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A new nonparametric approach, based on a decision tree algorithm, is
proposed to calculate the overlap between two probability distributions. The
devised framework is described analytically and numerically. The conver-
gence of the estimated overlap to the true value is proved along with some
experimental results.

1. Introduction. In various scientific fields, it is important to assess the similarity be-
tween data sets or distributions. The overlap coefficient (OVL) is an interpretable measure of
such similarity, defined as the common area under two probability density functions (PDFs).
While a variety of parametric techniques to estimate OVL have been developed, existing
nonparametric ones are wholly based on kernel density estimation (KDE) [3, 4, 6]. Although
KDE is a useful and widely practiced method to estimate probability density functions, the
optimal setting of its parameters (kernel function and bandwidth) is a challenging task.

Here we propose a new nonparametric method to calculate OVL based on a decision tree
algorithm. We start with notation and preliminaries in Section 2. The devised framework is
described analytically in Section 3 and numerically in Section 4. Experimental results are
shown in Section 5, and the conclusion follows in Section 6.

2. Preliminaries. Let f; and f5 be two continuous PDFs on the real line R. The OVL
between f; and f is defined as

p(f1, f2) = /_Oo min { f1(x), f2(z)} dz.

DEFINITION 2.1. Suppose g; and gy are real continuous functions on R. Then we call
x € R a crossover point between g1 and gs if there exist points a, b in any neighborhood of z
such that [g1(a) — g2(a)][g1(b) — g2(b)] < 0. We also call x € R a coincidence point between
g1 and go if g1 () = g2(x). The set of crossover points and that of coincidence points are
denoted by C(g1,¢92) and C’(g1, g2), respectively. Note that C(g1, g2) € C' (g1, 92)-

Under the assumption that C’(f1, f2) is finite and the cardinality of C(f1, f2) is known
in advance, we present a decision tree-based method to estimate p(fi1, f2). The rest of this
section provides further notations and terminologies.

DEFINITION 2.2. Let (2, F,IP) be a probability space and (X,Y):Q — R x {1,2}
a random variable with distribution P, defined as P(A) = P((X,Y)~(A)) for all Borel
sets A C R x {1,2}. From the viewpoint of binary classification, the measurable functions
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X:Q—=RandY :Q — {1,2} can be regarded as explanatory and response variables, re-
spectively. Given a Borel set B C R, we may simply write P(X € B) for P(B x {1,2}), 7;
for P(R x {j}), Fj(x) for P((—o0,z| x {j})/7;, P(X € B,Y =j) for P(B x {j}), and
P(Y=j|XeB)for P(X € B,Y =j)/P(X € B), provided 7; # 0 and P(X € B) #0
as necessary.

We shall consider the random variable (X,Y") with

Fj<w>=/_x Ldt (reR; j=1,2),

so that each FJ; is the cumulative distribution function (CDF) corresponding to the continuous
PDF f;. We also define Fj(—o0) =0 and Fjj(c0) =1 (j =1,2).

DEFINITION 2.3.  Let A! be the standard 1-simplex, which consists of all points (a,b) €
R? such that a +b =1, a > 0, and b > 0. An impurity function on A! is a function ¢ with the
following properties:

1. ¢ attains its maximum only at (1/2,1/2),
2. ¢ attains its minimum only at (1,0) and (0, 1),
3. ¢ is a symmetric function, i.e., t(a,b) = ¢(b, a).

DEFINITION 2.4. For a positive integer m, let R” be the set of all v = (v1,...,v;,) €
R™ with vy < -+ < vy,. By the (m + 1)-ary split on R at a point v € R”?, we mean the
collection Sy = {Sy 1,...,Spmt1} With Sy1 ={z €R |z <1}, Symi1 ={z€R |z >
Um}, and Sy = {r € R | vp—1 < <wi} for k=2,...,m. Note that each S, j, is a Borel

setinR, S, NSy =0if k#1,and Sy U---USymi1 =R.

Using an impurity function + on A!, we define the impurity of a Borel set B C R for the
binary classification by

1(B) = L(P(Y=1|X€eB),P(Y=2|XeB)) if P(XeB)>0,
0 if P(XeB)=0,

and the goodness of S, (v € RZ) by

m+1

(1) AI(Sy) = I(R) = Y P(X € Sy 1) I(Su,p),
k=1

according to the conventional decision tree algorithm [1]. If there exists v’ € R”” such that
AI(Sy) = sup AI(S,), where the supremum is over all v € R, then we call S, a best
(m + 1)-ary split on R. -

3. Analytical framework. In this section, we present the theoretical foundation of
our method to calculate C(m f1,mof2) and p(7myf1,m2f2) under the assumptions that
C'(m1f1,m2f2) is finite, the cardinality n of C(my f1,m2f2) is known in advance, w1 > 0,
and Ty > 0. We can obtain C(fl,fg) = C(?Tlfl,ﬂ'gfg) and p(fl,fg) = 2p(7T1f1,7T2f2) if
w1 = m = 1/2, which may be realized with sampling techniques, e.g., drawing the same
number of samples from both the distributions corresponding to f; and fo. Here we use the
setting of the previous section and, in addition, adopt the misclassification-based impurity
function [1], i.e.,

() t(a,b) =1 —max{a,b} ((a,b) € A1).
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Suppose C(m1 f1,7m2f2) = (), or n = 0. Then either 71 f; < mafo or m f1 > 7o fo holds.
(Recall that C’ (7 f1, 72 f2) is finite.) In the former case, we have p(my f1, T2 f2) = 71, and in
the latter, p(7y f1, 72 f2) = m2. Of note, m; = w3 = 1/2 cannot occur here.

In the following, we assume C(m f1,m2f2) # 0, so that n is a positive integer. Put
C(mifi,maf2) ={c1,...,cn} withey < -+ < ¢y, e=(c1,...,¢4), 0 = —00,and ¢, 11 = 0.
The (n + 1)-ary split on R at c is defined by Se = {Sc.1,...,Sen+1} (see Definition 2.4).
Figure 1 is a schematic example to illustrate C'(7y f1, w2 f2) and p(71 f1, 72 f2).

T1f1

Ox;erlap
p (11 f1, T2 f2)

€1 C2 C3
L )
|

Crossover points
in C(m1 f1, 2 2)

FIGURE 1. A schematic example of C (w1 f1,72 fo) and p(71 f1,m2 f2).

