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A new nonparametric approach, based on a decision tree algorithm, is
proposed to calculate the overlap between two probability distributions. The
devised framework is described analytically and numerically. The conver-
gence of the estimated overlap to the true value is proved along with some
experimental results.

1. Introduction. In various scientific fields, it is important to assess the similarity be-
tween data sets or distributions. The overlap coefficient (OVL) is an interpretable measure of
such similarity, defined as the common area under two probability density functions (PDFs).
While a variety of parametric techniques to estimate OVL have been developed, existing
nonparametric ones are wholly based on kernel density estimation (KDE) [3, 4, 6]. Although
KDE is a useful and widely practiced method to estimate probability density functions, the
optimal setting of its parameters (kernel function and bandwidth) is a challenging task.

Here we propose a new nonparametric method to calculate OVL based on a decision tree
algorithm. We start with notation and preliminaries in Section 2. The devised framework is
described analytically in Section 3 and numerically in Section 4. Experimental results are
shown in Section 5, and the conclusion follows in Section 6.

2. Preliminaries. Let f; and f5 be two continuous PDFs on the real line R. The OVL
between fi and f is defined as

p(f1, f2) :/OO min { f1(x), f2(7)} dz.

DEFINITION 2.1. Suppose g1 and g2 are real continuous functions on R. Then we call
x € R a crossover point between g; and g, if there exist points a, b in any neighborhood of z
such that [g1(a) — g2(a)][g1(b) — g2(b)] < 0. We also call x € R a coincidence point between
g1 and g9 if g1(z) = g2(x). The set of crossover points and that of coincidence points are
denoted by C(g1,92) and C’(g1, g2), respectively. Note that C(g1, g2) C C' (g1, 92).

Under the assumption that C’(f1, f2) is finite and the cardinality of C'(f1, f2) is known
in advance, we present a decision tree-based method to estimate p(fi1, f2). The rest of this
section provides further notations and terminologies.

DEFINITION 2.2. Let (2, F,IP) be a probability space and (X,Y): Q — R x {1,2}
a random variable with distribution P, defined as P(A) = P((X,Y)~(A)) for all Borel
sets A C R x {1,2}. From the viewpoint of binary classification, the measurable functions
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X:Q—>RandY :Q — {1,2} can be regarded as explanatory and response variables, re-
spectively. Given a Borel set B C R, we may simply write P(X € B) for P(B x {1,2}), 7;
for P(R x {j}), Fj(x) for P((—o0,z] x {j})/m;, P(X € B,Y = j) for P(B x {j}), and
P(Y=j|XeB)for P(X€B,Y=j)/P(X € B), provided 7; # 0 and P(X € B) #0
as necessary.

We shall consider the random variable (X,Y") with

Fj(fﬂ):/_x filtydt  (zeR; j=1,2),

so that each F; is the cumulative distribution function (CDF) corresponding to the continuous
PDF f;. We also define Fj(—oo) =0 and Fjj(c0) =1 (j =1,2).

DEFINITION 2.3.  Let A! be the standard 1-simplex, which consists of all points (a,b) €
R2 suchthata+b=1,a>0,and b> 0. An impurity function on Al is a function ¢ with the
following properties:

1. ¢ attains its maximum only at (1/2,1/2),
2. ¢ attains its minimum only at (1,0) and (0, 1),
3. ¢ is a symmetric function, i.e., t(a,b) = (b, a).

DEFINITION 2.4. For a positive integer m, let R”" be the set of all v = (vy,...,vy,) €
R™ with vy < -+ < wvy,. By the (m + 1)-ary split on R at a point v € R, we mean the
collection Sy, = {Sy1,..., Somt1} With Sp1 ={z€R |z <1}, Symi1 ={z€R |z >
Um}, and Sy = {r € R|vp_1 < <wi} for k=2,...,m. Note that each S, 4, is a Borel
setinR, Sy NSy =0ifk+#1,and Sy, 1 U---U Sy mi1 =R.

Using an impurity function ¢ on A!, we define the impurity of a Borel set B C R for the
binary classification by

1(B) = L(P(Y=1|XeB),P(Y=2|XeB)) if P(XeB)>0,
0 if P(XeB)=0,

and the goodness of S, (v € RT) by

m+1

(1) AI(Sy) =I(R) = > P(X € Sy )T (Sur),
k=1

according to the conventional decision tree algorithm [1]. If there exists v’ € R”” such that
AI(Sy) = sup AI(S,), where the supremum is over all v € R, then we call S, a best
(m + 1)-ary split on R. -

3. Analytical framework. In this section, we present the theoretical foundation of
our method to calculate C(m f1,mof2) and p(mf1,72f2) under the assumptions that
C'(my f1, 72 f2) is finite, the cardinality n of C'(my f1,m2f2) is known in advance, m; > 0,
and 7o > 0. We can obtain C(f1, f2) = C(m1 f1,m2f2) and p(f1, f2) = 2p(71 f1, 72 f2) if
71 = ma = 1/2, which may be realized with sampling techniques, e.g., drawing the same
number of samples from both the distributions corresponding to f; and f,. Here we use the
setting of the previous section and, in addition, adopt the misclassification-based impurity
function [1], i.e.,

() t(a,b) =1—max{a,b} ((a,b) € A1).
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Suppose C(71 f1,maf2) =0, or n = 0. Then either 7 fi < mofo or w1 f1 > 7o fo holds.
(Recall that C’ (71 f1, 72 f2) is finite.) In the former case, we have p(my f1,m2 f2) = 71, and in
the latter, p(71 f1, 72 f2) = me. Of note, m; = w9 = 1/2 cannot occur here.

In the following, we assume C(mf1,m2f2) # 0, so that n is a positive integer. Put
C(mifi,maf2) ={c1,...,cn} withey <+ <cp,e=(c1,...,¢,), 0 = —00,and ¢, 41 = 0.
The (n + 1)-ary split on R at c is defined by Sc = {Sc.1,...,Sen+1} (see Definition 2.4).
Figure 1 is a schematic example to illustrate C'(my f1, w2 f2) and p(71 f1, 72 f2).

T1f1

O\}erlap

p(1f1, 72 12)

Cq1 Cy C3
\ )
1

Crossover points
in C(my f1, 72 f2)

FIGURE 1. A schematic example of C (w1 f1,72 fo) and p(71 f1,m2 f2).

PROPOSITION 3.1.  For v = (v1,...,v) € R with m a positive integer, we have
m+1
AI(S) = 3 ma (s [F (o) — F(un-)]} — max {5}
k=1

m+1

= ; 1rnjz_3u><:{/vk1 7 fi(x) d:v} —mjax{wj},

where vy = —00 and Uy 11 = Q.

