 7→ f(E23) ∈ RE13. By
direct calculation, δ0(E11) = δ0(E21) = 0 and δ0(E12) = −E13. Hence we have

Hi(S2(R),M3(R)/S2(R)) ∼=

{
RE11 ⊕RE21

∼= R2 (i = 0)
0 (i > 0).

5.6. The case A = S4(k). Set S4(R) =








a b c
0 a 0
0 0 a



 a, b, c ∈ R



 for a commutative ring

R. We set A = S4(R) andM = M3(R). In this subsection we calculate the Hochschild cohomology
H∗(A,M/A) of A with coefficients in M/A. For this purpose, we construct a spectral sequence
which converges to H∗(A,M/A). We show that the spectral sequence collapses at the E2-page and
there is no extension problem.

Let J be the two-sided ideal of A given by J =









0 b c
0 0 0
0 0 0


 ∈ A b, c ∈ R




. We set

T = A/J , which is an A-bimodule over R.
First, we describe the Hochschild cohomology H∗(A, T ) of A with coefficients in T . We have an

isomorphism T ⊗A T ∼= T of A-bimodules over R. This implies that T is a monoid object in the
category of A-bimodules over R. The unit u : A → T = A/J is given by the projection. Hence
H∗(A, T ) has the structure of a graded associative algebra over R.

We set I = E11 + E22 + E33, U = E12 and V = E13. The set {U, V } forms a basis of the free
R-module A = A/RI. Let e ∈ T be the image of I under the unit u : A → T . We denote by
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U∗, V ∗ ∈ C
1
(A, T ) the maps A→ T of R-modules given by

U∗(n) =

{
e if n = U
0 if n = V .

V ∗(n) =

{
e if n = V
0 if n = U.

We see that U∗ and V ∗ are 1-cocycles in the cochain complex C
∗
(A, T ). We denote by

α, β ∈ H1(A, T )

the elements represented by the 1-cocycles U∗, V ∗, respectively. It is easy to calculate the coho-
mology H∗(A, T ) and we obtain the following lemma.

Lemma 5.5. There is an isomorphism H∗(A, T ) ∼= R〈α, β〉 of graded associative algebras over R,
where R〈α, β〉 is the free graded associative algebra over R generated by α and β.

Proof. The lemma follows from the observation that C
∗
(A, T ) is isomorphic to a differential graded

algebra which is the free graded associative R-algebra R〈U∗, V ∗〉 generated by U∗, V ∗ with trivial
differential. �

In order to construct a spectral sequence, we introduce a filtration on M/A. We set F 0 =M/A.
Let L be the R-submodule of M = M3(R) consisting of matrices in which the (3, 1)-entry is 0. We
set F 1 = L/A and F 2 = B/A, where B = B3(R) = {(aij) ∈ M3(R) | aij = 0 for i > j}. We have
obtained a filtration

0 = F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 =M/A

of A-bimodules. We denote by Grp(M/A) the p-th associated graded module F p/F p+1. By
Proposition 2.5, we obtain a spectral sequence

Ep,q1 = Hp+q(A,Grp(M/A)) =⇒ Hp+q(A,M/A)

with

dr : E
p,q
r −→ Ep+r,q−r+1

r

for r ≥ 1. Note that Ep,q1 = 0 unless 0 ≤ p ≤ 2 and p+q ≥ 0. Thus, the spectral sequence collapses
at the E3-page.

The A-bimodule Grp(M/A) is isomorphic to the direct sum of finitely many copies of T . Since
H∗(A, T ) ∼= R〈α, β〉, we obtain that

Ep,∗−p1
∼= R〈α, β〉 ⊗R Grp(M/A).

First, we calculate d1 : E0,q
1 → E1,q

1 for q ≥ 0. We have E0,∗
1 = H∗(A,M/L) which is isomorphic

to R〈α, β〉⊗RRE31, and E
1,∗−1
1 = H∗(A,L/B) which is isomorphic to R〈α, β〉⊗R (RE21⊕RE32).

Let δ be the connecting homomorphism Hq(A,M/L) → Hq+1(A,L/B). We can identify d1 :

E0,q
1 → E1,q

1 with δ and we obtain that

(5.1) d1(z ⊗ E31) = (−1)q+1zα⊗ E32,

where z ∈ Hq(A, T ) is a monomial of α and β.

Next, we calculate d1 : E1,q−1
1 → E2,q−1

1 for q ≥ 0. We have E1,∗−1
1 = H∗(A,L/B), which is

isomorphic to R〈α, β〉 ⊗R (RE21 ⊕RE32). We have E2,∗−2
1 = H∗(A,B/A) which is isomorphic to

R〈α, β〉 ⊗R F 2. Since the differential d1 : E1,q−1
1 → E2,q−1

1 can be identified with the connecting
homomorphism δ : Hq(A,L/B)→ Hq+1(A,B/A), we obtain that

(5.2)
d1(z ⊗ E21) = αz ⊗ E11 + (−1)q+1zα⊗ E22 + (−1)q+1zβ ⊗ E23,
d1(z ⊗ E32) = 0,
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where z ∈ Hq(A, T ) is a monomial of α and β.

By (5.1), E0,q
2 = 0 for all q. Furthermore, by (5.1) and (5.2), we see that E1,q−1

2 and E2,q−2
2 are

free R-modules for all q ≥ 0. Thus, the spectral sequence collapses at the E2-page and there is no
extension problem.

Theorem 5.6. The R-module Hn(A,M/A) is free for all n ≥ 0. The rank of Hn(A,M/A) over
R is given by

rankRH
n(A,M/A) =

{
4 (n = 0),
3 · 2n (n ≥ 1).

Proof. We know that the spectral sequence collapses at the E2-page and that Ep,q2 is a free R-
module for all p and q. In what follows we calculate the rank of Ep,q2 over R.

Since E2,q−2
1 is isomorphic to Hq(A,B/A), it is a free R-module of rank 3 · 2q for all q ≥ 0. In

particular, since E2,−2
2

∼= E2,−2
1 , we obtain that

rankRE
2,−2
2 = 3.