PROPOSITION 3.1.  For v = (v1,...,vy) € R? with m a positive integer, we have

m—+1
AI(Sy) = max {; [F;(v) — Fj(vr-1)]} — max {r;}
k=1

m+1

— kZZI mjz_mx{/vk1 7 f(x) d:z:} —mjax{wj},

where vg = —o0 and V41 = 00.

PROOF. From (1) and (2), we have

(3) AI(Sy) =Y P(X € Syp)max{P(Y =j| X € Sys)} —max{P(Y =j| X €R)},
& J J

where the sum is over all k£ with P(X € 5, 1) > 0. Since P(Y = j | X € Sy ) = P(Syp i X
{7})/P(X € Sy ) and P(Sy . x {j}) = m;[Fj(vg) — Fj(vr_1)], we obtain

P(X € Sy ) max {P(Y =j| X €Sy )} = max {m; [F(vr) — Fj(vp-1)]} -
As for the last term of (3), we have P(Y = j | X € R) = 7; by definition. O

The following corollary is immediate from Proposition 3.1.



COROLLARY 3.2.  For v = (v1,...,Vn) € RZ with m a positive integer, let
Gv () =7, [, (x) (x€Spp; k=1,...,m+1)
where ji. € argmax; {7;[Fj(vy) — Fj(vg_1)]}. Let g = max {m f1,mafa}. Then

AI(Sy) = / go(@) de —max {r;}, AI(Se) = / o) d — max {m;}
— 0o J —00 J
Furthermore, g, < g and AI(S,) < AI(Se).
LEMMA 3.3.  Suppose m is a positive integer, v = (v1,...,0m) € RZ, vog = —o0, and

Umt1 = 00. If vp—1 < ¢ < vi for some k € {1,...,m + 1} and p € {1,...,n}, then
AI(Sy,) < AI(S.).

PROOF. Since C'(my f1,m2f2) is finite, there exists a neighborhood U of ¢, such that U C
(’Uk_l,’l)k) and U N C/(ﬂ'lfl,ﬂ'gfg) = {Cp}. Then, [Wlfl(a) — ngg(a)][mfl(b) — 7T2f2(b)] <
0 for all a,b € U with a < ¢, < b. Without loss of generality, we assume that 7 fi(a) <

mafa(a) and 7o fo(b) < w1 fi(b). If g = m1f1 on Sy, then g, < g on the open interval
(a,cp), so that

AI(S) - A1(8.) 2 [ lgle) — gula)] do >
The proof for the case g, = w2 f2 on Sy 1, is :imilar. O
PROPOSITION 3.4.  The supremum of AI(Sy) overv € RZ is uniquely attained atv = c.
In other words, S, is the unique best (n + 1)-ary split on R.

PROOF. If v # ¢, then ¢, ¢ {v1,...,v,} for some p. Hence vi_1 < ¢, < vy for some k as
in the assumption of Lemma 3.3, so that AI(S,) < AI(S.). O

PROPOSITION 3.5.  Suppose m is a positive integer with m < n. Then for every v € RZ,
AI(Sy) < AI(Se).

PROOF. Since m < n, ¢, ¢ {v1,...,vy} for some p. The proof is similar as above. [

Now we see that C'(7; f1, 72 f2) can be obtained by finding v € R” that yields the maxi-
mum of AI(S,). Given C(m f1, 72 f2), we have B

n+l ... n+1
@) plmifi,mafa) =) min{; f;(z)} da = ijin{P(X € Sek,Y =7)}
k=17 k-1 k=1

4. Numerical framework. Here we show how to estimate C'(71 f1, 72 f2) and p(m1 f1, 72 f2),
given independent and identically distributed (i.i.d.) random variables (X1, Y1), ..., (Xn, Yn)
with the distribution P on R x {1,2}. Let us keep the setting of the previous section.

DEFINITION 4.1.  For a Borel set B C R and j € {1,2}, put
Nx(B)=#{i| Xie B}, Ny(j)=#{i|Yi=j}
Nxv(B,j)=#{i| X; € B,Y;=j}, 7jn=Ny(j)/N
Py(X € B)=Nx(B)/N, Py(X€B,Y =j)=Nxy(B,j)/N,
Py(Y =j| X € B)=Nxy(B,j)/Nx(B) if Py(X€B)>0,
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where # denotes the cardinality of a set. Define

£(B) L(ﬁN(Yzl|X€B),16N(Y:2|XGB)> it Py(X e B)>0,
N = ~
0 if Py(Xe€B)=0
and
(5)  AIN(Sy) =InN(R) = > Pn(X € Syp)In(Svr) (vERZ;m=1,2,...)
k=1

as the estimates of /(B) and AI(S,), respectively.

DEFINITION 4.2. Let Xy.1 <--- < X .y be the order statistics of Xy,..., Xy,
Zi = (Xn:i + Xniip1)/2 (i=1,...,N—1),
R ={(Ziy,... Zi,) | 1Si1 < <im <N -1} (m=1,2,...).

To avoid trivialities, we set Z; = X if N = 1. Note that I@% CRZ (m=1,2,...). Define
{AIN(S,)} and

Uy € arg max

ve@ﬁ
m+1
©6) Pon =3 m_m{PN(X € Spi, Y :j)} (weR™: m=1,2,...).
; <
k=1

We propose p,, v as an estimate of p(my f1, 72 f2).

DEFINITION 4.3. Let £ be a random variable and {;} a sequence of random variables
on (€2, F,P) taking values in a separable metric space (A,d). We say that {&;} converges

almost surely to £ if
P ({w €N

We also say that {&;} converges completely to & if

Jim &(w) =€)} ) = 1.
Y PweQ]d(&w).Ew)) > e}) <o
i=1

for any € > 0.

REMARK 4.4. (See [2] for reference.) In Definition 4.3, {;} converges almost surely to
¢ if and only if

(0.]
Jim P (Ul {we|d(&w),¢w) > e}) =0
i—
for any € > 0. If {&;} converges completely to £, then {&;} converges almost surely to &.
THEOREM 4.5. As N ftends to oo, U converges completely to c.
THEOREM 4.6. As N tends to oo, pg, N converges completely to p(my f1, 2 f2).

The proofs of Theorems 4.5 and 4.6 are given in Appendix A.



