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HOCHSCHILD COHOMOLOGY OF THE QUADRATIC MONOMIAL
ALGEBRA N,,

TOMOHIRO ITAGAKI, KAZUNORI NAKAMOTO, AND TAKESHI TORII

ABSTRACT. Let Ny (R) = {(aij) € Mim(R) | a11 = a22 = -+ = amm and a;; = 0 for any ¢ > j}
for a commutative ring R. Then N,,(R) is a quadratic monomial algebra over R. We calculate
HH* (N (R), My (R) /N (R)) as R-modules. We also determine the R-algebra structure of the
Hochschild cohomology ring HH*(N,,(R), Ny (R)). For m > 3, HH*(N,,(R), Ny (R)) is an
infinitely generated algebra over R and has no Batalin-Vilkovisky algebra structure giving the
Gerstenhaber bracket.

1. INTRODUCTION

For a commutative ring R, set

a *
0 a

N (R) = 00 a - = [ cM,(R)
0 0 O a

In this paper, we calculate HH*(N,,(R), M,,(R)/N,,(R)) as R-modules. We also calculate the
Hochschild cohomology ring HH*(N,,,(R), N.,,(R)) as R-algebras. Moreover, we calculate the Ger-
stenhaber bracket on HH*(N,,(R),N,,,(R)) and show that HH*(N,,(R),N,,(R)) has no Batalin-
Vilkovisky algebra structure which gives the Gerstenhaber bracket.

In [9], we have calculated the Hochschild cohomology HH* (A, M3(k)/A) for any k-subalgebra
A of M3(k) over an algebraically closed field k. The k-subalgebra Ns(k) is one of the most
difficult k-subalgebras of M3(k) to calculate HH* (A, M3(k)/A). Indeed, we could not calculate
HH"(N3(k), M3(k)/N3(k)) until we used spectral sequences. Hence, it is a challenging task to cal-
culate HH*(N,,, (R), M,,,(R) /Ny, (R)) for m > 4. It is also a hard job to determine the R-algebra
structure of HH*(N,,, (R), N,,, (R)) for m > 3.

Setting x1 = E1 2,22 = FE23,...,Zm-1 = Em_1,m € Np(R), we have an isomorphism as R-
algebras

Nm(R) = R<$17$25 o aszl>/<$i‘rj | J # i+ 1>7

where E; ; is the (4, j)-th matrix unit in M,, (R). Note that N,,(R) is a quadratic monomial algebra
over R with degree |z;| =1 (1 <i <m—1). When R is a field, N,,(R) is a Koszul algebra over R.

Date: March 29, 2024 (version 1.0.0).

2020 Mathematics Subject Classification. Primary 16E40; Secondary 16537, 18G40.

Key words and phrases. Hochschild cohomology, Quadratic monomial algebra, Koszul algebra, Spectral sequence.

The first author was partially supported by JSPS KAKENHI Grant Number JP17K14175. The second author
was partially supported by JSPS KAKENHI Grant Number JP20K03509. The third author was partially supported
by JSPS KAKENHI Grant Numbers JP17K05253 and JP23K03113.

1


http://arxiv.org/abs/2403.20074v1

2 TOMOHIRO ITAGAKI, KAZUNORI NAKAMOTO, AND TAKESHI TORII

The quadratic dual algebra N,,(R)' of N,,(R) is isomorphic to R{y1,¥a;- -, Ym—1)/{¥iyiz1 | 1

i <m —2). Then N,,,(R)" is also a graded R-algebra with degree |y;| =1 (1 <i<m —1). Put
¢(d) = rankgN,,(R)},

where N,,(R)!, is the homogeneous part of N,,(R)" of degree d. The Poincaré series f'(t) =

IN

Z @(d)t? of N,,,(R)' can be calculated by f'(t /(1+ Z (m — k)t*) (Proposition EI5).
d>0
The first main theorem is the following:

Theorem 1.1 (Theorem .11l and Corollary BI3)). Let m > 3. The Hochschild cohomology

HH"(N,,,(R), M,,(R) /N, (R)) is a free R-module for n > 0. The rank of HH" (N, (R), M, (R) /N, (R))

forn >0 is given by
n m—1 n =20),
rank gHH" (N, (R), My (R)/Nop (R)) = { o 2 En N o%.
The second main theorems are the following:

Theorem 1.2 (Theorem [6.34)). Let m > 3. The Hochschild cohomology HH" (N,,(R),N,,(R)) is
a free R-module for n > 0. The rank of HH"(N,,(R), N, (R)) is given by

rankg HH" (N,,,(R), N.»u (R))

2 (n=0),

om — 4 (n=1),

en)+m—4DHen -1+ (-1)"p(n —m+1) —|—Z k—l—l Yo(n—k) (n>2).
k=2

Theorem 1.3 (Theorems and [74] and Corollary [TH)). Let m > 3. There is an augmenta-
tion map € : HH*(N,,,(R),N,,,(R)) — R as an R-algebra homomorphism such that the Kernel
HH*(N,,,(R), N (R)) of € satisfies

HH*(N,,,(R),N,,(R)) - HH*(N,,(R),N,,(R)) = 0.
In particular, HH* (N, (R), N, (R)) is an infinitely generated algebra over R.

Theorem 1.4 (Theorem RI8). For m > 3, HH*(N,,(R),N,,(R)) has no Batalin-Vilkovisky alge-
bra structure over R which gives the Gerstenhaber bracket [ ,

As an application of the main theorems, we can calculate the dimension of the tangent space of

2
— 2
the moduli of subalgebras of M,,, over Z at N,,. Set d = rankgN,,(R) = %

Theorem 1.5 (Theorem B.I8)). The dimension of the Zariski tangent space of the moduli of rank
d subalgebras of My, over Z at Ny, is

. 3m?2 —Tm+4

dim Tviold, , 4/2,N,, = 5

form > 3.

The organization of this paper is as follows: in Section 2, we review Hochschild cohomology.
In Section 3, we introduce several results on spectral sequences. In Section 4, we show that
HH*(N,,,(R), R) = N,,,(R)' as R-algebras. We also describe the Poincaré series f'(t) of N,,(R)" ex-
plicitly. In Section 5, we calculate HH*(N,,, (R), M;,,(R)/N,,(R)) as R-modules. We also calculate
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the dimension of the tangent space of the moduli of subalgebras of M,,, over Z at N,,,. In Section
6, we determine the R-module structure of HH*(N,,, (R), N,,(R)). In Section 7, we determine the
product structure of HH*(N,,,(R), N,,, (R)). In Section 8, we describe the Gerstenhaber bracket
on HH*(N,,(R),N,,(R)). We also show that HH*(N,,(R),N,,(R)) has no Batalin-Vilkovisky al-
gebra structure giving the Gerstenhaber bracket [ , ] for m > 3. In Section 9, we deal with
HH"(N2(R), M2(R)/N2(R)) and HH*(N2(R),N2(R)) as an appendix.