PROOF. From (1) and (2), we have

(3) AI(Sy) = P(X € Syp)max{P(Y =j | X € Syx)} —max{P(Y =j| X €R)},
& J J

where the sum is over all k£ with P(X € .5, 1) > 0. Since P(Y =j | X € Sy ) = P(Sy i X
{]})/P(X S Sv,k) and P(S,,,,k X {]}) = TFj[Fj(Uk) - Fj('l)k,ﬁ], we obtain

P(X € Sy ) max {P(Y = | X € Sy} = max {m; [Fy(wr) — Fy(on-1)]}
As for the last term of (3), we have P(Y = j | X € R) = 7; by definition. O

The following corollary is immediate from Proposition 3.1.



COROLLARY 3.2.  For v = (v1,...,vn) € R with m a positive integer, let
9o () =7, [, () (x€Spp; k=1,...,m+1)
where ji, € argmax; {m;[Fj(vg) — Fj(vg_1)]}. Let g = max {m1 f1,mafo}. Then

oo oo
AI(Sy) = / gv(z) dx —max{m;}, AI(S.)= / g(x) dx — max {7} .
—0o0 J —0o0 J
Furthermore, g, < g and AI(Sy) < AI(Se).
LEMMA 3.3.  Suppose m is a positive integer, v = (v1,...,0m) € RZ, v = —o0, and

Umt1 = 00. If vp—1 < ¢p < vy for some k € {1,...,m + 1} and p € {1,...,n}, then
AI(Sy) < AI(Se).

PROOE. Since C'(y f1,m2 f2) is finite, there exists a neighborhood U of ¢, such that U C
(vk_l,vk) and U N Cl(ﬂ'lfl,ﬂ'gfg) = {Cp}. Then, [7T1f1 (a) — 7T2f2(a)”7r1f1(b) — 7T2f2(b)] <
0 for all a,b € U with a < ¢, < b. Without loss of generality, we assume that 7 fi(a) <

mafo(a) and 7o fo(b) < w1 fi(b). If g» = m1f1 on Sy, then g, < g on the open interval
(a,cp), so that

AI(S.) — AI(Sy) > / " 9(x) — gu(a)] dz > 0.
The proof for the case g, = w2 f2 on Sy 1, is :imilar. O
PROPOSITION 3.4.  The supremum of AI(Sy) over v € RZ is uniquely attained at v = c.
In other words, S, is the unique best (n + 1)-ary split on R.

PROOF. If v # ¢, then ¢, ¢ {v1,...,v,} for some p. Hence vi_1 < ¢, < vy for some k as
in the assumption of Lemma 3.3, so that AI(S,) < AI(S.). O

PROPOSITION 3.5.  Suppose m is a positive integer with m < n. Then for every v € RZ,
AI(Sy) < AI(Se).

PROOF. Since m < n, ¢, ¢ {v1,...,vy} for some p. The proof is similar as above. [

Now we see that C'(7; f1, 72 f2) can be obtained by finding v € R” that yields the maxi-
mum of AI(Sy). Given C(m f1,72f2), we have B

n+1 Ch n+1
@ plmifi,mf) =Y [ min{mf;x)} dv= ijin{P(X € Ser,Y =4)}.
k=1 k-1 k=1

4. Numerical framework. Here we show how to estimate C'(71 f1, 72 f2) and p(71 f1, 72 f2),
given independent and identically distributed (i.i.d.) random variables (X1,Y7), ..., (Xn, Yn)
with the distribution P on R x {1,2}. Let us keep the setting of the previous section.

DEFINITION 4.1.  For a Borel set B C R and j € {1, 2}, put
Nx(B)=#{i| Xie B}, Ny(j)=#{i|Yi=7j}
Nxy(B,j)=4#{i| X; € B,Y;=j}, 7~ =Ny(j)/N
Py(X € B)=Nx(B)/N, Py(X€B,Y =j)=Nxy(B,j)/N,
Py(Y =j| X € B)=Nxy(B,j)/Nx(B) if Py(X€B)>0,
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where # denotes the cardinality of a set. Define

- L<ﬁN(Y:1]XeB),ﬁN(Y:Q\XEB)> if Py(XeB)>0,
In(B) = -
0 if Py(Xe€B)=0
and
5)  AIN(Sy) =IN(R) = > Pn(X € Syi)In(Svr) (vERZ;m=1,2,...)
k=1

as the estimators of I(B) and AI(S,), respectively.

DEFINITION 4.2. Let Xy.1 <--- < Xy.n be the order statistics of X1,..., Xy,
Zi=(Xni+Xnir1)/2  (i=1,...,N—1),
R ={(Zin,. s Zi,) [ 1<i1 < <im<N—-1}  (m=12,..).

19

To avoid trivialities, we set Z; = X if N = 1. Note that @7]3 CRZ (m=1,2,...) and recall
that n = #C(m1 f1, 2 f2). Define vy € arg mMax, g {ATN(SU)} and
m~+1 N
(6) o= min{PN(X € Spp,Y :j)} (weR™: m=1,2,...).
; <
k=1

We propose pg,, v as an estimator of p(7q f1, 72 f2).

DEFINITION 4.3. Let £ be a random variable and {;} a sequence of random variables
on (£, F,P) taking values in a separable metric space (A, d). We say that {&;} converges

almost surely to & if
P({wen

We also say that {&;} converges completely to £ if

lim &(w) =€) }) =1.

1—00

Y P{we]d(&i(w),é(w)) >e}) <oo
i=1
for any € > 0.

REMARK 4.4. (See [2] for reference.) In Definition 4.3, {£;} converges almost surely to
¢ if and only if

Jim P (U {we|d(&(w),f(w)) > €}> =0

1=l

for any € > 0. If {§;} converges completely to &, then {&;} converges almost surely to &.
THEOREM 4.5. As N tends to oo, Uy converges completely to c.
THEOREM 4.6. As N tends to oo, pg, N converges completely to p(my f1,m2 fa).
The proofs of Theorems 4.5 and 4.6 are given in Appendix A. While v and pg, v are

treated as random variables, their measurability is in fact nontrivial and will be discussed in
Appendix B.



REMARK 4.7. Foreach N =1,2,..., let (XM, v\™, .. (x(M,v{") be i.id. ran-

dom variables with the distribution P on R x {1,2} to calculate G%V) € I@’]{, and ,5;]?[,\% y 0
N k)

the same way as vy and pg,, y in Definition 4.2, respectively. By Theorems 4.5 and 4.6, we
have

ip({weﬂ‘Ha%“—cux}):ip({wemyaN—cH>e})<oo

N=1 N=1

and
S (V)
S p({wee| [, —pmpimaf)|>e})
N=1 M
o
= Z P ({we Q] |psyn —p(rLfi,m2f2)| > €}) <oo
N=1
for any € > 0, where | - || denotes the Euclidean norm. Hence 65\],\[) and f)g(VN)) o as well as
N

vy and pg,, N, converge completely to ¢ and p(my f1, 72 f2), respectively.