REMARK 4.7. Foreach N=1,2,.., let (X\™,v;™) . (x(™,v{™) be i.i.d. ran-

dom variables with the distribution P on R x {1,2} to calculate %%V) € I@K, and ;’)gx\?) y 0
N

the same way as vy and pg,, y in Definition 4.2, respectively. By Theorems 4.5 and 4.6, we
have

ip({weg‘Ha%“—cux}):ip({wemuaN—c”x})@o

N=1 N=1

and

S ()

Z]P) weN pf)(N)N—p(ﬂ'lfl,ﬂ'gfg) >e€

N=1 N

[e.9]
=Y P({weQ||Poyn —p(mifi,mafo)] >€}) <oo
N=1
for any € > 0, where || - || denotes the Euclidean norm. Hence 6%\7) and ﬁ(ﬁ]x\?) o as well as
N

vy and pg,, N, converge completely to ¢ and p(71 f1, 72 f2), respectively.

5. Numerical experiments. Here we perform numerical simulations to illustrate the re-
sults in Section 4. A set of random samples {(X;,Y;) | 1 <i < N} was simulated under the
following two conditions: first,

m =2/3, m=1/3, fi=v_ia, fe=v11,
and second,
m =mo = 0.5, fi= 0.51/_1,1 + 0.51/171, fo= 0.81/0’1 + 0.27‘0’0.5,

where v, , represents the Gaussian PDF defined as

™ nole) = e (-EEE) ey

o2no 202

and 7, , is the triangular PDF defined as
dr—a)/(b—a)?® if a<x<(a+Db)/2,

®)  Tap(x)=4q 4(b—2)/(b—a)® if (a+b)/2<x<D, (x €R; a<b).
0 otherwise.

Then, we can analytically calculate

9) C(mifi,maf2) ={ar} ={(log2)/2} ~{0.347},

(10) p(mifi,mafo) =2—-2®(c1+ 1)+ ®(c; —1)] /3~0.145

for the first case, and

(11) C(m1f1,maf2) = {c1,c2} = cosh™' (0.8y/e) ~ {—0.779,0.779},

(12) p(mf1,m2f2) =0.8—0.5P(c; + 1) + 0.5P(co + 1) — 0.8P(c2) ~ 0.362

for the second case, where ® denotes the cumulative distribution function of the standard
normal distribution given by

IR t?
(13) O(x)=— exp <—§> dt (x € R).
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See Appendix B for the proof of (9)—(12). With the knowledge that n = 1 and n = 2 for the
first and second cases, respectively, we numerically calculated ¥y and pg, n for each case
with N = 10000. The subsets {(X;,Y;) |1 <i <100} and {(X;,Y;) |1 <i <1000} were
also applied to calculate ¥y and pg, n. This trial (from the generation of 10000 random
samples) was repeated independently for 30 times, and the convergence of v and pg, N
was visually assessed.

0.3 i — mfX)
1
| — mfix)
i fix, i (x)
0.2 1 ! B
i M2, nf2, n(X)
i
0.14
0.0 T
-4 -2 0 2 4
X
0.18 A —— Aiy(S,)
0.12 4
0.06 A
0.00 T T T T T
-4 —2 0 2 4
Vi

FIGURE 2. In the upper row, 71 f1 and 3 fo for the first case are plotted. Normalized histograms corresponding
to 71 f1 and mo fo (denoted by %17 NJf1,N and %2’ N J2, N, respectively) were generated using a representative
set of N = 10000 random samples, {(X;,Y;) | 1 <14 <10000}. The vertical dotted line indicates the estimated

crossover point al,N = 0.355, where its theoretical counterpart is c1 ~ 0.347. In the lower row, ATN(Svl ) for

allvy € @}V are plotted. The overlap p(my f1,m2 f2) = 0.145 was estimated as pg . n ~ 0.140.

To begin with, we exhibit a representative sample distribution (/N = 10000) for each case
with the calculated values of vy and pg, n (Figures 2 and 3). As a result of the 30 trials
for each case, vy and pg,, y appear to converge to ¢ and p(my f1, 72 f2), respectively, as N
increases (Figures 4 and 5).

Similarly, we next performed 30 independent trials for each case to simulate three inde-
pendent sets of random samples, of the forms {(X;,Y;) |1 <i <100}, {(X],Y/)|1<:<
1000}, and {(X/,Y/) |1 <i<10000}. Each set was used to calculate 6%\7) and ;’)g(VN)) N
(see Remark 4.7). Then, in both the cases, 1’35\],\[) and F/ﬁVN))  dppear to converge to ¢ and

N

p(m1 f1, 72 f2), respectively, as N increases (Figures 6 and 7).

6. Conclusion. In this paper, we propose a new nonparametric framework to calculate
OVL based on a decision tree algorithm. The estimates of crossover points and overlaps
for continuous PDFs were shown to converge to the expected values (both analytically and



— mfi(x)
0.45 1 — mh()
i1, w1, u(x)
0.30 A 2, nF2, n(X)
0.15 A
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0.09
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r0.05
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r0.03
r 0.02
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FIGURE 3. In the upper row, 71 f1 and 79 ]f2 Jfor the second case are plotted. Normalized histograms correspond-

ing to 71 f1 and oy fo (denoted by %1’ NJf1,N and %2’ N2, N, respectively) were generated using a represen-
tative set of N = 10000 random samples, {(X;,Y;) |1 <i < 10000}. The dotted lines indicate the estimated
crossover points vy y ~ —0.757 and Uy ~ 0.763, where their theoretical counterparts are c1 ~ —0.779 and

co >~ 0.779, respectively. In the lower row, ATN(S’(vLW))for all (vy,v9) € HAQ%V are visualized in a heatmap.
The overlap p(mq f1,m2f2) = 0.362 was estimated as pg,, N ~ 0.361.

numerically). In the future, we hope to: i) evaluate the distributions of estimated values,
ii) improve the convergence rate and calculation cost, iii) compare the performance of our
method with KDE-based algorithms, and iv) provide a user-friendly software.

APPENDIX A: ADDITIONAL PROOFS

Theorems 4.5 and 4.6 will be proved in this section. We shall take over the notations
in Section 4 and, in addition, write h(v) and hy(v) in place of AI(S,) and AIyn(Sy),
respectively.