Throughout this paper, R denotes a commutative ring and A an associative algebra over R.
We denote by E;; € M,,(R) the matrix with entry 1 in the (i, j)-component and 0 the other
components. We also denote by I,,, the identity matrix in M,,(R). By a module M over A, we
mean a left module M over A, unless stated otherwise. We set B,,,(R) = {(a;;) € M (R) | a5 =
0 for ¢ > j} and J(N,,(R)) = {(ai;) € M (R) | a;; = 0 for ¢ > j}. For a subset S of an R-module
M, we denote by R{S} the R-submodule of M generated by S. For a homogeneous element z of a
graded R-module M = @®;czM; (or a graded R-algebra A = ®;czA4;), we denote by |x| the degree
of .

2. PRELIMINARIES ON HOCHSCHILD COHOMOLOGY

In this section, we make a brief survey of Hochschild cohomology (cf. [3] and [I4]). Throughout
this section, M denotes an A-bimodule over R.

Definition 2.1. Assume that A is a projective module over R. Let A° = A ®p A°P? be the
enveloping algebra of A. For A-bimodules A and M over R, we can regard them as A°-modules.
We define the i-th Hochschild cohomology group HH'(A, M) as Ext’4.(A, M).

We denote by B.(A, A, A) the bar resolution of A as A-bimodules over R. For p > 0, we have
p
By(A, A, A) = AepAen - or A®rA.
For an A-bimodule M over R, we define a cochain complex C*(A, M) to be
Hom (B« (A, A, A), M).
We can identify C?(A, M) with an R-module
P
HOIDR(M7 M).
Under this identification, the coboundary map d? : CP(A, M) — CPT1(A, M) is given by

dP(f)la1® - ®apt1) = a1 flaa®- - @aps1)
p

+) (D)'fla1® - ®aiaiy1 @ @ apy1)

1

1=

(=D a1 ® - @ ap) - apra
for f € CP(A,M) (p > 1) and
d’(m)(a) = am — ma
for m € C°(A, M) = M. The Hochschild cohomology group HH* (A, M) of A with coefficients in
M can be calculated by taking the cohomology of the cochain complex C*(A, M):

HH* (A, M) = H*(C*(A, M)).

Remark 2.2. In Definition 2.1l the assumption that A is a projective module over R is needed
for ExtYye (A, M) = HY(C*(A, M)) for i > 0.
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Let N be another A-bimodule over R. We define a map
U:C*"(A,M)x C*(A,N) — C*(A,M ®4 N)

by
(fUG(1® - ®ap@b1 @ Qbg) = fla1 @ R ap) @g(b1 @ Qby)
for f € CP(A, M) and g € C1(A, N). The map U is R-bilinear and satisfies

d"T(fUg) =d'(f)Ug+ (-1)PfUd(g).

Hence the map U induces a map
HH? (A, M) @ g HHY(A, N) — HH"T9(A, M ®4 N)

of R-modules.

By the above construction, we see that the Hochschild cohomology HH* (A, —) defines a lax
monoidal functor from the monoidal category of A-bimodules over R to the monoidal category of
graded R-modules. Hence, HH*(A, M) is a graded associative algebra over R if M is a monoid
object in the category of A-bimodules over R.

Suppose that the unit map R — A is a split monomorphism. We set A = A/RI, where I € A
is the image of 1 € R under the unit map. Let B.(A, A, A) be the reduced bar resolution of A as
A-bimodules over R. We have

p
———

B,(A,AA) =2 A@r A®R - ®r A®RA
for p > 0. For an A-bimodule M over R, we denote the cochain complex Hom ¢ (B« (A, A, A), M) by
C"(A, M). The cochain complex C (A, M) is a subcomplex of C*(A, M). Recall that the reduced
bar resolution B, (A, A, A) is chain homotopy equivalent to the bar resolution B, (A, A, A). Hence,
the inclusion C" (A, M) — C*(A, M) induces an isomorphism

H*(C"(A,M)) =~ HH* (A, M).
We observe that the map U: C*(A, M) x C*(A,N) — C*(A, M ®4 N) induces an R-bilinear map
U:C (A, M)xC (A N) — C (A,M @4 N),
where N is another A-bimodule over R. Hence themap U : C (A, M)xC (A, N) — C (A, M@4N)
induces the same map HH? (A, M) @ g HHY(A, N) — HH?T9(A, M ®4 N) of R-modules as before.
3. SPECTRAL SEQUENCES

In this section we recall the construction of spectral sequences associated to filtered cochain
complexes. In particular, we construct a spectral sequence by introducing a filtration on the
Hochschild cochain complex C*(A, M) by powers of a two-sided ideal (e.g. the Jacobson radical
J) of A.

3.1. Review on the construction of spectral sequences associated to filtered cochain
complexes. We can consider spectral sequences in an abelian category A. In this subsection we
recall the construction of spectral sequences associated to filtered cochain complexes in A.

Let (C*,d) be a cochain complex in A equipped with a filtration

C*=F'C*>F'C*>---DFPC*>---

by subcomplexes. Throughout this paper we assume that there exists t € Z~( such that F*C* = 0.
We say that (C*,d, {FPC*},>0) is a filtered differential graded module in A.
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For a filtered differential graded module (C*,d, {FP?C*},>0), we can construct an associated
spectral sequence

EYY(C*) = HPTY(C*)
with
dP9 s EPA(C*) —s EPTHaTHL(CF)
(see, for example, [8] Theorem 2.6]). Note that we have an isomorphism
EPI(C*) =2 HPTI(FPC* JFPTIC™).
The differential d; : EPY(C*) — EPTH%(C*) is identified with the connecting homomorphism
HPYU(FPC* JFPHLC*) — HPYatL(prHiox JFP2o)
associated to the short exact sequence
0 — FPHLO* JFPT20* — FPC* /FPT2C* — FPC*JFPTIC* — 0
of cochain complexes. If F*C* = 0, then the spectral sequence collapses from the E;-page.

Now, we suppose that A is an abelian monoidal category, in which the tensor product ® :
A x A — A is right exact separately in each variable.

Definition 3.1. Let (A*, d) be a differential graded algebra in 4. Suppose that we have a filtration
A*=FA* S F'A* > ... D F"A* > ... D F'A* = 0.