By (5.2), the image of d1,q−1
1 : E1,q−1

1 → E2,q−1
1 is a direct summand of E2,q−1

1 and a free R-module

of rank 2q for all q ≥ 0. Since rankR E
2,q−1
2 = rankRE

2,q−1
1 − rankR Im d1,q−1

1 , we obtain that

rankRE
2,q−1
2 = 5 · 2q

for all q ≥ 0.
Since E1,q−1

1 is isomorphic to Hq(A,L/B), it is a free R-module of rank 2q+1 for all q ≥ 0.

From the fact that rankR Im d1,q−1
1 = 2q, we see that rankRKerd1,q−1

1 = 2q for all q ≥ 0. Since

E0,q
1 is isomorphic to Hq(A,M/L), we have rankRE

0,q
1 = 2q for all q ≥ 0. By (5.1), we see that

rankR Im d0,q1 = 2q for all q ≥ 0. Since rankRE
1,q−1
2 = rankRKer d1,q−1

1 − rankR Im d0,q−1
1 , we

obtain that

rankR E
1,q−1
2 =

{
2q−1 (q > 0),
1 (q = 0).

The theorem follows from the fact that

rankRH
n(A,M/A) = rankRE

1,n−1
2 + rankR E

2,n−2
2

for all n ≥ 0. �

5.7. The case A = S6(k). Let us consider the quiver

Q = •α ?? oo β •
e1 e2

.

Let RQ be the path algebra of Q over a commutative ring R. Set I = 〈α2, αβ〉 ⊂ RQ. Then we

can regard Λ = RQ/I = Re1 ⊕ Re2 ⊕ Rα ⊕ Rβ as S6(R) =









a c d
0 a 0
0 0 b


 a, b, c, d ∈ R





by e1 7→ E11 + E22, e2 7→ E33, α 7→ E12, and β 7→ E13. Set M = M3(R)/S6(R). Then M
is a Λ-bimodule by identifying Λ with the subalgebra S6(R) of M3(R). The free R-module M
has a basis {E21, E22, E23, E31, E32}. By Proposition 4.1, it suffices to calculate the cohomology
of the complex {HomEe(r⊗n,M), δn}, where E = Re1 ⊕ Re2 = R(E11 + E22) ⊕ RE33 and r =
Rα⊕Rβ = RE12 ⊕RE13. Obviously, ME = RE21 ⊕RE22. Since β ⊗ α = βe2 ⊗ α = β ⊗ e2α = 0
and β ⊗ β = βe2 ⊗ β = β ⊗ e2β = 0, r⊗n = Rα⊗n ⊕ R(α⊗(n−1) ⊗ β) and rankRr

⊗n = 2 for
n ≥ 1. By using α⊗n = e1α

⊗ne1 and α⊗(n−1) ⊗ β = e1(α
⊗(n−1) ⊗ β)e2, we see that f(α⊗n) ∈

e1Me1 = RE21 ⊕ RE22 and f(α⊗(n−1) ⊗ β) ∈ e1Me2 = RE23 for f ∈ HomEe(r⊗n,M). Let
(α⊗n)∗, (α⊗(n−1) ⊗ β)∗ ∈ HomR(r

⊗n, R) be the dual basis of α⊗n, α⊗(n−1) ⊗ β ∈ r⊗n. Then we
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can write HomEe(r⊗n,M) = (R(α⊗n)∗ ⊗ E21)⊕ (R(α⊗n)∗ ⊗ E22)⊕ (R(α⊗(n−1) ⊗ β)∗ ⊗ E23). In
particular, rankRHomEe(r⊗n,M) = 3 for n ≥ 1.

First, let us calculate δ0 :ME = RE21 ⊕RE22 → HomEe(r,M). By direct calculation,

δ0(E21)(α) = αE21 − E21α = E12E21 − E21E12 = E11 − E22 ≡ −2E22

δ0(E21)(β) = βE21 − E21β = E13E21 − E21E13 = −E23

δ0(E22)(α) = αE22 − E22α = E12E22 − E22E12 = E12 ≡ 0

δ0(E22)(β) = βE22 − E22β = E13E22 − E22E13 = 0.

With respect to the bases {E21, E22} and {α∗ ⊗ E21, α
∗ ⊗ E22, β

∗ ⊗ E23}, δ0 can be described as

δ0 =




0 0
−2 0
−1 0


 .

Hence H0(S6(R),M3(R)/S6(R)) ∼= R.
Next, let us calculate δn : HomEe(r⊗n,M)→ HomEe(r⊗(n+1),M). By direct calculation,

δn((α⊗n)∗ ⊗ E21)(α
⊗(n+1)) = αE21 + (−1)n+1E21α ≡ −(1 + (−1)n)E22

δn((α⊗n)∗ ⊗ E21)(α
⊗n ⊗ β) = (−1)n+1E21β = (−1)n+1E23

δn((α⊗n)∗ ⊗ E22)(α
⊗(n+1)) = αE22 + (−1)n+1E22α = E12 ≡ 0

δn((α⊗n)∗ ⊗ E22)(α
⊗n ⊗ β) = (−1)n+1E22β = 0

δn((α⊗(n−1) ⊗ β)∗ ⊗ E23)(α
⊗(n+1)) = 0

δn((α⊗(n−1) ⊗ β)∗ ⊗ E23)(α
⊗n ⊗ β) = αE23 = E13 ≡ 0.

With respect to the bases {(α⊗n)∗ ⊗E21, (α
⊗n)∗ ⊗E22, (α

⊗(n−1) ⊗ β)∗ ⊗E23} and {(α⊗(n+1))∗ ⊗
E21, (α

⊗(n+1))∗ ⊗ E22, (α
⊗n ⊗ β)∗ ⊗ E23}, δn can be described as

δn =




0 0 0
0 0 0
1 0 0


 (n : odd ) and δn =




0 0 0
−2 0 0
−1 0 0


 (n : even ).

Finally, let us calculate Hn(S6(R),M3(R)/S6(R)). It is easy to see that

Hn(S6(R),M3(R)/S6(R)) ∼= ((R(α⊗n)∗ ⊗ E22)⊕ (R(α⊗(n−1) ⊗ β)∗ ⊗ E23))/Im δn−1

for any n > 0, where Im δn−1 = R((1 + (−1)n+1)(α⊗n)∗ ⊗ E22 + (−1)n+1(α⊗(n−1) ⊗ β)∗ ⊗ E23).
Summarizing the results, we have Hn(S6(R),M3(R)/S6(R)) ∼= R for n ≥ 0.