ESTIMATION OF DISTRIBUTION OVERLAP 9

B 0.16
0.8

0.4

Vi n

0.0 A

100 1000 10000 1 1000 10000

® 0.09 -

0.00

FIGURE 4. In the first case, 30 independent trials were performed to simulate 10000 random samples:
(X1,Y1),.++ (X10000: Y10000)- For each trial, {(X;,Y;) | 1< < 100}, {(X;,¥;) | 1 < i < 1000}, and
{(X5,Y5) | 1 <i < 10000} were used to calculate vy _p;, |517]! —cq, ﬁﬁNA,N’ and |pg . N — p(m1f1,72f2)l-
Each dotted line indicates the expected value: c1 ~ 0.347 for vy , 0 for [v1 n — c1], p(m1 f1, 72 f2) ~ 0.145

Jor pg 5 N and O for |pg o N — p(1f1,m2f2)|- In this figure, P55 N and p(m1 f1, 72 f2) are abbreviated as
PN and p, respectively.

DEFINITION A.l1. For j € {1,2} and x € R, define

NXy((—OO,JI],j)/Ny(j) if Ny(j)>0,

B v(z) =
NN =1 it Ny(j)=0.

We also define F\j,N(—oo) =0and F\j,N(oo) =1.
PROPOSITION A.2.  Forv = (v1,...,vn) € RZ with m a positive integer,

~ ~

hy(v) = max {@N [Fj,N(vk) - F}7N(vk—1)} } —max {7 N},
k=1

where vy = —00, Upmt1 = OO, 1?’]-7]\/(1)0) =0, and 1?’]-7N(vm+1) =1.

PROOF. From (5), we have
/};N(’U) = ZﬁN(X € S’v,k) mjax {ﬁN(Y =7 ‘ X e Sv,k:)}
k

(14)

_mjax{ﬁN(Y:j\XeR)},

where the sum is over all £ with Nx (S, %) > 0. Since ﬁN(X € Spk) = Nx(Svi)/N,
Pn(Y =) X €Sor) = Nxy(Sok:7)/Nx (Sv k), and Nxy (Svk,J) = N7jn[Fj v (k) —
F; n(vg—1)], we obtain

ﬁN(X € Svk) m?x {ﬁN(Y =jl|Xe Sv,k)} = m]ax {%\ij [ﬁ}N(vk) — 1?’]-7]\/(1);6_1)} } .

As for the last term of (14), we have Py (Y =j | X € R) = 7j,n by definition. O
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FIGURE 5. In the second case, 30 independent trials were performed to simulate 10000 random sam-
ples: (X1,Y1),...,(X10000, Y10000)- For each trial, {(X;,Y;) |1 <4 <100}, {(X;,Y;) |1 <i <1000},
and {(X;,Y;) | 1 <1 < 10000} were used to calculate vy, Vo N, VN — cll, Py N» and PG N —
p(m1 f1,m2f2)|- Each dotted line indicates the expected value: c1 ~ —0.779 for vy, cg = 0.779 for vy N, 0
for [[on —cl|, p(m1 f1,m2f2) = 0.362 for pg . . and O for |pg . — p(m1.f1, 72 f2). In this figure, pg N
and p(m1 f1, 79 fo) are abbreviated as pp and p, respectively.

COROLLARY A.3.  For v € RZ with m a positive integer, hy (v) >0 and h(v) > 0.

PROOF. Let 7, y = max {71 n, 72 n}. By Proposition A.2, we have

m—+1

TLN('U) = Z m]ax {%j,N [F]N(vk) — Fj,N(vk—l)] } - m]aX{%JN}

k=1
m—+1
2 Z Tp,N [Fp,N(Uk) - Fp,N(Uk—l)} —7pn =0.
k=1
We can similarly prove that A(v) > 0 from Proposition 3.1. O

For simplicity, we may write ¢;(v,v") and $; n(v,v’) in place of 7;[F;j(v) — F;(v")] and
7 n[Fjn (v) — Fj v (v)], respectively, so that

m—+1

(15) h(v) = > max{; (v, ve1)} - max {m;},
k=1
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FIGURE 6. In the first case, 30 independent trials were performed to simulate three independent sets of random
samples, of the forms {(X;,Y;) | 1 <14 <100}, {(X/,Y/) |1 <i <1000}, and {(X,Y]") | 1 <i < 10000}.
Each set was used to calculate vy N, U1 N — c1|, Pg 5, N> and |05 N — p(T1f1, 72 f2)|. Note that the super-
script (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected values: c1 ~ 0.347 for vy , 0
Jor [v1 N —c1l. p(m1f1,72f2) 2 0.145 for p . N and O for |pg . N — p(m1.f1, 72 f2)|. In this figure, pg . N
and p(m1 f1,m9 fa) are abbreviated as ppy and p, respectively.

m—+1

(16) hy(v) =" max {G; N (vk, vk—-1)} — max {7 v }
k=1

by Propositions 3.1 and A.2.

DEFINITION A.4. Form =1,...,n, define

Vi = argmax {h(v)},
veERT

17m7N = arg max {/HN(’U)} ,

veﬁﬁ

Cm:{(cil,...,cim)|1§i1<'--<im§n}.

REMARK A.5. We will see that V,,, # () (m < n) by Corollary A.7 and Proposition 3.4.
Since R} is a nonempty finite set (see Definition 4.2), V,,, n # 0.

PROPOSITION A.6. Let m be a positive integer with m < n. Then for any v =

(v1,...,0m) € RZ, there exists w = (ci,,...,¢;, ) with 1 <iy <. < iy, <n such that
h(w) > h(v).
PROOF. Let v = (v1,...,v) € R” be given. Set vg = —00, Vi1 = 00, and 7(v) =

#{ke{l,...,m}|vg ¢ C(m f1,m2f2)}. The statement obviously holds when 7(v) = 0.
Letr(v) > 0. Then we can choose v, ¢ C(my f1,m2f2) (1 <p <m)andc, € C(m f1,72f2)
(1 < g < n) satisfying c;—1 < vp < ¢qg < Vpy1 Or Vp_1 < ¢ < vy < Cg41. We will only
show the case c;—1 < v, < ¢y < vpy1, as the other is similar. Without loss of gener-
ality, we may assume that 71 f; > mofa on (vp,¢,), so that ¢;(cq,vp) > @a(cq,vp) and