A triple (A*,d,{FPA*},>0) is said to be a filtered differential graded algebra if it satisfies the

following two conditions:

(1) For any p > 0, d(FPA*) C FPA*.
2) For any r,s >0, F"A* - FSA* C FrtsA*.
y

To a filtered differential graded algebra (A*,d, {F?A*},>0), there is a spectral sequence
EP? = HPYU(FPA/FPT A) — HPTI(4)
of algebras in A, which converges to HPT%(A) as an algebra (see, for example, [8, Theorem 2.14]).
3.2. Filtrations and spectral sequences on Hochschild cochain complexes. In this sub-
section we consider filtrations on Hochschild complexes and associated spectral sequences.
Let R be a commutative ring and let A be an associative algebra over R. We assume that A is
a projective module over R. For an A-bimodule M over R, we denote by C*(A, M) the Hochschild

cochain complex.
First, we suppose that there exists a filtration of A-bimodules over R:

M=F'M>F'M>--->F'M>--->FM=0.
We denote by GrP(M) the p-th associated graded module FPM/FPT1M. Using the filtration
{FPM},>0 on M, we can introduce a filtration {FPC*(A, M)},>0 on C*(A, M) by
FPC*(A,M) = C*(A, FPM).
Hence we obtain the following proposition.

Proposition 3.2. For an A-bimodule M over R equipped with a filtration M = FOM > F'M D
D FPM D .- D F'M = 0, there exists a spectral sequence
EP9(A, M) = HHP(A, GrP(M)) = HHPT9(A, M)
of R-modules with
d,: EP9U(A, M) — EPT"TLHA M)
for r > 1, where GrP(M) = FPM/FP1 M.
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In particular, we consider a filtration on the A-bimodule A by powers of a two-sided ideal. Let
J be a two-sided ideal of A. We assume that J¢ = 0 for some ¢ > 0. By setting

FPA=JP
for p > 0, there is a filtration
A=F'ADF'AD>---DFPAD---DF'A=0

of A by A-bimodules over R. From this filtration, we obtain a filtration {C*(A, J?)}p>0 on
C*(A, A). Recall that C*(A, A) is a differential graded algebra over R. We can easily verify
that

C*(A,J") - C*(A,J°) C C*(A,J"T*).
Thus, the triple (C*(A, A),d,{C*(A, J")}r>0) is a filtered differential graded algebra over R, and

we obtain the following proposition.

Proposition 3.3. There is a spectral sequence of R-algebras
TEPY(A, A) = HHPTI(A, A),

where

TEPI(A, A) = HHPY(A, JP [/ JPTY),

Now, we consider the induced filtration on A-bimodules over R. Let M be an A-bimodule over
R. By setting

(3.1) T'M= > J'MJ
a+b=p
for p > 0, we obtain a filtration

M=TM>STM>-->TM>--->T"  '"M=0

of M by A-bimodules over R. From this filtration, we obtain a filtration {C*(A, 7 M)},>0 on
C*(A, M) and the following proposition.

Proposition 3.4. There is a spectral sequence of R-modules
TEPY(A, M) = HHPT9(A, M).

We have an isomorphism
TEP(A, M) = HHPT(A, Grl) (M),

where
—p+1

Grh (M) =T ' M/T"" M.
Remark 3.5. Since

—a-+b+tc

C*(A, J%) - C*(A, T'M) - C*(A, J°) € C*(A, T,

the triple (C*(A4, M), d, {C*(A,ij)}pzo) is a differential graded bimodule over the differential
graded algebra (C*(A, A),d, {C*(A, JP)}p>0). Thus, the spectral sequence {’E**(A, M),d,},>1
is a bimodule over the spectral sequence {7 E**(A, A), d; },>1.
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3.3. Gradings on spectral sequences. Let A be an abelian category with countable coproducts.
We let A” be the abelian category of Z-graded objects of A and grading-preserving morphisms. In
this subsection we consider spectral sequences in A%. In this case we have trigradings on spectral

sequences.
Let

C* = @ C*s

SEZ
be a cochain complex of A% equipped with a filtration
C*=F'C* > F'C*>---DFPC* D --- D F'C*=0

by subcomplexes, where C** is the component of (cohomological) degree s € Z. Set FPC™*® =
FrC™ N C™*. Note that any filtration by subcomplexes in A% is assumed to satisfy FPC* =
D,z FPC™* (in other words, the filtration is compatible with the grading). Then we have the
following associated spectral sequence as in §3.11

Proposition 3.6. There is a spectral sequence
EP(CT) = HPT(C7)
in AL, with
EP4(C*) = HPTI(FPC* /FPHIC).
More precisely, let E2:95(C*) be the degree s component of the spectral sequence { EP4(C*),dP1},>1.
Then {EP®5(C*),dE?%},>1 is a spectral sequence of A with

@ s s (C) — EPHarHLle(cn),

where
BpI(C) = @ Bret(C7), dit = P,
SEZL SEZL
and
EPE(Cr) = HPTUFPC*S | FPHLO*S) = HPTI(C**).
Notation 3.7. Under the situation above, we set
H’II,S(C*) — H”l(c*,s)'
Note that
H™C*) =P H™*(C).
SEZ
We need the following lemma in §5] below.
Lemma 3.8. If there exists an integer i such that
Hp+q78(ch*/Fp+1c*) — Hp+q(ch*78/Fp+lc*,S) =0
for s # q+ 1, then the spectral sequence
EYY(C*) = HPTY(C*)
collapses from the Es-page.

Proof. By the assumption, E}?*(C*) = 0 for s # q + i. Since the differential of the spectral
sequence { EP¢5(C*),d,},>1 has the form dP%* : EP-@5(C*) — EPTTa-mT15(C*)  we see that d,
is trivial unless r = 1. Hence the spectral sequence collapses from the Fs-page. 0



8 TOMOHIRO ITAGAKI, KAZUNORI NAKAMOTO, AND TAKESHI TORII

4. HH*(N,,(R), R)

In this section, we show that HH*(N,,(R), R) = N,,(R)" as graded R-algebras. We also ob-
tain several results on op(n) = rankgN,,(R)!. By using these results, it is possible to calculate
HH*(N,,,(R), M, (R)/N,,,(R)) and HH*(N,,(R),N,,(R)) as R-modules. Indeed, M,,(R)/N,,(R)
and N,,(R) have filtrations of N,,(R)-bimodules over R whose associated graded modules are
isomorphic to direct sums of copies of N,,(R)-bimodules R over R. By calculating spectral se-
quences, we will determine the R-module structure of HH*(N,,(R), M,,(R)/N,,(R)) in §5 and
that of HH*(N,,,(R), N,,,(R)) in §8 respectively.

In §4.1], we deal with quadratic monomial algebras A over a commutative ring R. We show that
HH*(A, R) = A' as graded R-algebras. In §2.2 we apply the results in §1]to the case A = N,,,(R)
and determine the R-algebra structure of HH*(N,,(R), R) for m > 2. In §4.3] we obtain several

results on ¢(n) = rankgrN,, (R);,.