5. Numerical experiments. Here we perform numerical simulations to illustrate the re-
sults in Section 4. A set of random samples {(X;,Y;) |1 <i < N} was simulated under the
following two conditions: first,

m =2/3, m=1/3, fi=v_ia, fa=v11,
and second,
m =me = 0.5, fi= 0.51/7171 + 0.51/171, fo= 0.81/071 + 0.27‘070.5,

where v, , represents the Gaussian PDF defined as

) Uy () = ———exp <—W> (z €R)

o2mo 202

and 7, is the triangular PDF defined as
4(x—a)/(b—a)?® if a<z<(a+b)/2,

®)  Tapx)=4¢ 4(b—2z)/(b—a)® if (a+b)/2<x<D, (x €R; a<b).
0 otherwise.

Then, we can analytically calculate

©) Clmifrimafs) = {er} = {(log2)/2) = {0.347),

(10) p(mifi,mafe) =2—-2®(c1 4+ 1)+ ®(c; —1)] /3~0.145

for the first case, and

(11) C(m fi,maf2) = {c1,c2} = cosh™! (0.8v/e) ~ {—0.779,0.779},

(12) p(mif1,m2f2) =0.8—=0.5P(c1 + 1) + 0.5P(ca + 1) — 0.8P(c2) ~ 0.362

for the second case, where ® denotes the cumulative distribution function of the standard
normal distribution given by

(13) B(z) = —— _w exp <2> dt  (zeR).
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See Appendix C for the proof of (9)—(12). With the knowledge that » =1 and n = 2 for the
first and second cases, respectively, we numerically calculated ¥y and pg, n for each case
with N = 10000. The subsets {(X;,Y;) |1 <i <100} and {(X;,Y;) |1 <1 <1000} were
also applied to calculate ¥y and pg, n. This trial (from the generation of 10000 random
samples) was repeated independently for 30 times, and the convergence of ¥ and pg, N
was visually assessed.

0.3 1 — mfi(x)
— mafa(x)
fir, nf1, w(X)
0.2 B
M2, nf2, n(X)
0.11
0.0 r
4
0.18 - — Diy(Sy,)
0.12 4
0.06 A
0.00 T T T T T
-4 -2 0 2 4

Vi

FIGURE 2. In the upper row, w1 f1 and o fo for the first case are plotted. Normalized histograms corresponding
to 71 f1 and w9 fo (denoted by %I,Nfl,N and %2,Nf2,N) respectively) were generated using a representative
set of N = 10000 random samples, {(X;,Y;) | 1 <14 <10000}. The vertical dotted line indicates the estimated

crossover point 51,N = 0.355, where its theoretical counterpart is c1 ~ 0.347. In the lower row, AfN(Sv1 ) for

allvy € H,i}v are plotted. The overlap p(my f1,m2 f2) = 0.145 was estimated as pg . N ~ 0.140.

To begin with, we exhibit a representative sample distribution (N = 10000) for each case
with the calculated values of vy and pg,, n (Figures 2 and 3). As a result of the 30 trials
for each case, vy and pg,, v appear to converge to ¢ and p(7 f1, 72 f2), respectively, as N
increases (Figures 4 and 5).

Similarly, we next performed 30 independent trials for each case to simulate three inde-
pendent sets of random samples, of the forms {(X;,Y;) |1 <4 <100}, {(X/,Y/) |1 <i<
1000}, and {(X/,Y/”) |1 <i<10000}. Each set was used to calculate E%V) and ,5(%](\[,3) N

N
(see Remark 4.7). Then, in both the cases, 6%\7) and ;’)g(VN))  appear to converge to ¢ and

p(m1 f1,m2f2), respectively, as N increases (Figures 6 and 7).

6. Conclusion. In this paper, we propose a new nonparametric framework to calculate
OVL based on a decision tree algorithm. The estimators of crossover points and overlaps
for continuous PDFs were shown to converge to the expected values (both analytically and
numerically). However, there remain several issues to be addressed:
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FIGURE 3. In the upper row, w1 f1 and o fo for the second case are plotted. Normalized histograms correspond-
ing to w1 f1 and o fo (denoted by %1, NJf1,n and %2’ N2, N, respectively) were generated using a represen-
tative set of N = 10000 random samples, {(X;,Y;) | 1 < i < 10000}. The dotted lines indicate the estimated
crossover points V1  ~ —0.757 and Uy y ~ 0.763, where their theoretical counterparts are ¢q >~ —0.779 and
co =~ 0.779, respectively. In the lower row, ATN(S(m’vQ))for all (v1,v9) € @?V are visualized in a heatmap.
The overlap p(m1 f1,m2 f2) = 0.362 was estimated as pg,, N ~ 0.361.

1. We have not established a general way to know the number n of crossover points (which
is required to be known in advance), though we may estimate it beforehand by obtain-
ing partial information about the distributions (e.g., there exist precisely two crossover
points between any two normal distributions with different variances) or by using some
numerical tools like histograms.

2. Our method has not been applied to real data or compared numerically with other non-
parametric methods, though the following arguments seem to exemplify the theoretical
advantages of ours over the previous ones (described in detail in [6]): (i) our OVL estima-
tor depends only on the rank statistics of X1, ..., Xy (labeled by Y7, ..., YN, respectively),
as is consistent with the nature of OVL, while the OVL estimators in [6] depend not only
on the rank statistics ([6, pp. 1588-1589]); (ii) our OVL estimator converges completely
to the true value (Theorem 4.6).
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FIGURE 4. In the first case, 30 independent trials were performed to simulate 10000 random samples:
(X1,Y1), .-+, (X10000, Y10000)- For each trial, {(X;,Y;) |1 <14 <100}, {(X;,Y;) |1 <14 <1000}, and
{(X;,Y;) |1 <4 < 10000} were used to calculate 01 p, |51’]\//\ —cl, b\ﬁN/v\N’ and |pg . N — p(m1f1,m2f2)l.
Each dotted line indicates the expected value: c1 ~ 0.347 for v1 , 0 for [v § — c1], p(m1.f1, 72 f2) ~ 0.145
]f?r Py, N> and O for |pg . N — p(m1f1, 72 f2)|. In this figure, p .\ and p(mq f1, 72 f2) are abbreviated as
PN and p, respectively.

Further studies on these problems are needed for the practical use of our method.