5.8. The case A = S7(k). Let us consider the quiver

Q = •

β

``

α

•~~
e1 e2

.

Let RQ be the path algebra of Q over a commutative ring R. Then we can regard Λ = RQ =

Re1⊕Re2⊕Rα⊕Rβ as S7(R) =








a 0 c
0 a d
0 0 b


 a, b, c, d ∈ R



 by e1 7→ E11+E22, e2 7→ E33,

α 7→ E13, and β 7→ E23. Set M = M3(R)/S7(R). Then M is a Λ-bimodule by identifying Λ with
the subalgebra S7(R) of M3(R). The free R-module M has a basis {E12, E21, E22, E31, E32}. By
Proposition 4.1, it suffices to calculate the cohomology of the complex {HomEe(r⊗n,M), δn}, where
E = Re1 ⊕ Re2 = R(E11 + E22) ⊕ RE33 and r = Rα ⊕ Rβ = RE13 ⊕ RE23. Since r⊗n = 0 for
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n ≥ 2, the complex is isomorphic to 0 → ME δ0
→ HomEe(r,M) → 0 → 0 → · · · . It is easy to see

that ME = RE12 ⊕RE21 ⊕RE22 and HomEe(r,M) = 0 by r = e1re2 and e1Me2 = 0. Hence we
have

Hi(S7(R),M3(R)/S7(R)) ∼=

{
RE12 ⊕RE21 ⊕RE22

∼= R3 (i = 0)
0 (i > 0).

5.9. The case A = S10(k). Let us consider the quiver

Q = •α ?? oo β •
e1 e2

.

Let RQ be the path algebra of Q over a commutative ring R. Set I = 〈α2〉 ⊂ RQ and γ = αβ. Then

we can regard Λ = RQ/I = Re1⊕Re2⊕Rα⊕Rβ⊕Rγ as S10(R) =









a b c
0 a d
0 0 e



 a, b, c, d ∈ R





by e1 7→ E11 + E22, e2 7→ E33, α 7→ E12, β 7→ E23, and γ 7→ E13. Set M = M3(R)/S10(R).
Then M is a Λ-bimodule by identifying Λ with the subalgebra S10(R) of M3(R). The free R-
module M has a basis {E21, E22, E31, E32}. By Proposition 4.1, it suffices to calculate the co-
homology of the complex {HomEe(r⊗n,M), δn}, where E = Re1 ⊕ Re2 = R(E11 + E22) ⊕ RE33

and r = Rα ⊕ Rβ ⊕ Rγ = RE12 ⊕ RE23 ⊕ RE13. Since e1re1 = Rα and e1re2 = Rβ ⊕ Rγ,
r⊗E r = (Rα⊗2)⊕(Rα⊗β)⊕(Rα⊗γ). Similarly, r⊗n = (Rα⊗n)⊕(Rα⊗(n−1)⊗β)⊕(Rα⊗(n−1)⊗γ)
for n ≥ 2. Let {(α⊗n)∗, (α⊗(n−1) ⊗ β)∗, (α⊗(n−1) ⊗ γ)∗} ⊂ HomR(r

⊗n, R) be the dual basis of
{α⊗n, α⊗(n−1) ⊗ β, α⊗(n−1) ⊗ γ} ⊂ r⊗n. Note that ME = RE21 ⊕RE22, e1Me1 = RE21 ⊕RE22,
and e1Me2 = 0. It is easy to see that HomEe(r⊗n,M) = (R(α⊗n)∗ ⊗ E21)⊕ (R(α⊗n)∗ ⊗E22) for
n ≥ 1.

First, let us calculate δ0 :ME = RE21 ⊕RE22 → HomEe(r,M) = (Rα∗ ⊗E21)⊕ (Rα∗ ⊗E22).
By direct calculation,

δ0(E21)(α) = αE21 − E21α = E12E21 − E21E12 = E11 − E22 ≡ −2E22

δ0(E22)(α) = αE22 − E22α = E12E22 − E22E12 = E12 ≡ 0.

With respect to the bases {E21, E22} and {α∗ ⊗ E21, α
∗ ⊗ E22}, δ0 can be described as

δ0 =

(
0 0
−2 0

)
.

Hence H0(S10(R),M3(R)/S10(R)) ∼= R⊕Ann(2), where Ann(2) = {a ∈ R | 2a = 0}.
Next, let us calculate δn : HomEe(r⊗n,M)→ HomEe(r⊗(n+1),M) for n ≥ 1. By direct calcula-

tion,

δn((α⊗n)∗ ⊗ E21)(α
⊗(n+1)) = αE21 + (−1)n+1E21α ≡ −(1 + (−1)n)E22

δn((α⊗n)∗ ⊗ E22)(α
⊗(n+1)) = αE22 + (−1)n+1E22α = E12 ≡ 0.

With respect to the bases {(α⊗n)∗⊗E21, (α
⊗n)∗⊗E22} and {(α⊗(n+1))∗⊗E21, (α

⊗(n+1))∗⊗E22},
δn can be described as

δn =

(
0 0
0 0

)
(n : odd) and δn =

(
0 0
−2 0

)
(n : even).

Finally, let us calculate Hn(S10(R),M3(R)/S10(R)). For n ≥ 0, we easily see that

Hn(S10(R),M3(R)/S10(R)) ∼=

{
R⊕Ann(2) (n : even)
R⊕ (R/2R) (n : odd).
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5.10. The case A = S11(k). In this subsection, we calculate Hi(S11(R),M3(R)/S11(R)) for a
commutative ring R. In the following long proof of Theorem 5.11, the Fibonacci numbers appear,
which seems strange to us. For another proof using spectral sequence without the Fibonacci
numbers, see [10].

Let us consider the quiver

Q = >>

β

• •

α

~~
e1 e2

.