4.1. Quadratic monomial algebras. In this subsection, we deal with quadratic monomial alge-
bras over a commutative ring R (cf. [II, Chapter 1 §2]). Let {ei,...,e,} be an R-basis of a free

oo

R-module Vof rank n. Let T(V) = @ V@ be the tensor algebra of V over R. For a subset S of

i=0
{e:®e; e VRrV |1<1i,j<n}, setIs =R{S} CV®RrV. Then we say that Ag =T(V)/(Is)isa
quadratic monomial algebra over R, where (Ig) is the two-sided ideal of T'(V') generated by Is. We
also write Ag = {V, I} according to [IT, Chapter 1 §2]. Note that Ag is a graded R-algebra with
le;] =1 (1 < i <n). Denote by Ags; the homogenous part of Ag of degree i. Then As = R® Ags 1
is an augmented algebra over R with augmentation map € : Ag — R, where As ; = ®;504s,; and
6(AS)+) =0.
Let V* = Hompg(V, R). Let {e},...,el} C V* be the dual basis of {e1,...,e,}. Set

Ig ={feV*®@rV*| f(v) =0 for any v € Is}
and
St=Iin{e®e eV @prV*|1<i,j<n)
Then I3 = R{S1} C V* @ V*. We define the quadratic dual algebra AE.; of Ag by
A =T(V)/(I5),

where (IZ) is the two-sided ideal of T(V*) generated by Ig. The quadratic monomial algebra
Aly = {V*, I£} over R is a graded R-algebra with |ef| =1 (1 <i < n).
Put A= Ag, A' = A!S, I =Ig, and I+ = I3. The degree d part Afi of A' can be described by

Ay =Vl Y Vg Tt @p V).
itj=d—2

Thus, we can write the dual module (A})* = Hompg (A}, R) of A}, by

(A = () V¥erIorV® CVE
i+j=d—2

We define the complex K, (A) of graded free A-bimodules by

i ARR (A @R AL ARp (A) @R AL Ao (A) @r AL Aor A — 0,
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where d; : A®g (A))* @r A — A®gr (A}_|)* ®r A is defined by

Y ava®a®---®a @b

Yt ®a e ®a} ®b+ (- Za®a1®a2 - @ alb.
A

Note that K, (A) is a subcomplex of the reduced bar complex B, (A, A, A). We also define the
Koszul complex K, (A) of graded free A-modules by

s AR (AD L Awg (AL 2 AR (A) 25 4 — 0,
where d; : A ®g (A})* - A®pg (A}_|)* is defined by

Za@ai‘@a%@---@af{|—>Zaai\®a§®---®a;\r
A
Then K, (A) = K,(A) ®4 R.
Using A = @;>0A4;, we obtain the following decompositions:
Ky(A)=Aog (A)" @r A= Ka(A), and  K4(A) = A@g (A)" = P Ka(4)
1>0 1>0
for d > 0, where
KoAy= P Aior(A) @rd; and Ki(A)= P AionA)"
i+d+j=l i+d=l
Here (A%)*(C V@), IA(d(A)l, and K4(A); are equipped with internal degree d, I, I, respectively.
Note that K.(A) = @&;>0K.(A); and K,.(A) = ®;>0K.(A); are the direct sums of subcomplexes.
By the augmentation map € : A — R, R can be considered as a left A-module (or an A-
bimodule). The bar-resolution Bar.(A, R) of the left A-module R is

B Awp A% 25 A Ay 25 A5 R—0,
where B?u/ri(A, R) = A®p AS" and the differential 0; : BE"i(A, R) — E&"i,l(A, R) is given by
i—1 _
dilag®ar® - ®a;) = (-1Yag® - @ aja11 ® - @ a;.
§=0
Let us consider the cochain complex Cob*(A) = HomA(E(Z"*(A, R), R): for i > 0, we have
Cob'(A) = Homa(Bar;(A, R),R) = A%" (i >0), Cob°(A) =R,
Cob'(A) = @ Cobi(4), Cob(A) = T Ay, ®p - @r A, (i > 0),
Jji kit tki=j ks >1
Cob’(A) = Cob(A) =R, Cob"(A)=0 (j>0).
Then Ext’y(R, R) = H'(Cob*(A)) = ®;Ext (R, R) and Ext (R, R) = H*(Cob*7(A)).
Proposition 4.1. Let A ={V,Is} be the quadratic monomial algebra over a commutative ring R
associated to a subset S of {e; ®e; € VRrV |1<14,j5<n}. Then
(1) Ext(R,R) =0 fori# j.
ExtA(R R) = A' as graded R-algebras.

(2) g
(3) Hi(K.(A)) =0 (i >0) and Ho(K.(A)) = A
(4) Hy(K.(A)) =0 (i >0) and Ho(K.(A)) = R.
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(5) R admits a linear minimal graded free resolution as an A-module over R, in other words,
there exists a graded free resolution over R
PP M p R0

such that d; : P, = AQrX; — P;_1 = AQrX;_1 can be described by a matrixz whose entries
are in Ay with respect to R-bases of X; and X;_1, where X; is a graded free R-module for

each i > 0.
Proof. Let X; = V¥ 1 @p Is @ VOI—=1 C V® for 1 < i < d— 1. Since Is = R{S}, the
collection (X1, ..., X4_1) is distributive in the lattice (V®¢ N, U) consisting of free R-submodules

by the same discussion in the proof of [I1l Chapter 1 Proposition 7.1] (¢) = (a). As in the proof
of [T, Chapter 2 Theorem 4.1], we see that () Ext"] (R, R) = 0 for i # j and @) H;(K.(A)) =0
(i > 0) and Ho(K.(A)) = R hold. We can also prove that () Ext’ (R, R) = A' as graded R-
algebras in the same way as [11) Chapter 1 Proposition 3.1]. Since K, (A) gives a linear minimal
graded free resolution of R, (@) holds.

Set T = {(4,7) € [1,...,n] x [1,...,n] | e, ®e; € S}. Let {e],...,e,} be a Z-basis of a
free Z-module Vz. Put Sz = {e] ®@¢; € Vz @z Vz | (i,7) € T}, Is, = Z{Sz} C Vz ®z Vz, and
Az =T(Vz)/{Is,). Then Az is a quadratic monomial algebra over Z and A = Az ®z R. Note that
K.(A) = K,(Az)®z R and K, (A) = K,(Az) ®z R. To show that () holds for K, (A), it suffices to
prove that (3] holds for K «(Az) by Kiinneth theorem. For any field k, Ay = Az ®zk is a quadratic
monomial algebra over k. By [14, Theorem 3.4.6], @) holds for the complex K, (Az) = K. (Az)®zk
of Ag-bimodules over k. Each internal degree component of K, (Az) is a complex of finitely
generated free modules over Z. Using Lemma B2, @) holds for K, (Az). (Note that we can prove
@) holds for K,(A) in the same way.) O

The following lemma has been used in the proof of Proposition .1l

Lemma 4.2. Let C, be a complex of finitely generated free modules over Z. If C, ®z k is acyclic
for any field k, then C, is acyclic.