APPENDIX A: ADDITIONAL PROOFS

Theorems 4.5 and 4.6 will be proved in this section. We shall take over the notations
in Section 4 and, in addition, write h(v) and hy(v) in place of AI(S,) and Aln(Sy),
respectively.

DEFINITION A.1. For j € {1,2} and « € R, define

ny((—oo,x],j)/]\]y(j) if Ny(j)>0,

B (z) =
@ =9 it Ny (j)=0.

We also define }A?ij(—oo) =0 and ﬁj,N(oo) =1.

PROPOSITION A.2.  For v = (v1,...,Un) € R with m a positive integer,

m+1

hy(v) =Y max {@‘,N {Fj,N(Uk) - F}‘,N(kal)} } —max {7},
k=1

where vg = —00, V11 = 00, ﬁj’N(Uo) =0, and ﬁj,N(va) =1

PROOF. From (5), we have

hv(w) =Y Py(X € o) max {ﬁN(Y —j|Xe sv,k)}
(14) g
—max{ﬁN(Y:j | X GR)},
J
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FIGURE 5. In the second case, 30 independent trials were performed to simulate 10000 random sam-
ples: (X1,Y1),...,(X10000, Y10000)- For each trial, {(X Ci» Y;) ‘ 1< < 100} {(X Xis Y;) |1 <i<1000},
and {(X;,Y;) | 1 < i < 10000} were used to calculate vy n, Vo N, [V — €|, pgy N> and |va N —
o(m1 f1,7m2f2)|. Each dotted line indicates the expected value: c] ~0.779 for vy N, cg 22 0.779 for v U2, N 0

for |5 — ell, p(m f1,m2f2) =~ 0.362 for 5 N, and 0 for |5 n — p(m1 f1, 72 f)|. In this figure, 5 N
and p(71 f1, 79 fo) are abbreviated as pp and p, respectively.

where the sum is over all £ with Nx (S, %) > 0. Since ﬁN(X € Spi) = NX( Svk)/N,

Py(Y = | X € Su) = Nxy (Sus 5)/Nx (Su)s and Nxy (So k. 1) = N7jn[Fjn (v) -
F; n(vg—1)], we obtain

Py(X € Sy ) max {Pv(y =j1X €S0} = max {Fin [Biv(on) = Biv (o) }-
As for the last term of (14), we have ]3N(Y =j| X € R) =7, n by definition. O
COROLLARY A.3.  For v € RZ with m a positive integer, I (v) >0and h(v) >0

PROOF. Let T, y = max {71 n, 72 n}. By Proposition A.2, we have

m+1
hv(v) = max {@N [Fj,N(vk) - Fj,N(vk—l)} } —max {7 v }
k=1
m—+1 R R
> Tp,N | Fp,n(vk) — Fp,N(Uk—l)} —7p,N =0.

k=1
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FIGURE 6. In the first case, 30 independent trials were performed to simulate three independent sets of random
samples, of the forms {(X;,Y;) | 1 <4 <100}, {(X},Y/) |1 <i <1000}, and {(X},Y]")| 1 <i < 10000}.
Each set was used to calculate vy N, [U1, N — c1|, Pg N> and |05 N — p(T1f1,m2.f2)|. Note that the super-
script (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected values: ¢ ~ 0.347 for 617 N, O
Jor [v1 N —c1l, p(m1 f1,m2f2) =2 0.145 for p . N, and O for |pg . N — p(m1 f1, 72 f2)|. In this figure, p5 N
and p(m1 f1,79 fo) are abbreviated as p; and p, respectively.

We can similarly prove that A(v) > 0 from Proposition 3.1. O

For simplicity, we may write ¢;(v,v’) and @; (v, ") in place of 7;[Fj(v) — F;(v’)] and

7 N[Fjn(v) — ﬁj, ~(v')], respectively, so that
m+1

(15) h(v) = 3 max {p;(vg, vp-1)} — max {;},
k=1

m—+1

(16) hy(v)=>" mjax{@,fv(vkv Vg-1)} — max {7~}
k=1
by Propositions 3.1 and A.2.

DEFINITION A.4. Form =1,...,n, define

Vm = argmax {h(v)},

veERT
lAimN:argmaX {/I{N(v)},
veRR
Cm:{(Cil,...,Cim) | 1§11<<2m§n}

REMARK A.5. We will see that V,,, # () (m < n) by Corollary A.7 and Proposition 3.4.
Since R} is a nonempty finite set (see Definition 4.2), V,, x # 0.

PROPOSITION A.6. Let m be a positive integer with m < n. Then for any v =
(V1,...,0m) € RZ, there exists w = (¢;,,...,¢i, ) with 1 <iy < --- <, <n such that

h(w) > h(v).
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FIGURE 7. In the second case, 30 independent trials were performed to simulate three independent sets of random
samples, of the forms {(X;,Y;) | 1 <i <100}, {(X],Y/) |1 <i <1000}, and {(X},Y/")| 1 <i < 10000}.
Each set was used to calculate vy , Vg N, [[On — cll. pg N» and |5, N — p(m1f1,72f2)|. Note that
the superscript (N) in Remark 4.7 is omitted here. The dotted lines indicate the expected values: c¢1 ~ —0.779
for U1 N, e2 = 0.779 for vy N, O for [[Uy — cll, p(m1f1,m2f2) =~ 0.362 for pg, N and O for |pg, N —
p(m1f1,maf2)|- In this figure, pg . N and p(my f1, 72 f2) are abbreviated as pyy and p, respectively.

PROOF. Let v = (vy,...,vy) € RZ be given. Set vg = —00, Vpy1 = 00, and r(v) =
#{ke{l,...,m}|vg & C(m f1,m2f2)}. The statement obviously holds when r(v) = 0.

Letr(v) > 0. Then we can choose v, ¢ C(m1 f1,m2f2) (1 <p <m)andc, € C(m f1,m2f2)
(1 < g < n) satisfying cq_1 < vp < cqg < Vpy1 OF vp_1 < ¢ < vy < Cgq1. We will only
show the case c;—1 < vp < ¢y < vp41, as the other is similar. Without loss of gener-
ality, we may assume that w1 f; > mafa on (vp,cq), so that p1(cq,vp) > p2(cq,vp) and
©1(Vp, cqg—1) > p2(Vp, cq—1), since C'(my f1,maf2) is finite. In the following, we consider
the cases (I) 1 (vp, vp—1) = p2(vp, vp—1) and (1) @1 (v, vp—1) < Y2(Vp, Vp—1).