LetRQ be the path algebra ofQ over a commutative ringR. Set I = 〈βα〉 ⊂ RQ and γ = αβ. Then

we can regard Λ = RQ/I = Re1⊕Re2⊕Rα⊕Rβ⊕Rγ as S11(R) =








a b c
0 e d
0 0 a



 a, b, c, d, e ∈ R





by e1 7→ E11+E33, e2 7→ E22, α 7→ E12, β 7→ E23, and γ 7→ E13. SetM = M3(R)/S11(R). ThenM
is a Λ-bimodule by identifying Λ with the subalgebra S11(R) of M3(R). The free R-module M has
a basis {E11, E21, E31, E32}. Set E = Re1⊕Re2 = R(E11+E33)⊕RE22 and r = Rα⊕Rβ⊕Rγ =

RE12 ⊕ RE23 ⊕ RE13. Let B3(R) =








∗ ∗ ∗
0 ∗ ∗
0 0 ∗







 and M ′ = B3(R)/S11(R). Then M ′ is

an S11(R)-bimodule and there exists an exact sequence of S11(R)-bimodules (that is, an exact
sequence of S11(R)

e-modules):

0→M ′ →M →M ′′ = RE21 ⊕RE31 ⊕RE32 → 0.(5.3)

Let us define the S11(R)
e-submodules M21 and M32 of M ′′ by M21 = RE21 and M32 = RE32,

respectively. Put M31 = M ′′/(M21 ⊕ M32) = RE31. Note that the S11(R)
e-module M31 is

isomorphic to M ′ = RE11.
LetMn = {x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ r⊗n | x1 ⊗ x2 ⊗ · · · ⊗ xn 6= 0,where xi = α, β, or γ} be the set

of non-zero monomials of length n in α, β and γ. For n ≥ 1, r⊗n = ⊕m∈MnRm andMn is a basis
of the free module r⊗n over R, where the tensor products are over E. Because α ⊗ α = β ⊗ β =
α ⊗ γ = 0 and so on, rankRr

⊗n < 3n for n > 1. LetM∗
n = {m∗ ∈ HomR(r

⊗n, R) | m ∈ Mn} be
the dual basis ofMn.

Let us introduce the following lemmas.

Lemma 5.7. Let M ′ = RE11 be as above. Then

Hn(S11(R),M
′) ∼=

{
R (n = 0)
0 (n > 0).

Proof. Note that 


a b c
0 e d
0 0 a



E11 = aE11 = E11




a b c
0 e d
0 0 a



 .

It is easy to see that M ′ = e1M
′e1 and that M ′E =M ′. For f ∈ HomEe(r,M ′), f(α) = f(αe2) =

f(α)e2 = 0 and f(β) = f(e2β) = e2f(β) = 0. Thus, we have an isomorphism HomEe(r,M ′)
∼=
→

M ′ = RE11 by f 7→ f(γ). First, let us consider δ0 :M ′E =M ′ → HomEe(r,M ′) ∼= RE11. Since

δ0(E11)(γ) = γE11 − E11γ = 0,

we have δ0 = 0. Hence H0(S11(R),M
′) ∼= R.
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Next, let us consider δ1 : HomEe(r,M ′) ∼= RE11 → HomEe(r ⊗E r,M ′). Let (α⊗ β)∗, . . . , (γ ⊗
γ)∗ ∈ HomR(r ⊗E r, R) be the dual basis of the basis α⊗ β, . . . , γ ⊗ γ of r ⊗E r over R. By using
M ′ = e1M

′e1, we see that HomEe(r ⊗E r,M ′) = R((α ⊗ β)∗ ⊗ E11) ⊕ R((γ ⊗ γ)∗ ⊗ E11). In a
similar way, we can write HomEe(r,M ′) = R(γ∗ ⊗ E11). Since

δ1(γ∗ ⊗ E11)(α ⊗ β) = −E11

δ1(γ∗ ⊗ E11)(γ ⊗ γ) = γE11 + E11γ = 0,

δ1(γ∗ ⊗ E11) = −(α⊗ β)∗ ⊗ E11 and Ker δ1 = 0. Hence H1(S11(R),M
′) = 0.

We claim that HomEe(r⊗n,M ′) is a free R-module. Set Fn = rankRHomEe(r⊗n,M ′) under
this claim. Note that F1 = 1 and F2 = 2. Since HomEe(E,M ′) = M ′E = M ′ = RE11, set
F0 = 1. By M ′ = e1M

′e1 and r⊗n = (e1r
⊗ne1) ⊕ (e1r

⊗ne2) ⊕ (e2r
⊗ne1) ⊕ (e2r

⊗ne2), we have
HomEe(r⊗n,M ′) = HomEe(e1r

⊗ne1, RE11) ∼= HomR(e1r
⊗ne1, R). Set Ln = {x1⊗ x2 ⊗ · · · ⊗ xn ∈

e1r
⊗ne1 | x1 ⊗ x2 ⊗ · · · ⊗ xn 6= 0,where xi = α, β, or γ} ⊆ Mn. Then HomEe(r⊗n,M ′) is a free

R-module of rank Fn = ♯Ln. Indeed, HomEe(r⊗n,M ′) has an R-basis L∗n ⊗ E11 = {m∗ ⊗ E11 |
m ∈ Ln}, where L∗n = {m∗ ∈ HomR(e1r

⊗ne1, R) | m ∈ Ln} is the dual basis of Ln ⊂ e1r⊗ne1.
Note that L1 = {γ} and L2 = {α ⊗ β, γ ⊗ γ}. For n ≥ 3, Ln = (γ ⊗ Ln−1) ∪ (α ⊗ β ⊗ Ln−2),

where γ ⊗ Ln−1 = {γ ⊗m | m ∈ Ln−1} and α⊗ β ⊗Ln−2 = {α⊗ β ⊗m′ | m′ ∈ Ln−2}. Thus, we
have Fn = Fn−1 + Fn−2. We call a monomial in α ⊗ β ⊗ Ln−2 and in γ ⊗ Ln−1 type I and type
II, respectively. Let us consider the lexicographic order on bothMn and Ln such that α > β > γ.
For example, α ⊗ β ⊗ γ > γ ⊗ α ⊗ β > γ ⊗ γ ⊗ γ with respect to the lexicographic order on
L3 = {α⊗ β ⊗ γ, γ ⊗ α⊗ β, γ ⊗ γ ⊗ γ}. If m > m′ inMn, then α⊗m > α⊗m′, β ⊗m > β ⊗m′,
and γ⊗m > γ⊗m′ unless they are zero. We also define the lexicographic order on L∗n⊗E11 such
that m∗ ⊗ E11 > m′∗ ⊗ E11 if and only if m > m′ in Ln. If m ∈ Ln is of type I or II, then we
call m∗ ⊗E11 type I or II, respectively. When m1 and m2 in Ln are of type I and II, respectively,
m∗

1 ⊗ E11 > m∗
2 ⊗ E11.