Proof. By the assumption, H;(Cx ®z k) = 0 for any ¢ € Z. Using Kiinneth theorem, we have an
exact sequence

0— HZ(C*) X7 k — Hl(C'* X7 k) — TOI‘l(Hifl(C*), k) — O,

which implies that H;(Cy) ®z k = 0 for any field k. Since H;(C,) is a finitely generated module
over Z, H;(C.) must be 0. Hence C, is acyclic. O

Remark 4.3. In Proposition @I} we can prove that (@) implies (@) for K, (Ay) with a field k in the
following way. By [I1, Chapter 1 Proposition 4.2], there exists a decomposition K, (Ag) = P. o T,
into the direct sum of two subcomplexes of free graded Ag-bimodules, where P, is minimal and T}
is acyclic. Here we say that P, is minimal if the induced map P11 ®4, k — P; ®4, k vanish for
any i € Z. Using K.(Ag) ®4, k = K.(A}), we have

Hi(K.(Ay)) = Hi(P. ®a, k) ® Hi(T, ®4, k) = {

Thus, we obtain
_ _J 0 (#0),
P1®kk_{ k (i=0).

Since P, has finite-dimensional grading components, P; = 0 for i # 0 by Nakayama’s lemma for

~

noncommutative graded algebras ([I1} Chapter 1 Lemma 4.1]). Hence, H;(K.(Ax)) = H;(Tx) =0
for i > 0. We also see that Ho(K.(Ax)) = k directly.
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Remark 4.4. Let {e7,..., e} } be the dual basis of V* of an R-basis {e1, ..., ey} of a free R-module
V. Let ¢ : V.— V* be the R-isomorphism defined by e; +— ef (1 <i < n). Set A= {V,Is} and
A" = {V* I%}. Then ¢ induces an R-isomorphism (A4%)* — A} for d > 0 and an isomorphism of
chain complexes of A-bimodules over R:

i Ap(AY) orA B Aer(A) ®rA U AspA S A — 0
{ { { I
o —  A@rALb®orA — A®rAi®rA — AorA H A4 — 0,

where p : A®pr A — A is defined by p(a ® b) = ab and the second exact row is given in [12]
Theorem 3]. In other words, K. (A) gives us the free resolution of A-bimodules of A over R which
is isomorphic to the one in [I2] Theorem 3].

Theorem 4.5. Let A = {V,Ig} be the monomial quadratic algebra over a commutative ring R
associated to a subset S of {e;®@e; € V@rV |1<14,j <n}. Then HH*(A,R) = A" as graded
R-algebras.

Proof. By Proposition B @), K, (A)

R. By taking Hom e (—, R) of K «(A), we obtain a cochain complex whose differentials are all 0.

Hence, HH (A, R) = H*(Hom - (K. (A), R)) = Hom« (K;(A), R) = Hompg((A!)*, R) = A..
Let us show that HH*(A, R) = A' as graded R-algebras. Since K, (A) is a subcomplex of the

reduced bar complex B, (A, A, A), we have a morphism of chain complexes f = (f;):

gives us a graded free resolution of A as A-bimodules over

A
A

i ARR(AY)*@rRA B A®p(A)* @rA Y AezrA S A — 0
L f2 LA I fo [
— A®rAT ®rA — A@pAorA — AopA LB A — o,

where A = A/RI and I is the image of 1 € R under the unit map R — A. By taking Hom ¢ (—, R)
of chain complexes, we have

0 — HOHlAe(A(X)RA,R) — HOInAe(A@)RZ@RA,R) —
L ) LIt )
0 — Homa(A®prAR) 5 Homu (A®p(A)* ®rAR) 2

which are isomorphic to

0 — R Y Homp(@,R) % Homp(@AorAR) -
(4.2) lid U L3
o — m % a4 %o o,

This is a quasi-isomorphism of cochain complexes. For g,, = e} ®---®e; € Hompg (A®m, R) and

—®d * * *
ga=¢ej ® --®e;, € Homg(A™ ", R), we have fy (gm) =€}, - -e] € Al and fi(ga) = e -dejd €
Qe ®---®e) € HmnaR(Z@(mJr ),R)
to (A}, 4)" is equal to e} ---ef e¥ ---e; € A .. This implies that HH*(A, R) = A' as graded

R-algebras. g

Aii. The restriction of the product gm - gs =€}, ®---®ej

Proposition 4.6. Let A = {V,Ig} be the monomial quadratic algebra over a commutative ring
R. Let L be an A-bimodule over R. Assume that AyL = LAy = 0, where Ay = ®a>0Aq. Then
HH'(A, L) 2 HH'(A,R) ®r L = A @R L fori > 0.
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Proof. By Proposition 1] @), K, (A) gives us a graded free resolution of A as A-bimodules over
R. Since Ay L = LA, = 0, we obtain a cochain complex with zero differential

0 — Homae (A®rA, L) % Homae (A® g (A})*@rA, L) % Homae (AR g (AY)* @A, L)~ -
by taking Hom e (—, L) of K, (A). This is isomorphic to
0—L-5A orl -5 A el -% ..

Hence

for each 71 > 0. O

Suppose that A = {V,Is} has finite rank over R. Set A = A/RI, where I € A is the image
of 1 € R under the unit map R — A. Denote by A, the degree d component of A. Note that
P

A= EBlezd. Let By(R,A,R) = A®gr---®@r A (p>0) and Bo(R, A, R) = R. For p > 0, set

EP(R,A,R)d: @ Zal ®R-~~®RZQP.
ar+--+ap=d
For p =0, set
= R (d=0),
Barama={ ¢ 950

Let C" (A, R) and 6*’(1(14, R) be the cochain complexes defined by C* (A, R) = Homgz(B,(R, A, R), R)
and ap’d(A, R) = Hompg(B,(R, A, R)4, R), respectively. The differential @ : C* (4, R) — 6”“(A, R)

(resp. d : (A, R) — T"""(A, R)) is defined by

p
F(far @ @app) =Y (1) fla1 @ ®aja41 @ ®ap1)
j=1

for f € C"(A,R) (resp. f € ap’d(A, R)). Since rankrA < oo, we have

C"(A,R) = @PT"(A,R).
deZ

Denoting by HH?**(A4, R) the p-th cohomology of 6*’(1(14, R) as in Notation B we have
HHP (A, R) = @) HHP(A, R).
deZ

Theorem 4.7. Suppose that A ={V,Is} has finite rank over R. For p >0, we have

A, (d=p)
HHPY(A R) =3 “ P ’
am={ ¥ G20
Proof. By Theorem I3, HHP(A,R) = A} for p > 0. By @32, it can be verified that A} C
HHP”(A, R). Hence, HH”*(4, R) = 0 for d # p and HHP?(A, R) = A} O
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4.2. The R-algebra structure of HH*(N,,(R), R). In this subsection, we apply the results in
§4.11 to the case A = N, (R) and determine the R-algebra structure of HH*(N,, (R), R) for m > 2.
Let R be a commutative ring. For m > 2, set

a x
0 a
N (R) = 00 a - = [ M, (R

o
o
IS}

Putting
vy =FEi2, x2=Fz3, ..., Tm_1 = Ep_1,m € Npu(R),

we have an isomorphism N,,(R) = R{z1,%2,...,Tm-1)/(ziz; | j #i+1). Let V=Rz1 & --- &
Rzy—1 be a free R-module of rank m — 1. Set S = {&; ®z; | j #i+ 1} C V®V. Then
N, (R) = {V,Is} is a quadratic monomial algebra over R with |z;| = 1.