12

0
0.0 ' ° 0.36 '
’ H
—0.6 1 ' 0.32 4 []
= = .
< $ Q H
—1.21 0.28 1 e
o °
°
~1.81 L 0.24
° °
100 1000 10000 100 1000 10000
N N
° )
1.81 ° 0.124 °
° °
$ T °
° 0.08 1
i_ 1.2 : | :
(S & .
— 0.044 :
0.6 e l
e !
° 0.00
100 1000 10000 100 1000 10000
N N
1.2 z
T 08
| ' 4
=
(>
= 0.4 ' 2
00 T T l_
100 1000 10000
N

FIGURE 7. In the second case, 30 independent trials were performed to simulate three independent sets of random
samples, of the forms {(X;,Y;) | 1 <i <100}, {(X},Y/) |1 <i <1000}, and {(X},Y/") |1 <i < 10000}.
Each set was used to calculate v , Vg N, |[On — cll. pgy N» and |pg, N — p(71f1,72f2)|. Note that
the superscript (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected values: c¢1 ~ —0.779
for Uy N, cg = 0.779 for Uy N, 0 for |[vy — |, p(m1 f1,72f2) = 0.362 for pg,. . and O for |pg N —
p(m1f1,m2f2)|- In this figure, pg . N and p(m1 f1, 72 f2) are abbreviated as pyy and p, respectively.

©1(vp, cq—1) > P2(Vp, cq—1), since C'(my f1,maf2) is finite. In the following, we consider
the cases (I) 1 (vp, Vp—1) > @2(vp, vp—1) and (L) @1 (vp, vp—1) < Y2(Vp, Vp—1).
(I) Suppose @1 (v, Vp—1) > p2(vp, vp—1). Then

©1(Cq,vp—1) > palcq, vp-1),
Pj (Up—l-l, Cq P4 (Up—i-lv Up)
)

pj(cg; vp-1 ©; (Vp, vp—1

vp)  (=12),

—SDj(Cq,
Cq> p) (j:172)7

) =
)= + 5 (
hence

e iy g 1)+ {5 o)

= Qpl(cq’vp—l) + m?X{SDj(UpH,Up) - ‘Pj(cqavp)}

= 1(vp,vp—1) + 1(cq,vp) + max {0j(Vpr1,vp) — @jlcq,vp)}

> Q1 (Up, Up—l) + SDI(an Up) + mjax {‘Pj (Up—l-la Up)} - SDI(an Up)

= 01(Vp, Vp—1) + m]ax {‘Pj (Vpt1,vp)}
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= m;.ix {ej(vp,vp-1)} + mjax {0j(vpr1,vp)},

and setting v’ = (v1, ..., Vp—1,Cq, Ups1, -, Um) € RY gives r(v') < r(v) and h(v') > h(v).

(II) Suppose p1(vp, vp—1) < @2(vp,vp—1). Since w1 f1 > mafz on (vp,cq), We can see
that v,_1 < cg—1 < vp and @1(cg—1,Vp—1) < @2(cq—1,vp—1). First consider the case (II-a)
©1(Vp+1,0p) = p2(Vpt1,vp). Then 1 (vpi1,¢q—1) > p2(Vpt1,¢4-1), hence

ax{pj(cq—1,vp— 1)}—|—mjax{<p](vp+1,cq 1)}

902(6(1—17 Up—1) + @1(Vpt1,C4-1)

(cg—1,vp—1) + ©1(Vpt1,vp) + ©1(vp, cq-1)
2(Cq—1,Vp—1) + ¢1(Vp+1,vp) + 2(Vp, Cg-1)
= ¢2(Vp, Vp—1) + ©1(Vp+1,Vp)

= max{p;(vp, vp-1)} +max{p; (vp1,vp)}

2

V

12
12

and setting v’ = (vy,...,Up—1,Cq—1,Vp+1,--.,Um) € RZ gives r(v') < r(v) and h(v') >
h(v). Next consider the case (II-b) 1 (vp11,vp) < pa(vp+1,vp). If there exists = € (c4—1,vp)
such that 1 (vp41,x) > Y2(vpt1,2), then o1 (z,vp—1) < w2(z,vp—1), hence the case (II-a)
applies to v" = (vy,...,Up—1,2,Vpt1,..., V) € RZ, where r(v”) = r(v) and

h(v") = h(v)

= max {; (2, vp-1)} + max {; (vp1,2)} — max {p; (vp, vp-1)} — max {;(vp41,p)}

= ©2(7,vp—1) + @1(Vp41,7) — P2(Vp, Vp—1) — Y2(Vpt1,p)
> pa(z,vp-1) + P2 (vpr1,7) — P2(vp, vp—1) — P2(Vpy1,vp)
= 92(Vp+1,Vp—1) — 902(%-1-17”17—1) =0.

If 1 (vpt1,2) < @2(vpt1,2) for any z € (cq—1,vp), then ¢y (vp41, cq—1) < P2(Vpt1,¢4-1),
and setting v’ = (v1,...,Up—1,C4—1,Vp+1,- - -, V) € RZ gives r(v') <r(v) and

h(v') = h(v)

= m;tx{soj(cq_l, vp—1)} + mgx{wj(vpﬂ, cg-1)} — m;tx{wj (Up, vp-1)} — mgx{soj(vpﬂ, vp)}

= p2(cq—1,Vp-1) + P2(Vp+1,cg-1) — P2(Vp, Vp—1) — P2(Vpt1,Vp)
= 902(”:0+17Up—1) - 902(Up+lavp—1) =0.

Taken together, for any v € RZ with r(v) > 0, there exists v’ € R such that r(v') < r(v)
and h(v') > h(v). The statement follows by induction. O

COROLLARY A.7. If m is a positive integer with m < n, then there exists ¢’ € C,, such
that h(c') = sup {h(v) | v € RZ}. Furthermore, h(c') < h(c).