For n ≥ 1, let us describe δn : HomEe(r⊗n,M ′) → HomEe(r⊗(n+1),M ′) with respect to the
ordered bases L∗n ⊗ E11 and L∗n+1 ⊗ E11. For n = 1, δ1(γ∗ ⊗ E11) = −(α⊗ β)∗ ⊗ E11 and

δ1 =

(
−1
0

)

with respect to L∗1 ⊗ E11 = {γ∗ ⊗ E11} and L∗2 ⊗ E11 = {(α ⊗ β)∗ ⊗ E11, (γ ⊗ γ)∗ ⊗ E11}. For
n = 2, we have

δ2((α ⊗ β)∗ ⊗ E11)(α ⊗ β ⊗ γ) = −E11γ = 0

δ2((α ⊗ β)∗ ⊗ E11)(γ ⊗ α⊗ β) = γE11 = 0

δ2((α⊗ β)∗ ⊗ E11)(γ ⊗ γ ⊗ γ) = 0

δ2((γ ⊗ γ)∗ ⊗ E11)(α ⊗ β ⊗ γ) = −E11

δ2((γ ⊗ γ)∗ ⊗ E11)(γ ⊗ α⊗ β) = E11

δ2((γ ⊗ γ)∗ ⊗ E11)(γ ⊗ γ ⊗ γ) = γE11 − E11γ = 0.

Hence we can write

δ2 =




0 −1
0 1
0 0




with respect to L∗2 ⊗ E11 = {(α ⊗ β)∗ ⊗ E11, (γ ⊗ γ)∗ ⊗ E11} and L∗3 ⊗ E11 = {(α ⊗ β ⊗ γ)∗ ⊗
E11, (γ ⊗ α⊗ β)

∗ ⊗ E11, (γ ⊗ γ ⊗ γ)
∗ ⊗ E11}. We easily see that H2(S11(R),M

′) = 0.
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For n ≥ 3, we put

δn =

(
An Bn
Cn Dn

)

with respect to L∗n ⊗ E11 = { type I } ∪ { type II } and L∗n+1 ⊗ E11 = { type I } ∪ { type II },
where An, Bn, Cn, Dn are matrices of size Fn−1 × Fn−2, Fn−1 × Fn−1, Fn × Fn−2, and Fn × Fn−1,
respectively. For m ∈ Ln−2, m

′,m′′ ∈ Ln−1 and l ∈ Ln, we have

δn((α⊗ β ⊗m)∗ ⊗ E11)(α⊗ β ⊗m
′) = δn−2(m∗ ⊗ E11)(m

′)

δn((α ⊗ β ⊗m)∗ ⊗ E11)(γ ⊗ l) = 0

δn((γ ⊗m′)∗ ⊗ E11)(α ⊗ β ⊗m
′′) =

{
−E11 (m′ = m′′)
0 (m′ 6= m′′)

δn((γ ⊗m′)∗ ⊗ E11)(γ ⊗ l) = −δn−1(m′∗ ⊗ E11)(l).

Thus, we obtain An = δn−2, Bn = −IFn−1
, Cn = 0, and Dn = −δn−1. Hence

δn =

(
δn−2 −IFn−1

0 −δn−1

)
.

Multiplying δn by invertible matrices, we have
(

IFn−1
0

−δn−1 IFn

)
δn
(

0 IFn−2

−IFn−1
δn−2

)
=

(
IFn−1

0
0 0

)
.

Thereby, Ker δn and Im δn are R-free modules of rank Fn−2 and Fn−1, respectively. We also
see that the induced surjection HomEe(r⊗n,M ′)/Im δn−1 → HomEe(r⊗n,M ′)/Ker δn is an R-
homomorphism of free R-modules of the same rank Fn−1. Hence, the surjection is an isomorphism
and Ker δn = Im δn−1. Therefore, Hn(S11(R),M

′) = 0 for n ≥ 3. This completes the proof. �

Lemma 5.8. Let M21 = RE21 be as above. Then

Hn(S11(R),M21) ∼=

{
R (n = 1)
0 (n 6= 1).

Proof. Note that



a b c
0 e d
0 0 a



E21 = eE21, E21




a b c
0 e d
0 0 a



 = aE21.

It is easy to see that M21 = e2M21e1 and that ME
21 = 0. For f ∈ HomEe(r,M21), f(α) = f(αe2) =

f(α)e2 = 0 and f(γ) = f(e1γ) = e1f(γ) = 0. Thus, we have an isomorphism HomEe(r,M21)
∼=
→

M21 = RE21 by f 7→ f(β). First, let us consider δ0 : ME
21 = 0 → HomEe(r,M21) ∼= RE21. Since

δ0 = 0, H0(S11(R),M21) = 0.
Next, let us consider δ1 : HomEe(r,M21) ∼= RE21 → HomEe(r⊗E r,M21). Let (α⊗β)∗, . . . , (γ⊗

γ)∗ ∈ HomR(r ⊗E r, R) be the dual basis of the basis α⊗ β, . . . , γ ⊗ γ of r ⊗E r over R. By using
M21 = e2M21e1, we see that HomEe(r ⊗E r,M21) = R((β ⊗ γ)∗ ⊗ E21). In a similar way, we can
write HomEe(r,M21) = R(β∗ ⊗ E21). Since

δ1(β∗ ⊗ E21)(β ⊗ γ) = E21γ = 0,

δ1 = 0 and H1(S11(R),M21) = RE21
∼= R.