We define the two-sided ideal J(N,,(R)) of N,,(R) over R by

J(Nm(R)) = {(aij) € Npu(R) | a1 = aza = -+ = apn = 0}.

Note that J(N,,(R)) = Npp(R)+ = @i>0Npm(R);. When R is a field, J(N,,(R)) is the Jacobson
radical of N,,,(R). We denote (I, mod J(N,,,(R))) € Ny (R)/J (N, (R)) by e. Then we see that
Ni(R)/J(N(R)) = Re =2 R as an Ny, (R)-bimodule over R. In the sequel, the N,,(R)-bimodule
R over R means N,,,(R)/J(N,,,(R)) = Re.

Put N = N,,(R) and J = J(N,,,(R)). Denote by N' = N,,,(R)" the quadratic dual algebra of
N. Note that S+ = {zf ® 2}, | 1 < i < m — 2}, where {«},...,2},_,} is the dual basis of
V* = Hompg(V, R) of the R-basis {z1,...,Zm-1} of V. Setting y; = «f (1 <i <m — 1), we can
write N' = R{y1,v2, .., Ym—1)/(Wiyi+1 | 1 <i < m — 1) with |y;| = 1. Let us denote by N, the
homogeneous part of N' of degree n. We also denote by B(N!) the R-basis of N! consisting of
monomials of degree n in {y1,...,ym—1}. (Set B(N})) = {1}.) Put B(N') = U2 B(N},).

Theorem 4.8. We have an isomorphism
HH*(N7R) = N! = R<y17y27 oo 7ym—1>/<yiyi+l | 1 S 1 S m — 2>

of graded R-algebras, where |y;| =1 for 1 <i<m —1.

OJ

Proof. The statement follows from Theorem (.5

Proposition 4.9. Let L be an N-bimodule over R. Assume that JL = LJ = 0. Then HH"(N, L) =
HH"(N,R) ®r L =N} ®g L for n > 0.

OJ

Proof. The statement follows from Proposition .6l

Let N = N/RI,,. Denote by Ny the degree d component of N. Note that N = @;n:_ll Ng. Set

p
———

B,(N,N,N) =N®rN@g - @r N®gN
/—L\
for p > 0. Let By(R,N,R) =N®g---®rNand Bp(R,N,Rja= € No, ®r- @5Na,.
a1+-+ap=d
Let C" (N, R) and U*’d(N, R) be the cochain complexes defined by C* (N, R) = Homp(B,(R, N, R), R)
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and Up’d(N, R) = Hompg(B,(R,N, R)4, R), respectively. Denoting by HHP%(N, R) the p-th coho-
mology of a*d(N, R) as in Notation B we have
p(m—1)
HH?(N,R) = € HHP'(N,R).
d=0
Theorem 4.10. Forn > 0, we have

N (d=n)
’ﬂ,d ~ n ?
HH (N,R)_{ 0 (d#£n).
Proof. The statement follows from Theorem (.71 O

4.3. Several results on ¢(n). In this subsection, we prove several results on ¢(n) = rankzN!,.
These results will be used in §5l and §6l for describing the ranks of Hochschild cohomology over R.

Definition 4.11. For the R-algebra N' = @22 \N! | set

(4.3) p(n) = rankgN) = 1B(N),),
(4.4) fit) = > (rankgN},) t".
n=0

Note that ¢(n) =0 for n < 0.
Definition 4.12. For 1 <i <m — 1, we define

Coe 0 (n=0),
BN = {{yifezs(NmfeB(N;l)} (n>0).

viln) = EB(N,)(@)  (n>0).
Note that $;(0) = 0 and ¢;(1) =1 for 1 <i <m — 1 and that p(n) = 7" ¢i(n) for n > 1.

Proposition 4.13. We have

1 0 1 1

Pi(n+1) Y1(n)

Pa(n +1) Lo ! Pa2(n)

. = : c . : : (n > 1)
b (n+ 1) o U Vam
and

¥1(1) 1
(1) R
Ui (1) 1

Proof. Recall that 9;(1) =1 for 1 <i < m — 1. Note that y;y;+1 = 0 in Nifor1<i<m-—2.
Since

BN, ) () = BN [ [TwBON) @) [[wBN) @+ 2) [ [T 9:iBON) (m — 1)
for 1 <i<m—1andn > 1, we can verify the statement. ]

Corollary 4.14. For m > 2, we have ¢(0) = 1,0(1) = m — 1, and 9(2) = m? —3m +3. In
particular, p(n) >0 for n > 0.
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Proof. By Proposition 13| we can calculate ¢(n) for 0 < n < 2. (We can also calculate them
directly.) We also easily see that ¥;(n) > 0 for 1 < i < m —1 and n > 0 by induction. Hence,
p(n) =" abi(n) > 0 for n > 0. a

Let Ny be the degree d component of N. Let us define

oo

(4.5) f) = Z (rankgN,, ) t".

n=0

Note that
m—1 m—1

(4.6) FO) =14 (m—ktF =1+ > ktm "
k=1 k=1

By [, Chapter 2 Corollary 4.3], the quadratic monomial algebra N, (R) over R is Koszul when
R is a field. Hence, we have the following formula.

Proposition 4.15. For m > 2,

FOF-H=1
In particular,
Fi(t) = f(l_t) = m—1 1 :
L+ Y (1) (m — k)t*
k=1

Proof. By [I1, Chapter 2 Corollary 2.2] or [7, Theorem 3.5.1], we see that f'(¢)f(—t) = 1if Ris a
field. The formula can be also proved for any commutative ring R since f(t) and f'(¢) are common
to any R. 0

The following lemma will be used in §6

Lemma 4.16. For q > 0, we have

m—1

(@) = 3 (-1 (m — r)pla — 7).

r=1
Proof. Since f'(x)f(—z) = 1 by Proposition EI5, we have
m—1

Zg@(q)xq : <1 + Z(m - k)(—:v)k> =1.

q>0 k=1
Comparing the coefficients of 7 in both sides, we obtain

p(@) = (m = 1)p(g = 1) + (m = 2)p(q = 2) — -+ (=1)" (g = (m — 1)) = 0.
This completes the proof. O
We have another formula for ¢(n).