(I) Suppose ¢1(vp, vp—1) > p2(Vp, Vp—1). Then

©1(Cq,Vp—1) > pa(cq, vp-1),
Pj (Uerlv Cq Pj (Up+1a Up) - ij(
)

Cl]’vp) (j:172)’
pj(cq, vp—1 @5 (Vps vp—1) + @j(cq, v

) p—
)=
hence

mjax {wjleqvp-1)} + m]aX {wj(vpr1,¢q)}

=¥ (Cq7 Up—l) =+ mj’@x{% (Up-l-b Up) — ¥y (clIa Up)}
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= 1(p, Up—1) + P1(cq, vp) + mjax {©j(vp+1,vp) — @j(cqsvp)}
> 1(Vp, Up—1) + p1(Cqs vp) + m;tx {@j(vp+1,vp)} — p1(cq, vp)
= 1(vp, vp—1) + m]f.iX {@j(vp+1,vp)}
= mjax {oj(vp, vp—1)} + m]ax {ej(vpt1,vp)},
and setting v’ = (v1,...,Up—1,Cq, Up+1,---,Um) € RY gives r(v') < r(v) and h(v') > h(v).
(IT) Suppose 1 (vp,vp—1) < @2(vp,vp—1). Since 71 fi > mafo on (vp,cq), We can see

that v,_1 < ¢g—1 < vp and @1(cq—1,vp—1) < p2(cq—1,vp—1). First consider the case (II-a)
©1(Vpt1,Vp) > P2(Vp+1,Vp). Then o1 (vpy1,c9-1) > @2(Vps1,cq—1), hence

max {g;(cq-1,vp-1)} +max{e;(vp1,¢g-1)}
2(cg—1,Vp—1) + P1(Vpt1,¢4-1)

(
(cg—1,vp—1) + ©1(Vp+1,Vp) + 1 (Vp, Cg—1)
(
(

1
€ €

2
2(Cq—1,Vp—1) + P1(Vp+1,Vp) + p2(vp, cg—1)
2 Upvvp—l) + @1 (vp-‘rlvvp)

]aX {@j(vp,vp—1)} + m;lx {ej(vpt1,vp)},

Vv
NS

I
=

and setting v’ = (v1,...,Up—1,Cq—1,Vp+1,---,Um) € RZ gives r(v') < r(v) and h(v') >
h(v). Next consider the case (II-b) 1 (vp11,vp) < p2(vp+1,vp). If there exists z € (c4—1,vp)
such that 1 (vpy1,2) > Y2(vpt1,2), then i (z,vp—1) < p2(z,vp—1), hence the case (II-a)
applies to v" = (vy,...,Up—1, %, Vpt1,..., ) € RZ, where r(v”) = r(v) and

h(v") = h(v)

= m;lx{%(fva vp-1)} + mjax {j(vpt1,2)} — mjax {0 (vp, vp-1)} — m;.ix{‘Pj(”p-&-lv vp)}

802(%%71) + ‘:01(Up+1793) - 902(%»”1071) - 902(Up+1avp)
> 902(3%”1771) + SOZ(Uerlvﬂf) - 902(“10»%71) - 902(Up+lavp)
= 902(Up+1avp—1) - 802(%-1—17”19—1) =0.

If o1(vpt1,2) < p2(vpy1, ) for any € (cq—1,vp), then v1(Vpt1,cq—1) < Y2(Vpt1,cq—1),
and setting v’ = (v1,...,Up—1,Cq—1,Vp+1,--.,Um) € RZ gives r(v’) < r(v) and

h(v') = h(v)

= mac {5 (cg1,vp-1)} -+ m i (1, 6g-1)} = mase (s (0, vp-1)} = mx i (03}

= @2(q-1,0p-1) + P2(Vpt1,¢g-1) — P2(Vp, Vp—1) — P2(Vps1,vp)
= ©2(Vp+1,Vp-1) — P2(Vps1,vp-1) = 0.

Taken together, for any v € R”? with r(v) > 0, there exists v’ € R? such that r(v’) < r(v)
and h(v’) > h(v). The statement follows by induction. - O

COROLLARY A.7. If m is a positive integer with m < n, then there exists ¢’ € C,, such
that h(c') = sup {h(v) | v € RZ}. Furthermore, h(c') < h(c).
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PROOF. Since there are only finitely many choices for w € R in Proposition A.6, we
can choose w’ = (¢;,,...,¢;, ) € argmax,, h(w), where w ranges over the choices. Then
h(w') > h(v) forall v € R”Z. Let A= {c;,,...,c;, } and assume that w’ ¢ C,,,. Then #A <
m, and there exists A’ = {c¢j,,...,¢;, } suchthat AC A’and 1 < ji < -+ < jp, <n.Putc =
(¢jys---,¢j,,). Then ¢ € Cp,, and we can see that h(c’) > h(w’) by definition. Furthermore,
h(c") < h(e) by Proposition 3.5. O

REMARK A.8. Note that v € V,,, does not necessarily imply v € C,,. Here we give an
example for the case where (n,m) = (2,1) and V; ¢ C;. Assume that 71 = 0.9, m2 = 0.1,
fi=wo,1,and fo =7_01,0.1 (see (7) and (8) for the definitions of v and 7). Then 7y f1(0) <
7T2f2(0), n = 2, and Cg = {01,62} where —0.1 < ¢1 <0 < ¢ < 0.1. Since (,01(00,0.1) =
©1(—0.1,—00) = m ®(—0.1) ~ 0.4142 > 75 (see (13) for the definition of ®), 1 (v, —00) >
w2 (v, —00) and ¢1(00,v) > pa(00,v) hold for all v € R. Hence h(v) = m for all v € R, and
therefore V; =R ¢ {c1,c2} =Cy.

For a real random variable £ on (2, F,P), we denote its expectation and variance by

E[&]z/gsdﬂa Var[£]=/ﬂ(£—E[€])2 aP,

respectively. We also denote by 1 4 the indicator function of a set A, i.e.,

1 if teA
L(t) = ’
A®) {0 if ¢ Al

THEOREM A.9. (Kolmogorov’s strong law of large numbers. See [2] for the proof.)
Let {&;} be a sequence of i.i.d. real random variables on (2, F,P) with E[|{1|] < oo and
Var [&1] < co. Let p=E[&1] and s, =& + -+ + & (k=1,2,... ). Then s,/ k converges com-
pletely to p.

THEOREM A.10. (The Glivenko-Cantelli theorem. See [7, Theorem A, Section 2.1.4]
for the proof.) For each j € {1,2}, sup,cp |Fjn(x) — Fj(x)| converges completely to 0 as
N — o0.

PROPOSITION A.11.  For each j € {1,2}, 7; N converges completely to m; as N — oo.