We claim that HomEe(r⊗n,M21) is a free R-module. Set F ′
n = rankRHomEe(r⊗n,M21) under

this claim. Note that F ′
1 = 1 and F ′

2 = 1. Since HomEe(E,M21) =ME
21 = 0, set F ′

0 = 0. ByM21 =
e2M21e1 and r⊗n = (e1r

⊗ne1)⊕ (e1r
⊗ne2)⊕ (e2r

⊗ne1)⊕ (e2r
⊗ne2), we have HomEe(r⊗n,M21) =

HomEe(e2r
⊗ne1, RE21) ∼= HomR(e2r

⊗ne1, R). Set L
′
n = {x1⊗ x2⊗ · · · ⊗ xn ∈ e2r

⊗ne1 | x1 ⊗ x2 ⊗
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· · · ⊗ xn 6= 0,where xi = α, β, or γ} ⊆ Mn. Then HomEe(r⊗n,M21) is a free R-module of rank
F ′
n = ♯L′n. Indeed, HomEe(r⊗n,M21) has an R-basis L′∗n ⊗ E21 = {m∗ ⊗ E21 | m ∈ L′n}, where
L′∗n = {m∗ ∈ HomR(e2r

⊗ne1, R) | m ∈ L′n} is the dual basis of L′n ⊂ e2r
⊗ne1.

Note that L′1 = {β}, L′2 = {β⊗γ}, and L′3 = {β⊗α⊗β, β⊗γ⊗γ}. For n ≥ 3, L′n = (L′n−1⊗γ)∪
(L′n−2⊗α⊗β), where L

′
n−1⊗γ = {m⊗γ | m ∈ L′n−1} and L

′
n−2⊗α⊗β = {m′⊗α⊗β | m′ ∈ L′n−2}.

Thus, we have F ′
n = F ′

n−1 + F ′
n−2. We call a monomial in Ln−2 ⊗ α ⊗ β and in Ln−1 ⊗ γ type I

and type II, respectively. Set α > β > γ. For x1 ⊗ x2 ⊗ · · · ⊗ xn, y1 ⊗ y2 ⊗ · · · ⊗ yn ∈ L′n orMn,
we say that x1 ⊗ x2 ⊗ · · · ⊗ xn > y1 ⊗ y2 ⊗ · · · ⊗ yn if there exists k such that xn = yn, xn−1 =
yn−1, . . . , xk+1 = yk+1, and xk > yk. For example, β ⊗ γ ⊗ α⊗ β > β ⊗α⊗ β ⊗ γ > β ⊗ γ ⊗ γ ⊗ γ
on L′4 = {β ⊗ γ ⊗ α⊗ β, β ⊗ α⊗ β ⊗ γ, β ⊗ γ ⊗ γ ⊗ γ}. If m > m′ inMn, then m⊗ α > m′ ⊗ α,
m⊗ β > m′ ⊗ β, and m⊗ γ > m′ ⊗ γ unless they are zero. We define an order on L′∗n ⊗E21 such
that m∗ ⊗ E21 > m′∗ ⊗ E21 if and only if m > m′ in L′n. If m ∈ L′n is of type I or II, then we
call m∗ ⊗E21 type I or II, respectively. When m1 and m2 in L′n are of type I and II, respectively,
m∗

1 ⊗ E21 > m∗
2 ⊗ E21.

For n ≥ 1, let us describe δn : HomEe(r⊗n,M21) → HomEe(r⊗(n+1),M21) with respect to the
ordered bases L′∗n⊗E21 and L′

∗
n+1⊗E21. For n = 1, δ1 = (0) with respect to L′∗1⊗E21 = {β∗⊗E21}

and L′∗2 ⊗ E21 = {(β ⊗ γ)∗ ⊗ E21}. For n = 2, we have

δ2((β ⊗ γ)∗ ⊗ E21)(β ⊗ α⊗ β) = E21

δ2((β ⊗ γ)∗ ⊗ E21)(β ⊗ γ ⊗ γ) = −E21γ = 0.

We can write

δ2 =

(
1
0

)

with respect to L′∗2⊗E21 = {(β⊗γ)∗⊗E21} and L′
∗
3⊗E21 = {(β⊗α⊗β)∗⊗E21, (β⊗γ⊗γ)∗⊗E21}.

Hence H2(S11(R),M21) = 0.
For n ≥ 3, we put

δn =

(
An Bn
Cn Dn

)

with respect to L′∗n ⊗ E21 = { type I } ∪ { type II } and L′∗n+1 ⊗ E21 = { type I } ∪ { type II },
where An, Bn, Cn, Dn are matrices of size F ′

n−1 × F
′
n−2, F

′
n−1 × F

′
n−1, F

′
n × F

′
n−2, and F

′
n × F

′
n−1,

respectively. For m ∈ L′n−2, m
′,m′′ ∈ L′n−1 and l ∈ L′n, we have

δn((m⊗ α⊗ β)∗ ⊗ E21)(m
′ ⊗ α⊗ β) = δn−2(m∗ ⊗ E21)(m

′)

δn((m⊗ α⊗ β)∗ ⊗ E21)(l ⊗ γ) = 0

δn((m′ ⊗ γ)∗ ⊗ E21)(m
′′ ⊗ α⊗ β) =

{
(−1)nE21 (m′ = m′′)

0 (m′ 6= m′′)

δn((m′ ⊗ γ)∗ ⊗ E21)(l ⊗ γ) = δn−1(m′∗ ⊗ E21)(l).

Thus, we obtain An = δn−2, Bn = (−1)nIF ′
n−1

, Cn = 0, and Dn = δn−1. Hence

δn =

(
δn−2 (−1)nIF ′

n−1

0 δn−1

)

for n ≥ 3. Multiplying δn by invertible matrices, we have
(

IF ′
n−1

0

(−1)n+1δn−1 IF ′
n

)
δn
(

0 (−1)n+1IF ′
n−2

(−1)nIF ′
n−1

δn−2

)
=

(
IF ′

n−1
0

0 0

)
.
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Thereby, Ker δn and Im δn are R-free modules of rank F ′
n−2 and F ′

n−1, respectively. We also

see that the induced surjection HomEe(r⊗n,M21)/Im δn−1 → HomEe(r⊗n,M21)/Ker δn is an R-
homomorphism of free R-modules of the same rank F ′

n−1. Hence, the surjection is an isomorphism

and Ker δn = Im δn−1. Hence Hn(S11(R),M21) = 0 for n ≥ 3. This completes the proof. �

In the same way as Lemma 5.8, we can prove the following lemma.

Lemma 5.9. Let M32 = RE32 be as above. Then

Hn(S11(R),M32) ∼=

{
R (n = 1)
0 (n 6= 1).

By Lemmas 5.8 and 5.9, we have the following corollary.