Proposition 4.17. For n > 0, we have

(4.7) p(n) = (=D)"Y (1) Y (m—a)--(m—a),
r>0 (at,...,ar)
where the second sum ranges over the r-tuples (a1, ...,a,) of integers such that 1 < a; < m for

1<i<randa;+---+a, =n.
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Proof. Recall B.(R,N,R)q = @®a,+.+a,—=d Na; ®r -+ ®r Ng,. Since rankgN, = m — a for
1<a<mand Ny=0,
rankp B, (R,N, R)q = Z(m —a1)---(m—a,),

where the sum ranges over the r-tuples (ai,...,a,) of integers such that 1 < a; < m for 1 <
i < randa + -+ a = d. The rank of ar’d(N,R) = Homg(B,(R,N,R)4, R) is equal to
rankp B, (R, N, R)4. Note that the cochain complex

(4.8) 0— O N,R) — T "(N,R) — T (N,R) —» - --

satisfies that Ur’d(N,R) = 0 for r > d. By taking the Euler characteristic of [A8)) and using
HH"(N, R) = HT(a*yd(N, R)), we obtain

3 (1) rankpHE™ (N, R) = 3 (~ 1) rankpC " (N, R).
r>0 r>0

By Theorem EI0, HH"%(N, R) = 0 for r # d and HH*%(N, R) = N,. Hence,
(—1)%rankz N}, = Z(—l)TrankRar’d(N, R).

r>0
Thus, we have
eln) = rankRN!n
= (—1)”Z(—l)rrankRar’n(N,R)
r>0
= Y Y m—an) e (n—a),
r>0 (a1,...,ar)
which is what we wanted to show. O

By taking account of the appearance of the term (m — 1) (m —2)%2 .. (m — (m —1))*-1 in the
right hand side of (£7) in Proposition [LI7 we obtain the following corollary.

Corollary 4.18. Forn > 0, we have

(49) @)=Y u tjf@.; - '.'Z.::_il’;_l)! (1= m) (2= m)= - ((m—1) —m)im,

where the sum ranges over the (m — 1)-tuples (i1,42,...,im—1) of non-negative integers such that
i1 +2ia+ -+ (m—1)ip_1 =n.

Remark 4.19. Corollary [4.I8 can be also proved by using Proposition .15l Indeed, putting
y == 05 (—1)Fm — k)t = S5 (k= m)(—=)*, we have

£ = =

= =14yt PP+
=) 11—y
by Proposition EI5 Then f'(t) equals to

1

Sy - z{"§<k—m><—t>k}r

r>0 r>0 (k=1

= D (-nmry (htiat - tim)! (1—m)*(2—m)2--((m— 1) — m)in-1,

|
n>0

i1ligl i !
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where the second sum ranges over the (m — 1)-tuples (iy,42,...,4m—1) of non-negative integers
such that i1 + 2ig + -+ + (m — 1)i;,,—1 = n. Comparing the coefficients of t” on both sides, we

obtain (£9)).
5. HH* (N, (R), M, (R) /Ny (R))

In this section, we determine the R-module structure of HH* (N, (R), My, (R) /Ny, (R)) for m > 3.
(The case m = 2 will be discussed in §9) In §5.01 we construct a spectral sequence converg-
ing to HH*(N,,,(R), M,,(R)/N,,,(R)), which collapses from the Fz-page. In §5.21 we show that
HH*(N,,(R),M,,(R)/N,,(R)) is a free R-module by calculating E5'?. We also calculate the rank
of the free R-module HH*(N,,,(R), M;,,(R)/N,,,(R)) by using ¢(n) defined in Definition [L.11]

5.1. Spectral sequences for subquotients of M,,(R). In this subsection we introduce a Z-
grading on the matrix algebra M,,(R). Using this grading, we construct a spectral sequence of

Z-graded R-modules converging to the Hochschild cohomology HH* (Nm(R),]\//f ), where Mis a
subquotient of the Z-graded R-module M,,,(R). Furthermore, we show that this spectral sequence
collapses from the Fs-page.
In this subsection we work in the abelian category of Z-graded R-modules. Let m > 2 and

M = M,,,(R). First, we introduce a grading on M. We can choose a basis

{Eijl 1<4,5 <m}
over R. We define a (homological) degree r component of M by

M, = @ R{E:,}.

j—i=r

Then we can verify that M = @, ., M, is a Z-graded associative algebra over R.

Let N = N,,(R). We can easily see that N is a Z-graded subalgebra of M. For a Z-graded
N-bimodule L over R, we let C*(N, L) be the Hochschild cochain complex. We have

CP(N,L) = Hompg(N®P L)
(N*)®P @R L,

1

where N* = Hompg(N, R). We denote by
CP*(N, L)
the R-submodule of CP(N, L) of (cohomological) degree s. For example, when L = N, we have
Ei1€ C*"YN,N), FE53®I,€C"'(N,N), E},®FE;;®FEy3€C**(N,N),

where {1}, } U{E}; | i < j} is the dual basis of N* with respect to the R-basis {I,} U{E;; | i < j}
of N.
Since the differential d : CP(N, L) — CP*1(N, L) preserves the grading, we have an isomorphism

C*(N,L)= @ C**(N,L)
SEZL

of cochain complexes of R-modules. Thus, we can regard C*(N, L) as a cochain complex of Z-
graded R-modules. We set

(5.1) HH™*(N, L) = H"(C**(N, L))

as in Notation 3.1
Let

J= P R{E:;}

j—i>0
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be the two-sided ideal of N consisting of upper triangular matrices with zero diagonal entries. In
other words, J coincides with J(N,,(R)) defined in §21 By (1), we have the filtration {J"L},>0
on M, which induces a filtration on the cochain complex C*(N,L). Since J is a homogeneous
two-sided ideal of N, we can verify that this filtration is compatible with the grading. Thus, we
obtain a spectral sequence

JEPI(N, L) = HHPTY(N, L)
of Z-graded R-modules by Proposition [3.6] where
JEPY(N, L) = HHPT(N, TP L/7 ).
We note that
JEPI(N,L) =0

for p > 2m — 1 since jzmilL =0.

Next, we consider the following situation. Let M” c M’ ¢ M = M,,(R) be Z-graded N-
sub-bimodules over R. We would like to construct another spectral sequence converging to the
Hochschild cohomology HH* (N, J\//T), where M = M'/M".

For this purpose, we define a filtration {FPM} on the Z-graded R-module M = M,,(R) by
reindexing the filtration {J"M} as follows

FP=(m=UN = J'M = Z JOMIP.
a+b=p

Then we have
M= F~ (=DM 5 prm=DHN 5o FPTIM S FM = 0.
Note that
Gr?(M) = R{E; ;| j —i = p}.
Using this filtration on M, we define a filtration {F P M } on M to be the induced filtration
FPM = ((M' 0 FPM) + M")/M".

Note that Grp(]\/Z) = FPJ/W\/FPHJ\//T is a subquotient of Gr¥(M). Using this filtration on ]\//7, we
obtain the following proposition.