PROOF. Wecansee 11;,(Y1),...,1;(Yy) asi.id. random variables with IE [1;1(Y1)] =
T <00 and Var [ﬂ{]}(yl)] = 7Tj(1 — 7Tj) < . Since Ny(]) = ]l{j}(Yl) + -+ ]l{j}(YN ,
7N = Ny (j)/N converges completely to 7; by Theorem A.9. O

LEMMA A12. Ifz,y,z,w € R, then

(@) |[max{z,y} —max{z,w}| < |z —z[+]y —wl,
(b) |min{z,y} —min{z,w}| < |z — 2| +[y —w|.

PROOF. For (a), suppose max {z,y} > max {z,w} and z > y without loss of generality.
If z > w, then |max{z,y} — max{z,w}| = |z — z| < |z — z| + |y — w|. If 2 < w, then
|max{z,y} —max{z,w}| =z —w|<|x—z|<|z— 2|+ |y —w|.

For (b), suppose min {z,y} > min{z,w} and x > y without loss of generality. If z > w,
then |min{z,y} —min{z,w}| =y —w| <|r — 2| + |y — w|. If 2 < w, then |min{z,y} —
min{z,w} =y —z| < |z — 2| <|z— 2| + |y — w|. O
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/HN(’U) — h(v)| converges com-

THEOREM A.13. For any positive integer m, SUPyeRr
pletely to 0 as N — oo. B

PROOF. For all v € R”, we have

() = h()|

_l’_

3

(]

max { BN (vk, vg-1)} — max {; (v, vk—l)}' + ‘mj?lx {7} —max{m;}
k=1
1n+1 2

> 1855 0k ve—1) — 95 (U, VR |+Z|7TJN

k:ljz
by (15), (16), and Lemma A.12. Since
15,8 (Vks Vk—1) — @0 (Vk, Vr—1)]
= ‘(@',N — ;) [ﬁj,N(vk) - @N(Wl)}

~

+ | Fjn(vg) — Fj(vk)} — 7 [Fj,N(vk—l) - Fj(vk—l)} ’
<|mjN — 7 ‘ﬁj,N(Uk) - ﬁj,N(Uk;—l)‘

~

+7Tj Fij(vk)_F(UIC)“"W]‘ i N ’Uk- 1) Fj(vk’—l)‘

<|mjN — mj| + 2m; sup ‘Fj,N(x) - Fj(x)‘ ;
rER
we obtain

2
sup [fin (v) = h(v)| < (m+2) > [Fn = ] +2(m + 1 Zw]sup By n(z) — Fi()].
j=1

vERT z€R
{w e

U{weQ

=1

Hence

sup
veERZ

v (v) —h(v)‘ >e}

is contained in

~ €
17 = ] 4(m+2)}

U{weQ

Jj=1
and therefore

P({wEQ sup EN('v)—h('v)’>e}>
—1 vERT

]:1 N=1

sup|[Fyv(o) = B0 > g -

z€R
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2 o .
1 Z Z P ({w € Q| sup |Fjn(z) — Fj(z)

)
< o0

by Theorem A.10 and Proposition A.11. O

DEFINITION A.14. Let (A,d) be a metric space. We define a discrepancy of A; C A
from Ay C A by

D(A;,As) = sup { inf d(al,ag)}.

aleAl azeAz

If d is a Euclidean metric, we may write Dy in place of D.

LEMMA A.15. Let (A,d) be a metric space. Let g and g; (i=1,2,...) be real functions
on A such that max {g(t) |t € A} and max{g;(t) |t € A} exist. Put T = argmax,c 4 {g(t)}
and T; = argmax,c 4 {gi(t)}. Suppose g is continuous on A, sup,c 4 |gi(t) — g(t)| = 0 as
1 — 00, and there exists a compact set K C A such that

sup{g(t)|te A\ K} <max{g(t) |t € A}.
Then D(T;,T) — 0 as i — oc.

PROOF. Putw; =max{g(t) |t € A}, wo=sup{g(t) |t € A\K},and w = (w1 —wy)/3.
(Note that wg < wo + w < wg + 2w = wy — w < wi.) For any € > 0, there exists § > 0 such
that § < eand g(t) > wy —w forallt € Ts = Uer {x € K | d(z,t) < 0}, since g is uniformly
continuous on K (see [5, Theorem 4.19]). (Note that 7' C K.) Put wj = max{g(t) | t €
K \ Ts} (this exists because K \ Ty is compact) and w’ > 0 such that v’ < w and wj, <
w( + 2w’ < wy. (Note that {t € A| g(t) > w; — 2w’} C T since wy — 2w’ > w; — 2w > wy
and w; — 2w’ > wy).) Since sup;c 4 |gi(t) — g(t)| — 0 as i — oo, there is an integer M such
that ¢ > M implies sup,c 4 |¢i(t) — g(t)| < w'. Hence, for any ¢ > M and for all ¢; € T;,
we have g(t1) > w; — 2w’ (because g(t1) + w' > gi(t1) > gi(t2) > w1 — w’ where ty € T),
and thus ¢; € T;. Therefore, sup, <7 {infy,er d(t1,t2)} < < eforany i > M. Since € was
arbitrary, the claim follows. 0

LEMMA A.16. There exists a compact set K C RZ such that

sup {h(v) |v € RL\ K} <max {h(v)|veRL}.

PROOF. By Propositions 3.4 and 3.5 and Corollary A.7, there exist
My, =max {h(v) | v e R} (m=1...,n)

and M =max {M;,...,M,_1} < M,. Take ¢ > 0 such that ¢ < (M,, — M)/3. We can take
a, € R such that Fj(a) < e and 1 — F;(8) < e (j = 1,2), since F; are non-decreasing
functions with lim,_,_~ Fj(z) =0 and lim,_,oc Fj(z) = 1. Let K = [o, ]" NRZ and v =
(v1,...,v,) € RZ\ K. Then v; < cv or vy, > [ holds. -

Suppose v1 < a. Put v’ = (vg, ..., vy,) and recall that ¢;(v,v’) = 7;[F;(v) — Fj(v')]. Us-
ing Lemma A.12, we obtain

[1(0) — h(v')| = masx (i, (01, ~00)]} + mae (g (v2,00)} — mae (i (2. ~o0))
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< [ 01,000 |+ [ s o 00)) — 2, —20))

< e+ |p1(va,v1) — @1(v2, —00)| + |p2(v2,v1) — @2 (v2, —00)|
= e+ |p1(v1, —00)| + [p2(v1, —00)|
< 3e.

Hence |h(v)| < |h(v) — h(v')| + |h(v")] < 3¢ + M. We can similarly prove that |h(v)| <
3¢+ M for the case v, > 3. Therefore, sup {h(v) |[v e RL\ K} <3¢+ M < (M,, — M) +
M = M,,. This completes the proof. B O

THEOREM A.17. The discrepancy DE(lA)mN, V,,) converges completely to 0 as N — oc.