PROOF. Since there are only finitely many choices for w = (¢;,,...,¢;,, ) in Proposi-
tion A.6, we can choose the maximum of such w. Let A = {¢;,,...,¢;, } and assume that
w ¢ Cp,. Then # A < m, and there exists A’ = {¢;,,...,¢;, } suchthat AC A"and 1< j; <

- <Jm <n.Putc =(c,...,cj,). Then ¢ € Cp, and we can see that h(c¢') > h(w) b
deﬁnition, Furthermore, h(c’) < h(e) by Proposition 3.5. O
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REMARK A.8. Note that v € V,;,, does not necessarily imply v € C,,,. Here we give an
example for the case where (n,m) = (2,1) and V; ¢ C;. Assume that 7 = 0.9, mg = 0.1,
fi=wvp1,and fo =7_g1,0.1 (see (7) and (8) for the definitions of v and 7). Then ; f;(0) <
7T2f2(0), n=2,and Cy = {01,62} where —0.1 < ¢; < 0 < ¢9 < 0.1. Since (,01(00,0.1) =
©1(—0.1,—00) = m ®(—0.1) ~ 0.4142 > 79 (see (13) for the definition of @), p; (v, —c0) >
2 (v, —00) and 1 (00, v) > 2 (00, v) hold for all v € R. Hence h(v) = m for all v € R, and
therefore V1 =R ¢ {c1,c2} =Cy.

For a real random variable ¢ on (€2, F,[P), we denote its expectation and variance by

E[é]z/QédP, Var[ﬂ:/Q@—E[ﬂf P,

respectively. We also denote by 1 4 the indicator function of a set A, i.e.,

1 if teA
L(t) = ’
al®) {0 if t¢ Al

THEOREM A.9. (Kolmogorov’s strong law of large numbers. See [2] for the proof.)
Let {&;} be a sequence of i.i.d. real random variables on (2, F,P) with E[|£1]] < oo and
Var [§1] < oo. Let p =E[&] and sy =& + -+ + & (k=1,2,... ). Then sy /k converges com-
pletely to p.

THEOREM A.10. (The Glivenko-Cantelli theorem. See [7, Theorem A, Section 2.1.4]

for the proof.) For each j € {1,2}, sup,cp \ﬁ’]N(ac) — Fj(x)| converges completely to 0 as
N — oc.

PROPOSITION A.11. For each j € {1,2}, 7; y converges completely to m; as N — oo.

PROOF. Wecansee 11;,(Y1),...,1{;}(Yy) asi.i.d. random variables with IE [1;1(Y1)] =
T < 00 and Var [l{j}(yl)] = 7Tj(1 — 7Tj) < 00. Since Ny(j) = ]l{j}(Yl) + -+ ﬂ{j}(YN s
7N = Ny (j)/N converges completely to 7; by Theorem A.9. O

LEMMA A.12. Ifzx,y,z,w E€R, then

il

(@) |max{z,y} —max{z,w}| <|v—z|+ |y —w
(b) |min{z,y} —min{z,w}| < |z — 2|+ [y —wl|

PROOF. For (a), suppose max {z,y} > max {z,w} and x > y without loss of generality.
If z > w, then |max{z,y} — max{z,w}| = |z — 2| < |x — z| + |y — w|. If 2z < w, then
|max {z,y} —max{z,w} = |z —w| < |z —z[ < |z — 2[ + [y — w|.

For (b), suppose min {z,y} > min{z,w} and = > y without loss of generality. If z > w,
then |min {z,y} —min{z,w}| =y —w| < |z — 2|+ |y — w|. If z < w, then | min {z,y} —
min {z,w}| =y — 2| < |z — 2| < |o — 2| + |y — wl. O

THEOREM A.13.  For any positive integer m, sup,cgm ‘/HN(’U) — h(v)| converges com-
pletely 10 0 as N — oc. -

PROOF. For all v € R”*, we have

() = h(v)
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m+1
<>
k=1
m+1 2

Z!%N (Vks Vk—1) — 5 (VK Vk—1) ‘+Z‘7T] — ;]
k:lj:

by (15), (16), and Lemma A.12. Since

e (93 o 1)) = e o )| + e () = o )

85,8 (Vk, vE—1) — @5 (U, Vk—1)|
= ‘(ﬁij — ;) [E—,N(vk) - ﬁ}'vN(vk—l)}

+mj [ﬁj,N(Uk) - Fj(vk)] — [ﬁj,N(Uk—l) - Fj(vk—l)} ‘
< 7N — 7] ‘ﬁj,N(Uk) - ﬁj,N(Uk—l)‘

7| Brav (o) = Fy (0| + 7 | By (v1) = Fy (o)

)

<|mjn — mj| + 2m; sup ‘FJ,N(@ — Fj(x)
rER

we obtain

vER’S" z€R

Hence

{weQ

U{weﬂ

J=1

UU{weQ

i=1

vseuR[:n ‘/HN(’U) - h(v)‘ > e}

is contained in

~ €
7.5 = 7] A(m + 2) }

~ €
sup | F; :E—F':E‘>7 ,

and therefore

i P <{w 0 ap ‘EN(Q;) - h(v)( > e})
2 o]
+Z d>p <{w 0

sup @,N(iﬂ)_Fj(:E)‘ - m}>

by Theorem A.10 and Proposition A.11.

15

sup /}\lN(’U)—h(’U)‘ (m+2) Z|7T]N mil +2(m+1) ZWJSUP FJN( ) — Fj(z)|.
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DEFINITION A.14. Let (A,d) be a metric space. We define a discrepancy of A; C A
from Ay C A by

D(A,Ay) = sup { inf d(al,ag)}.

ar€A, (a2€4:

If d is a Euclidean metric, we may write Dp in place of D.

LEMMA A.15. Let (A,d) be a metric space. Let g and g; (i=1,2,...) be real functions
on A such that max {g(t) |t € A} and max{g;(t) |t € A} exist. Put T = argmax;c 4 {g(¢) }
and T; = argmax;c 4 {gi(t)}. Suppose g is continuous on A, supc 4 |gi(t) — g(t)] — 0 as
1 — 00, and there exists a compact set K C A such that

sup{g(t) |t e A\ K} <max{g(t) |t € A}.
Then D(T;,T) — 0 as i — oc.