Corollary 5.10. Let M ′′ = M3(R)/B3(R) = RE21 ⊕RE31 ⊕RE32 be as above. Then

Hn(S11(R),M
′′) ∼=

{
R (n = 1)
0 (n 6= 1).

Proof. Let r = Rα⊕Rβ⊕Rγ be as above. Since e1M
′′e1 = RE31, e1M

′′e2 = RE32, and e2M
′′e1 =

RE21, we have M ′′E = e1M
′′e1 = RE31. On the other hand, there exists an isomorphism

HomEe(r,M ′′)
∼=
→ RE32 ⊕RE21 ⊕RE31

f 7→ (f(α), f(β), f(γ)).

Let us calculate δ0 :M ′′E = RE31 → HomEe(r,M ′′) ∼= RE32 ⊕RE21 ⊕RE31. Since

δ0(E31)(α) = αE31 − E31α = −E32

δ0(E31)(β) = βE31 − E31β = E21

δ0(E31)(γ) = γE31 − E31γ = E11 − E33 ≡ 0,

Ker δ0 = 0. Hence H0(S11(R),M
′′) = 0.

Similarly, we have an isomorphism

HomEe(r ⊗ r,M ′′)
∼=
→ RE31 ⊕RE21 ⊕RE32 ⊕RE31

f 7→ (f(α⊗ β), f(β ⊗ γ), f(γ ⊗ α), f(γ ⊗ γ)).

By calculating δ1 : HomEe(r,M ′′) = R(α∗⊗E32)⊕R(β∗⊗E21)⊕R(γ∗⊗E31)→ HomEe(r⊗r,M ′′),
we have

δ1(α∗ ⊗ E32)(α⊗ β) = E32β = E33 ≡ 0

δ1(α∗ ⊗ E32)(β ⊗ γ) = 0

δ1(α∗ ⊗ E32)(γ ⊗ α) = γE32 = E12 ≡ 0

δ1(α∗ ⊗ E32)(γ ⊗ γ) = 0

δ1(β∗ ⊗ E21)(α⊗ β) = αE21 = E11 ≡ 0

δ1(β∗ ⊗ E21)(β ⊗ γ) = E21γ = E23 ≡ 0

δ1(β∗ ⊗ E21)(γ ⊗ α) = 0

δ1(β∗ ⊗ E21)(γ ⊗ γ) = 0

δ1(γ∗ ⊗ E31)(α⊗ β) = −E31

δ1(γ∗ ⊗ E31)(β ⊗ γ) = βE31 = E21

δ1(γ∗ ⊗ E31)(γ ⊗ α) = E31α = E32

δ1(γ∗ ⊗ E31)(γ ⊗ γ) = γE31 + E31γ = E11 + E33 ≡ 0.
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Since Ker δ1 = R(α∗⊗E32)⊕R(β∗⊗E21) and Im δ0 = R(−α∗⊗E32+β
∗⊗E21), H

1(S11(R),M
′′) ∼=

R.
The short exact sequence 0→M21 ⊕M32 →M ′′ →M31 → 0 induces a long exact sequence

· · · → Hn(S11(R),M21 ⊕M32)→ Hn(S11(R),M
′′)→ Hn(S11(R),M31)→ · · · .

For n ≥ 2, we see that Hn(S11(R),M21⊕M32) ∼= Hn(S11(R),M21)⊕Hn(S11(R),M32) = 0 and that
Hn(S11(R),M31) ∼= Hn(S11(R),M

′) = 0 by Lemmas 5.7, 5.8, and 5.9. Hence Hn(S11(R),M
′′) = 0

for n ≥ 2. This completes the proof. �

By the discussions above, we have

Theorem 5.11.

Hn(S11(R),M3(R)/S11(R)) ∼=

{
R (n = 0, 1)
0 (n ≥ 2).

Proof. The short exact sequence 0→M ′ →M →M ′′ → 0 induces a long exact sequence:

0 → H0(S11(R),M
′)→ H0(S11(R),M)→ H0(S11(R),M

′′)
→ H1(S11(R),M

′)→ H1(S11(R),M)→ H1(S11(R),M
′′)

→ H2(S11(R),M
′)→ H2(S11(R),M)→ H2(S11(R),M

′′)→ · · · .

Using Lemma 5.7 and Corollary 5.10, we have

0 → R→ H0(S11(R),M)→ 0
→ 0→ H1(S11(R),M)→ R
→ 0→ H2(S11(R),M)→ 0→ · · · .

Thereby, H0(S11(R),M) ∼= H1(S11(R),M) ∼= R. By using Lemma 5.7 and Corollary 5.10 again,
Hn(S11(R),M

′) ∼= Hn(S11(R),M
′′) = 0 for n ≥ 2. Hence Hn(S11(R),M) = 0 for n ≥ 2. �

5.11. The case A = S13(k). Let us consider the quiver

Q =

α

��⑧⑧
⑧⑧
⑧

•

•⑧⑧⑧⑧⑧

•β

__❄❄❄❄❄
e1

e2

e3

.

Let Λ be the incidence algebra associated to the ordered quiver Q over a commutative ring R. Then

we can regard Λ ∼= RQ = Re1⊕Re2⊕Re3⊕Rα⊕Rβ as S13(R) =








∗ ∗ ∗
0 ∗ 0
0 0 ∗







 by e1 7→ E11,

e2 7→ E22, e3 7→ E33, α 7→ E12, and β 7→ E13. By Theorem 4.6, Hn(S13(R),M3(R)/S13(R)) = 0
for n ≥ 0.