PROOF. In Lemma A.15, let (A,d) be the subspace RZ of the Euclidean metric space

R™, g = h (which is continuous on R?), and gZ = h It follows from Remark A.5
and Lemma A.16 that for any € > 0, we can take w’ > 0 as in the proof of Lemma A.15, and
observe that D (Vy, N, Vi) < € if supyegn [hn(v) — h(v)| < w'. (Note that max {hy(v) |

vE I@’](,} = max {hn(v)|ve RZ }, hence 17n7N C argmax,cgn {hn(v)}.) This means that

{wGQ

ﬁN(’v) — h(v)’ < w’} C {w e ‘ Dg (9n,N,Vn) < E},

sup
vERg
hence
~ ~ w’
{w e ‘ Dg <Vn,N,Vn) > 6} CrweN| sup |hy(v) — h('v)‘ > 5 (
vGR%

and therefore

M8

p ({w cQ ‘ Dg (17n,N,Vn) > e})

N=1
o0 R w/
SZIP’ weN| sup hN(v)—h(v)’>—
vER? 2
N=1 eR<
< o0
by Theorem A.13. U

COROLLARY A.18. The estimator v € V,, N converges completely to ¢ as N — oc.

PROOF. Since V,, = {c} by Proposition 3.4, we have DEO?”,N,VR) =SUp,cp . |lv
c|| > ||vny — ¢|. Hence the claim follows from Theorem A.17. J
=l |

THEOREM A.19. The estimator pg,, n converges completely to p(mi f1,maf2) as N —
0.

PROOF. From (4) and (6), we have
n+1

(17) p(m1fr w2 f2) me{m (e) = Fj(ex-1)]},
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n+1
(18) Doy N =) min {@‘,N [Fj,N(ﬁk) - Fj,N(i’\k—l)} } :
k=1
where vy = (U1,...,0,) € 971,]\/, Uy = —00, and vy, 41 = 0co. By Lemma A.12,

Do, — p(m1Lf1 T2 f2)]

n+1l 2
< [Faw [Biv (@) = B @] — 75 [Fi(en) — Fylex)]].
k=1 j=1
where
)@,N [@,N(ﬁk) - @N(ﬁk*l)} — i [Fj(ex) — Fj(ckfl)]‘
< [Fow [ (@) = Byn(@n)] = 3 [E5e) — (@)
+ |7 [ (Ok) — Fj(0—1)] — 7 [Fj(ex) — Fj(ex—1)]]
< [Rin Esn @) = mi By @) + [Ron Fion (Br) = w3 F5 @)
+ 75 | Fj(0r) = Fj(cx)| + 7 | F (Vk—1) — Fj(cp—1))]
< |FnEn (Br) — Wjﬁj,N(ﬁk)‘ + ’Wjﬁj,N(ﬁk) — miF; (@k)‘
+ ’@Nﬁjw@kq) - Wjﬁ}',N(ﬁkfl)‘ + ‘Wjﬁj,fv(ﬁkﬂ) — mj Fj (Vk 1)(
+ [ Fj(0k) = Fj(ex)| + 7 [Fj(Uk-1) = Fj(cx—1)]
<20 = 15l + 753 [ By (1) = Fy(00)| + 5 [ By (B-1) = Fy i)
+ [ Fj(0k) = Fj(er)| + 7 [ Fj (k1) = Fi(cr—1)] -
Hence
Do N — p(m1Lf1, T2 f2)|
2
2(n+1) Z TN — 7
j=1
n+l 2 R n+l 2
300w | B (80 = By @0)] + 0 D [ By (i) = F5 (i)
k=1j=1 k=1j=1
(19) n+l 2 n+l 2
"’ZZ%W(W j(cr) H‘ZZFHF (Vk—1) — Fj(cg-1)]
k=1 j=1 k=1j=1

n 2
+230 3 B @) = 00| +2 30 w5 |5 (@) — F ().

k=1 j=1 k=1 j=1
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For any € > 0, there exists 0 > 0 such that |Fj(z) — Fj(cx)| < €¢/(6n) for all z € R with
|t —cpl<d(=1,2 k=1,...,n).If

€ ~ €
_ F. _F < —
EICE ORI S A )

forj=1,2and k=1,...,n, then

TN — 7| < O — | <6,

2€

[Pon.v = pmifumafa)| <2+ D50 =55

+ 2n(m + 7T2)6in + 2n(m + 7r2)6in =€
by (19). Hence {w € Q| |p5 .~ — p(m1 f1,m2f2)| > €} is contained in

O{weﬂ

J=1

2
UU{wGQ
j=1

. o
U{wGQ‘HvN—cH>2},

~ €
N — T >
175 = ] 24(n + 1)}

e €
sup |Fn (z) = Fj () 12”}

and therefore

Z P ({we Q| |psyn — p(mLf1,m2f2)| > €})

N=1
2 o0 c
g}:}:P<{weQ\@N ml> o +D}>
Jj=1N=1
- ~ €
P Q| sup| By (@) — Fj(2)| > 13-
+3° 5 ({wen|wm|fint) - Bw)|> 15 1)
j=1N=1
o0
+ ZP({weQ‘ BN —c| > 2})
N=1
<00
by Theorem A.10, Proposition A.11, and Corollary A.18. U

Note that Corollary A.18 and Theorem A.19 are exactly Theorems 4.5 and 4.6, respec-
tively.
As stated above, we have estimated ¢ as Uy € Vn, N In fact, it is possible to estimate ¢ in

another way. For v = (v1,...,v;,) € RZ with m a positive integer, let us define
m+1
(20) po =D min{e;(vg,v5-1)}
k=1
where vg = —o0 and vy, 11 = 0o. Note that we have
m+1
21) Pon =) min {@j(vk,ve—1)}

k=1
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by (6). Here recall that
©;j (Vg vi—1) = 7;[Fj (vi) — Fj (vg—1)],

~

Gin (W, vp—1) =75 N [F N (k) — Fj v (vp—1))-

LEMMA A.20. Forv = (v1,...,0n) € RZ with m a positive integer, we have
(22) h(v) + pp =1 —max{m;},
J
(23) Ay (v) + poy =1— max {7}

PROOF. For k=1,...,m+ 1, choose

Jx € arg max {@j(vka Vg-1)}
J

Ik € argmin {; (v, vg—1)}
j

such that {j,lx} = {1,2}, where v9 = —o0 and v,,+1 = co. By (15) and (20), we have
m+1

h(v)+po= [m]ax{(:pj(vk’avk—l)} +min {; vk, ve—1)}| — max {m;}
= > i vk, vk-1) + @1, (g, V1)) — max {m; }
k=1
=2 le1(vs ve-1) + 2 (vk, v—1)] — max {m; }