PROOF. Putw; =max{g(t) |t € A}, wop=sup{g(t) |t € A\K},and w = (w1 —wyp)/3.
(Note that wg < wo + w < wg + 2w = wy — w < wy.) For any € > 0, there exists § > 0 such
that § < eand g(t) > w; —w forall t € Ts = Uer {x € K | d(z,t) < 0}, since g is uniformly
continuous on K (see [5, Theorem 4.19]). (Note that 7' C K.) Put wj, = max{g(t) | t €
K \ Ts} (this exists because K \ Ty is compact) and w’ > 0 such that v’ < w and w}, <
wp + 2w’ < wq. (Note that {t € A| g(t) > w; —2w'} C T since wy — 2w’ > w; — 2w > wy
and wy — 2w’ > wy).) Since sup;c 4 |gi(t) — g(t)| — 0 as ¢ — oo, there is an integer M such
that ¢ > M implies sup;c 4 |¢i(t) — g(t)| < w'. Hence, for any ¢ > M and for all ¢; € T},
we have g(t1) > w1 — 2w’ (because g(t1) +w' > g;(t1) > gi(t2) > wy — w' where to € T),
and thus ¢, € Tj. Therefore, sup,, c7, {infs,er d(t1,t2)} < < eforany i > M. Since € was
arbitrary, the claim follows. Ol

LEMMA A.16.  There exists a compact set K C RZ such that
sup {h(v) |[v e R\ K} <max {h(v) |[veRL}.

PROOF. By Propositions 3.4 and 3.5 and Corollary A.7, there exist
M, =max {h(v) | ve R} (m=1...,n)

and M = max {M;,...,M,_1} < M,. Take ¢ > 0 such that ¢ < (M,, — M)/3. We can take
a,3 € R such that Fj(a) < e and 1 — F}(f3) < € (j = 1,2), since F; are non-decreasing
functions with lim,_, o Fj(z) =0 and lim,_, F;(z) =1. Let K = [, ]" NRZ and v =
(v1,...,0,) € RZ\ K. Then v; < « or v, > 3 holds. a

Suppose v1 < a.. Put v' = (vg,...,v,) and recall that ¢; (v, v") = 7;[F;(v) — Fj(v")]. Us-
ing Lemma A.12, we obtain

|h(v) — h(v')| =

i i (0n, ) + e (o, 0)} = e i om,—o0))
J J J

< [ s (on, o0 | + e {00}~ e (g ~o0))|

< e+ |p1(v2,v1) — @1(va, —00)| + |2 (va, v1) — p2(va, —00)|
= e+ |1 (v1, —00)| + |2 (v1, —00)|
< 3e.

Hence |h(v)| < |h(v) — h(v')| + |h(v")| < 3¢ + M. We can similarly prove that |h(v)| <
3e + M for the case vy, > (. Therefore, sup {h(v) | v e RE\ K} <3e+ M < (M, — M) +
M = M,,. This completes the proof. B O
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THEOREM A.17. The discrepancy DE(lA)n,N, V,,) converges completely to 0 as N — oc.

PROOF. In Lemma A.15, let (A,d) be the subspace RZ of the Euclidean metric space

R"™, g = h (which is continuous on R” ), and gl = h It follows from Remark A.5
and Lemma A.16 that for any € > 0, we can take w’ > 0 as in the proof of Lemma A.15, and

observe that DE(l/}mN,Vn) < € if Supyepn |/}\1N(’U) — h(v)| < w'. (Note that max {ﬁN('v) |
veE I@?{,} =max {hy(v) |ve RZ }, hence 17,171\/ C argmax,cgs {hn(v)}.) This means that

{wEQ

{weQ‘DE (17,17]\[,1)”) >e}c {weQ

sup
veR”

/HN('U) — h('v)‘ < w'} C {w e ‘ Dg <9H,N,Vn> < 6},
hence

sup
vERL

ﬁN(U)—h(U)‘ >“’7}

and therefore

hE

S(EIEACRAES)

N=1
o0 . w/
< ZIP’ we Q| sup hN('v)—h(v)‘>—
veERZ 2
N=1 R
<
by Theorem A.13. O

COROLLARY A.18. The estimate ¥y € V,, y converges completely to ¢ as N — oc.

PROOF. Since V,, = {c} by Proposition 3.4, we have DEOA/%N,V”) =sup,p v
c|| > ||vy — cl|. Hence the claim follows from Theorem A.17. O
=l |

THEOREM A.19.  The estimate pg,, N converges completely to p(my f1,ma f2) as N — oo.

PROOF. From (4) and (6), we have

n+1
(17) p(mifi,maf2) = me{wj ck) — Fj(ce-1)]},
n+1
(18) Do N =D min {ﬁj,N [Fj,N(@k) - Fj,N(ﬁk—l)] } :
k=1
where vy = (U1,...,0,) € 17n,N, Vo9 = —00, and v, 11 = co. By Lemma A.12,

Do, — p(m1f1 T2 f2)|
n+1 2

<33 [Faw [Biv (@) = By @] — 75 [Fi(er) - Fylen-]].

k=1j5=1
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where
7o [ @) = By @) = 5 [Fyen) = By
< [Ra [Fin (@) = B @1)] = 75 [F5(50) = Fy (@)
+ |7 [F (Vi) — Fj(Or—1)] — ; [Fj (cx) — Fj(ce—1)]]
< [RinFin @) = i F5 @) + [Rin Fion (Ber) = miF()
+ 75 | F (k) — Fj(cx)| + 75 [ F (0p—1) — Fj(cp—1)]
< [RinFin @) = 73 By (@) + i B () = 7,5 3|
+ ‘ﬁj,Nﬁ},N(’?}k—l) - Wjﬁ}vN(’T)k—l)‘ + ‘Wjﬁj,N(’T)k—l) - ij}(@k—l)‘
+ 75 | Fj(0k) = Fj(cr)| + 7 | F (Vk—1) — Fj(cr—1))]
<2 — 5]+ 75 | By (B) = 5 (@0)| + 7 | B (@) = B (B-1)|
+ 75 | Fj(0r) = Fj(cx)| + 7 | F (Vk—1) — Fj(cr—1)]-
Hence
|Z)\'/U\N7N - p(ﬂ-lflaﬂ-2f2)|
2
2(n+ 1)) |7 — )]
j=1
n+1 2 n+1 2
+ZZ7rj‘Fj,N(@k) (T, ‘4—227@‘ N(Vk-1) — Fj(Vk-1)
k=1 j=1 k=1 j=1
(19) n+l 2 n+l 2
+ 3w E @) — Fy(en)| + 0> i [Fy (@) — Fy(ex-1)|
k=1j=1 k=1j=1

2
=2(n+1)Y_[Fjn — )l
i=1

n 2 n 2
+23°3 i [Biv @) = B+ 230 S m 1@ - F(enl
k=1 j—1 k=1 j—1
For any € > 0, there exists 0 > 0 such that [Fj(x) — Fj(ct)| < €/(6n) for all x € R with
|t —cpl<d(=1,2; k=1,...,n).If
€ ~ €