6. Appendix: Results on Hi(A,Mn(R)/A)

In this appendix, we show the tables on Hochschild cohomologyH∗(A,M2(R)/A) forR-subalgebras
A of Mn(R) over a commutative ring R in the case n = 2, 3. The tA column denotes the equivalence
classes of tA. The N(A) column denotes the normalizer N(A) = {b ∈ Mn(R) | [b, a] = ba − ab ∈
A for any a ∈ A} of A. We also define Si(R), N3(R), J3(R), etc. for a commutative ring R in the
same way as the case that R is a field.
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Table 1. Hochschild cohomology H∗(A,M2(R)/A) for R-subalgebras A of M2(R)

A d = rankA H∗ = H∗(A,M2(R)/A) tA N(A) dimTMold2,d/Z,A

M2(R) 4 Hi = 0 for i ≥ 0 M2(R) M2(R) 0

B2(R) =

{(
∗ ∗

0 ∗

)}
3 Hi = 0 for i ≥ 0 B2(R) B2(R) 1

D2(R) =

{(
∗ 0
0 ∗

)}
2 Hi = 0 for i ≥ 0 D2(R) D2(R) 2

N2(R) =

{(
a b
0 a

)}
2 Hi ∼=

{
R ⊕ Ann(2) (i : even)
R ⊕ (R/2R) (i : odd)

N2(R)

{ (
∗ ∗

a ∗

)
2a = 0

}
2

C2(R) =

{(
a 0
0 a

)}
1 Hi ∼=

{
R3 (i = 0)
0 (i ≥ 1)

C2(R) M2(R) 0
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Table 2. Hochschild cohomology H∗(A,M3(R)/A) for R-subalgebras A of M3(R)

A d = rankA H∗ = H∗(A,M3(R)/A)
tA N(A) dimTMold3,d/Z,A

M3(R) 9 Hi = 0 for i ≥ 0 M3(R) M3(R) 0

P2,1(R) =








∗ ∗ ∗
∗ ∗ ∗
0 0 ∗







 7 Hi = 0 for i ≥ 0 P1,2(R) P2,1(R) 2

P1,2(R) =








∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗







 7 Hi = 0 for i ≥ 0 P2,1(R) P1,2(R) 2

B3(R) =







∗ ∗ ∗
0 ∗ ∗
0 0 ∗






 6 Hi = 0 for i ≥ 0 B3(R) B3(R) 3

(M2 ×D1)(R) =








∗ ∗ 0
∗ ∗ 0
0 0 ∗







 5 Hi = 0 for i ≥ 0 (M2 ×D1)(R) (M2 ×D1)(R) 4

S10(R) =









a b c
0 a d
0 0 e







 5 Hi ∼=

{
R⊕Ann(2) (i : even)
R ⊕ (R/2R) (i : odd)

S12(R)








∗ ∗ ∗
a ∗ ∗
0 0 ∗


 2a = 0




 4

S11(R) =








a b c
0 e d
0 0 a







 5 Hi ∼=

{
R (i = 0, 1)
0 (i ≥ 2)

S11(R) B3(R) 4

S12(R) =








a b c
0 e d
0 0 e







 5 Hi ∼=

{
R⊕Ann(2) (i : even)
R ⊕ (R/2R) (i : odd)

S10(R)








∗ ∗ ∗
0 ∗ ∗
0 a ∗



 2a = 0



 4

S13(R) =







∗ ∗ ∗
0 ∗ 0
0 0 ∗






 5 Hi = 0 for i ≥ 0 S14(R) S13(R) 4

S14(R) =








∗ 0 ∗
0 ∗ ∗
0 0 ∗







 5 Hi = 0 for i ≥ 0 S13(R) S14(R) 4

(B2 ×D1)(R) =








∗ ∗ 0
0 ∗ 0
0 0 ∗







 4 Hi = 0 for i ≥ 0 (B2 ×D1)(R) (B2 × D1)(R) 5

N3(R) =








a b c
0 a d
0 0 a







 4 Hi ∼=

{
R2 (i = 0)
Ri+1 (i ≥ 1)

N3(R) B3(R) 5

S6(R) =








a c d
0 a 0
0 0 b







 4 Hi ∼= R for i ≥ 0 S9(R) S13(R) 5

S7(R) =








a 0 c
0 a d
0 0 b






 4 Hi ∼=

{
R3 (i = 0)
0 (i ≥ 1)

S8(R) P2,1(R) 2

S8(R) =









a c d
0 b 0
0 0 b







 4 Hi ∼=

{
R3 (i = 0)
0 (i ≥ 1)

S7(R) P1,2(R) 2

S9(R) =









a 0 c
0 b d
0 0 b







 4 Hi ∼= R for i ≥ 0 S6(R) S14(R) 5

D3(R) =








∗ 0 0
0 ∗ 0
0 0 ∗







 3 Hi = 0 for i ≥ 0 D3(R) D3(R) 6

(N2 ×D1)(R) =








a c 0
0 a 0
0 0 b







 3 Hi ∼=

{
R⊕Ann(2) (i : even)
R ⊕ (R/2R) (i : odd)

(N2 ×D1)(R)








∗ ∗ 0
a ∗ 0
0 0 ∗



 2a = 0



 6

J3(R) =








a b c
0 a b
0 0 a






 3 Hi ∼=

{
R2 ⊕Ann(3) (i : even)
R2 ⊕ (R/3R) (i : odd)

J3(R)








a ∗ ∗
c a+ b ∗
0 −c a+ 2b


 a, b, c ∈ R

3c = 0



 6

S2(R) =









a 0 0
0 a c
0 0 b







 3 Hi ∼=

{
R2 (i = 0)
0 (i ≥ 1)

S3(R)








∗ 0 0
∗ ∗ ∗
0 0 ∗







 ∼ S13(R) 4

S3(R) =









a 0 c
0 b 0
0 0 b







 3 Hi ∼=

{
R2 (i = 0)
0 (i ≥ 1)

S2(R) S14(R) 4

S4(R) =








a b c
0 a 0
0 0 a







 3 Hi ∼=

{
R4 (i = 0)

R3·2i (i ≥ 1)
S5(R) P1,2(R) 8

S5(R) =








a 0 b
0 a c
0 0 a







 3 Hi ∼=

{
R4 (i = 0)

R3·2i (i ≥ 1)
S4(R) P2,1(R) 8

(C2 ×D1)(R) =








a 0 0
0 a 0
0 0 b






 2 Hi ∼=

{
R3 (i = 0)
0 (i ≥ 1)

(C2 ×D1)(R) (M2 ×D1)(R) 4

S1(R) =









a b 0
0 a 0
0 0 a







 2 Hi ∼=

{
R4 (i = 0)
R (i ≥ 1)

S1(R)








∗ ∗ ∗
0 ∗ 0
0 ∗ ∗







 ∼ B3(R) 4

C3(R) =









a 0 0
0 a 0
0 0 a







 1 Hi ∼=

{
R8 (i = 0)
0 (i ≥ 1)

C3(R) M3(R) 0
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