= 7 [Fj(vk) — Fj(vg—1)] — mfx{ﬂj}

|
2

[Fy(00) = Fy(—oc)] —max {m;}

Il
—

J
=1 _max{ﬂ-j}v
J

which implies (22).
We can prove (23) in a similar way. For k=1,...,m + 1, redefine

Jk € arg max {@ (VK Vk—1)}
J

lp € argmin{@; (vg, ve—1)}
j

such that {jx,lx} = {1,2}. By (16) and (21), we have
N m—+1
hn (V) +Pon = {mﬁx {@),n (vk, v—1) } + min {@)n (vg, vp-1) }| — max {7~}
k=1
m+1
= (@ (Vr: 06-1) + P v (Vk, V1)) — max {7r; '}
k=1
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m+41

= > [Bun (ks vk-1) + Pon (v, vp-1)] — max {7,y }
k=1

DR

?Mi

(k) = By v (vp)| — mae (7 )

[\

S

N [E,N(oo) — F\jw(—oo)} — mjax{%j,zv}

Il
—_
ﬂ‘

—max{m; N},
J
which implies (23). ]

It is immediate from Lemma A.20 that

(24) argmin{py} = Vi,
veERY

(25) argmin {p,} = Vi,
veﬁﬁ

form=1,...,n.

THEOREM A.21. Forv € RZ, p, attains its unique minimum p(my f1,maf2) atv =c.
PROOF. This follows from Proposition 3.4, (4), and (24). ]

THEOREM A.22. Let ¥y € arg minve@g {Pv.N}. Then ¥’y converges completely to c as

N — oo. Furthermore, py, n converges completely to p(m1 f1,m2f2) as N — oc.

PROOF. Since 6'N € \7717 ~ by (25), the claim follows from Corollary A.18 and Theo-
rem A.19. ]

APPENDIX B: MEASURABILITY OF SOME FUNCTIONS

B.1. The measurability of p;, n (associated with Theorems 4.6 and A.19). It fol-
lows from (25) that pg, x = min, Ry, {pwv,n}, which depends only on the rank statistics of

X1,...,Xn (labeled by Y7, ..., Yy, respectively). We then see that {p5, n(w)|w € Q}isa
finite set and that pg,, x is a measurable simple function on €2.

B.2. The measurability of sup,cgm ‘77, ~(v) — h(v)| (associated with Theorem A.13).
By the right continuity of F\j, ~ (Definition A.1), we see that sup,cgm Iy (v) — h(v)| =

h ~(v) — h(v)| for any positive integer m, where Q is the set of rational num-

SUPyeqr
bers and Q7 = {(v1,...,vm) € Q™ | vy <--- <y, }. Since Q7 is countable and Ay (v) is

obviously measurable on €2, sup,cgm ]iAL ~(v) — h(v)] is also measurable on €.

B.3. The measurability of DE(Vn N, Vn) (associated with Theorem A.17). Let
{K1,..., K} be the collection of all nonempty subsets of {(ij,...,i,) |1 <i3 <--- <

in <N — 1} with K; # K; if (j # 1), Qg, be the set of all w € Q such that lA)mN =
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{(Zil,. ey Zi )| (i1, yip) € Kj}. Then QKJ. € Fforall je {1, o ,m}, Q= U;-nleKj,
and Qg, N Qg, =0 if j # 1. Since the restriction of DE(ﬁn N> Vn) to each Qf; coincides
with max {||(Z;,,...,Z;,) — c|| | (i1,...,in) € K}, which is measurable on Qf,, we see

~

that Dg(V,, n, Vy) is measurable on €.

B.4. The measurability of vy (associated with Theorem 4.5 and Corollary A.18).
We can choose ¥ € V, n such that vy : © — R™ is measurable. Indeed, let 7 =

{(’i1,...,in) ’ 1<y <<y < N — 1} and Z(il,...,in) = (Zil,...,Zin) S @?\f for
(i1,...,in) € Z. Note that ) equals the disjoint union of measurable sets

Q= {w € Q| hy(Zj) = malxﬁN(Zi) if and only if j € j}
(1S

over all nonempty subsets 7 of Z. For such J, we can define max .7 and min J in lexico-
graphic order. If we put ¥y = Zax 7 (0r U = Zmin 7) on each € 7, then vy is measurable.

If we choose vy € ]7n ~ at random independently of (€2, F,P), we cannot guarantee that
v is measurable. In such a case, we mean by “vy converges completely to ¢ as N —
00” that for any e > 0, there exists a collection {A;, Aa,...} of measurable sets such that
S N1 P(An) <ocand Ay D {w € Q| ||[on — ¢ > €} for all N, which also implies that
v converges almost surely to ¢ (in the sense that P({w € Q | limy_,0 Oy = ¢}) = 1) if

~

(Q, F,P) is complete (see Remark 4.4). In fact, we can take Ay = {w € Q| Dg(Vy, N, Vi) >
€}.
APPENDIX C: ADDITIONAL PROOFS

In this section, (9)—(12) will be proved. We shall take over the notations in Section 5.

PROPOSITION C.1. In the first case,
C(m fi,maf2) = {1} ={(log2)/2},
p(mfi,mafo) =[2—=2®(c1+ 1)+ P (c1 — 1)] /3.
PROOF. The equation 7 f1(z) = ma f2(z) gives x = (log2)/2, which is a crossover point.
Hence C(m f1,m2f2) ={c1} = {(log2)/2}. Next,
p(mifi,mafa) =maFa(cr) + m[l = Fi(e1)]

:%cb(cl —1)+§[1—<I>(01+1)]-

PROPOSITION C.2. In the second case,
C(?Tlfl,ﬂ'gfg) = {Cl, CQ} == COSh_1 (08\/6) ;
,0(7r1f1,7r2f2) =0.8— 0.5@(01 + 1) + 0.5(13(62 + 1) — 0.8‘13(02).
PROOF. If < 0 or z > 0.5, then fa(z) = 0.8vp,1(z), and 7 fi(z) = mafo(x) gives

cosh(z) = 0.84/e. There is a unique ¢ > 0 such that cosh(c) = 0.84/e. Since ¢ > 0.5 and
71 f1 < mafz on [0,0.5], we have C(my f1,maf2) = {—c,c} = cosh™'(0.8+/e). Next,

p(m1f1,mafe) = maFa(—c) + mi[Fi(c) — Fi(—c)] + m2[l — Fa(c)]
= 0.8~ 0.5B(—c+ 1) +0.50(c+1) — 0.80(c).
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