P BE|< S eal<s
12(7'L + 1) :Sclel%iRg j,N(x) ](IIT) n |Uk Ck|
forj=1,2and k=1,...,n, then

[Tjn —mj| <

2¢ € €
49 492 =
20 1) + 2n(my +7r2)6n + 2n(m +7r2)6n €

by (19). Hence {w € Q| |pg,,n — p(m1f1,m2f2)| > €} is contained in

O{WGQ

i=1

|b\ﬁN7N - P(W1f17W2f2)| <2(n+1)

~ €
7.8 = 51 24(n+1) }
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2
UU{WGQ
j=1

. )
U{wGQ‘||vN—cH>§},

~ €
Fin(z) - Fj ‘ > <
sup i (7) = Fj(z) 12”}

and therefore

Z P ({weQ||poyn — p(rif1,m2f2)| > €})

N=1
2 oo c
<33 p({ven|Riv-ni> gy ))
j=1N=1
2 oo ¢
P Q| sup| Fyxv(@) - ()| > oo
+ 3> F ({wee|mwlfw - F@|> 15 )
j=1N=1
- 5
+Z]P’<{weQ |yaN—c|y>§}>
N=1
<0
by Theorem A.10, Proposition A.11, and Corollary A.18. O

Note that Corollary A.18 and Theorem A.19 are exactly Theorems 4.5 and 4.6, respec-
tively.
As stated above, we have estimated c as vy € V,, . In fact, it is possible to estimate ¢ in

another way. For v = (vy,...,v,,) € R”Z with m a positive integer, let us define
m—+1
(20) po = min{p;(vp,vk-1)},
k=1 7
where vg = —oco and vy, +1 = co. Note that we have
m—+1
(21) Pon =) min {3, (v, vi-1)}
k=1

by (6). Here recall that
©;j(Vk, vg—1) = ;[ Fj (vg) — Fj(vk-1)],

Bin (v, vp1) = 7N [Fjn (0r) — Ej v (vp_1)]-

LEMMA A.20. Forv = (v1,...,0) € RZ with m a positive integer, we have
(22) h(v) + py =1 — max {m;},
J
(23) Iy () + po.n =1 — max {7 N}

PROOF. For k=1,...,m+ 1, choose

Ik € argmax {oj(vr, vr—1)},
J

Ik € argmin {; (vg, ve—1)}
j
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such that {j, [} = {1,2}, where vy = —oc and v,,,+1 = c0. By (15) and (20), we have
m—+1
h(o) 0 = 3 e {0k 000} + i {0, 003 | e )
k=1
m+1
= >[5 (vks k1) + @1, (0, vk —1)] — max {m;}
k=1 !
m—+1
[901(% Vk—1) + p2(Vk, Vk—1)] — m?X{Wj}

2 m+l

ZZZ Fj(vg—1)] — max {m;}
J

7j=1 k=1

2
=Y 7 [Fj(00) — Fj(—00)] — max {m;}

=1 !
=1—max {7},
J
which implies (22).
We can prove (23) in a similar way. For k= 1,...,m + 1, redefine

Ji € argmax {@; (v, vg—1)}
J

Ik € argmin {@; (vg, ve—1)}
J
such that {j,lx} = {1,2}. By (16) and (21), we have
N m-+1
B (0) 4 oy = 3 | {35 0, )} 0 (B (o) | = o ()

—Z D, N (Vk; V&—1) + Puye,N (VE Vi— 1)]—mjax{?j,N}

m—+1
(D18 (v, v—1) + P2, N (Vk, vp—1)] — max {7 N }
=1 J
2 m+1
=> Y Fin [FJ,N(W) - F]yN(vk—l)} — max {7 N}
=1 k=1 J
2

=2_TiN [FLN(OO) —ﬁj,N(—OO)} — max {7 v}

which implies (23).

It is immediate from Lemma A.20 that

(24) argmin {py} = Vi,
vERY
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(25) argmin {py, N} = Vim,n
vERY

form=1,...,n.
THEOREM A.21. Forv € RZ, py attains its unique minimum p(my f1,m2 f2) at v =c.
PROOF. This follows from Proposition 3.4, (4), and (24). O

THEOREM A.22. Let ¥y € argmin {pv.n}. Then ¥’y converges completely to c as

ve@g
N — oo. Furthermore, py, N converges completely to p(my f1,m2f2) as N — oo.

PROOF. Since vy € 1711 ~ by (25), the claim follows from Corollary A.18 and Theo-
rem A.19. O
APPENDIX B: ADDITIONAL PROOFS

In this section, (9)-(12) will be proved. We shall take over the notations in Section 5.

PROPOSITION B.1. In the first case,

C(mf1,mafa) = {e1} = {(log2)/2},
p(Trlfl,Trgfg) = [2 — 20 (Cl +1)+o (Cl — 1)] /3.
PROOF. The equation 7 f1(z) = ma fo(z) gives x = (log 2)/2, which is a crossover point.
Hence C(ﬂ'lfl,ﬂ'gfg) = {Cl} = {(log 2)/2}. Next,
p(m1f1,maf2) = malh(er) +mi[l — Fi(er)]
2
|

:%(13(01—1)4-3 1— d(er +1)].

PROPOSITION B.2. In the second case,
C(my f1,m2f2) ={c1,c} =cosh™* (0.8\/6) ,
p(ﬂ'lfl,ﬂ'gfg) =0.8— 0.5(1)(61 + 1) + 0.5(13(02 + 1) - 0.8(1)(62).
PROOF. If < 0 or x > 0.5, then fa(z) = 0.81,1(2), and 7 fi(z) = mafa(x) gives

cosh(z) = 0.84/e. There is a unique ¢ > 0 such that cosh(c) = 0.84/e. Since ¢ > 0.5 and
m f1 < mafo Oon [0,0.5], we have C(ﬂ'lfl,ﬂ'gfg) = {—C, C} = COSh_l(O.S\/E). Next,

p(mifi, m2f2) = maFa(—c) + mi[Fi(c) — Fi(—c)] + m2[l — F(c)]
— 0.8 0.50(—c+ 1) +0.58(c + 1) — 0.8B(c).
O
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