Proposition 5.1. There is a spectral sequence
M pPa(N, M) = HPT9(N, M)
of Z-graded R-modules, where
M pPa(N, M) = HHPT(N, Gr? (M)
We have MEqu(N,]\//T) =0 unless —(m—1) <p<m-—1.

We shall show that the spectral sequence {M EP+4(N, M )}r>1 collapses from the E2-page and that

there is no extension problem. Recall the degree s component M EP:4:5(N, J\/Z) of {MEP4(N, A/Z)}Tzl
in Proposition [3.6]

Lemma 5.2. We have
HHPH(N, Gr?(M)) (s = q),

Mppas(N, M) {
1 0 (s # q).
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Proof. Since J - Grp(]\//f) = Grp(]\?) -J =0 for each p > 0, we have an isomorphism
M pPa(N, M) = HHP*9(N, R) ® g Gr? (M)
by Proposition [£.91 Recall that

!
717d ~ Nn (d = TL),
HH (N,R)_{ i)
by Theorem The statement follows from the fact that Gr? (1\7 ) is a subquotient of Gr? (M) =
R{E;;| j —i=p}. 0

Theorem 5.3. The spectral sequence M EP'?(N, 1\7) = HHPTI(N, ]/\/[\) collapses from the Fs-page
and there is no extension problem.

Proof. By Lemmas B.8 and [5.2] we see that the spectral sequence collapses from the Es-page.

=

We shall show that there is no extension problem. We have a filtration { FP"HH" (N, M)} on the

—

Z-graded R-module HH" (N, M) given by
FPHH™(N, M) = Im(HH"(N, FP M) — HH"(N, M)).
By Lemma 5.2, ¥ EP:9:* = ( for s # q. This implies that the exact sequence
0 — FPTYHH™(N, M) — FPHH"(N, M) — M E2"~?(N, M) — 0
is canonically split. We obtain a canonical isomorphism

HH"(N; M) = (D™ ER (N, M)
p

and hence there is no extension problem. O

In particular, applying Theorem to the case where M = M/N, we obtain the following
corollary.

Corollary 5.4. The spectral sequence
MEP9(N, M/N) = HHP*7(N,M/N)
of Z-graded R-modules collapses from the Es-page. There is an isomorphism

HH"(N, M/N) = @ HH™*(N, M/N) = 5  E1.**(N, M/N)
of bigraded R-modules.
5.2. Calculation of HH*(N,,(R), M,,(R)/N,,(R)). In this subsection, we assume that m > 3.
Let us calculate HH*(N,,(R), M;,(R)/N,,(R)). By Corollary 54, we only need to calculate
EPY(N,M/N). Put F? = FP(M/N) and EP? = EP9(N,M/N). Recall that
M/N = p~(m=1) 5 p=(m=2) 5 p=(m=3) 5 ... 5 p0 = B/N > F' =0,

where B = B,,(R) = {(ai;) € M (R) | ai; = 0for ¢ > j}. It is easy to see that Gr”(M/N) =
FP/FPT! is isomorphic to the direct sum of finitely many copies of R as an N-bimodule over R.
Hence we have

EPY = HHPY(N, R) @ (FP/FPM) = N, @ (FP/F"T),
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Since FP?/FPt! is a free module over R, so is EP'?. Note that rankgz(F~(m—1D/F-(m=2)) —
1, rankp(F~(m=2) /Fp=(m=3)y — 2 rankgr(F~'/F°) = m — 1 and rankg(F°/F') = m — 1.
Then we have

rankREf(mfl)’q olg—m+1),

rankRE;(mfm’q = 2p(¢g—m+2),

rankg B "7V = 3p(q—m +3),
rankz E; 14 = (m—1)e(q—1),

rankp £ = (m—1)e(q),

where ¢(n) = rankgN!, in Definition EITl The R-homomorphism a2 : EP? — EPTH? can be
identified with the connecting homomorphism § : HHPY¢(N, F? /Fr+l) - HHP 9T (N, Fptl/Fr2)
obtained by the short exact sequence 0 — FPH1/Fp+2 s pp/pr+2 o pp/prtl (),

We can write
RE,_p1 @ REs_p2® - @ REp myp (—(m—-1)<p<-1),

P — FPp/Eptl
Gr?(M/N) = F*/F { (RE11 & REzs @ - REpm)/RIm  (p=0).

By Proposition [X1] @), I?*( ) gives us a graded free resolution of A as A-bimodules over R if
A =N. Recall the differential d, : A®p (A)*®@r A — A®g (A),_|)* ®r A is given by [@I)). For
—(m—-1)<p<-—1,

dyt: N ®@GrP(M/N) — N @ GrPPH(M/N)
fRE _p; — Yip1f @ FEip 1+ ()P fy, @ By i

for 1 <i<m+p.
Let us consider the complex

(m—1),q —(m—2),q d(m 3).q

1),q 4y 2 3 At g gd
(m—1),q %1 E (m— )7‘1 1 El (m—3),q LA El l,g %1 N E?’q s 0.

0— E;

We define another complex

5(7” 1),q 5("" 2).q 5("" 3).q 52

2
oy me o= T e Y 0a

0— ¢y (mta

by C% = E for —(m —1) <i < —1, %4 = N, ®r (RE11 ® RE22® -+ ® REp ), 01 = die
for —=(m —1) <i < -2, and

§~ta: C7M =N, ®@Gr '(M/N) — C% =N @g (B, REz)
f®FEit1; — Yif @ Eii + (1) fy; ® Eiy1,i11

for 1 <i <m — 1. Then we have a homomorphism of complexes

0 — (- (m=1)g 57(_>M71)’q C—(m—2)q 57(_>m72)’q L o-ta N (o0 s 0
Lo (m-1) L O—(m-2) 4 ¢—1 1 9o
C(m— d-(m=1).q m— d-(m=2).q d72 q d-La
0 — pym e S prm=2a G D, prie G gl

where ¢; = idpiq for —(m —1) <i < —1 and ¢ : C% = N, ®p (&J~REkk) — EYT =
N, ®r ((®f-,REk )/ RIy) is the projection.

Remark 5.5. We can give an interpretation of CP'? from a viewpoint of spectral sequences. Let
J=J(N,,(R)). As in the case M/N, we put F'? = FP(M/J). We have a filtration

M/J = F/~(m=1) 5 pr=m=2) 5 .. 5 Pl S OS5 'l =0



HOCHSCHILD COHOMOLOGY OF THE QUADRATIC MONOMIAL ALGEBRA N, 21

of A-bimodules over R. We denote by GrP(M/J) the p-th associated graded module F'?/F'P+L,
By Proposition [5.I], we obtain a spectral sequence
EP? = HHPT (N, Gr?(M/J)) = HHPT9(N, M/J)
with
d, E;p,q — E;p-‘rr,q—r-i-l

for r > 1. Then {CP9} = {E"'?} as chain complexes. The homomorphism {CP4 — EP*?} of chain
complexes can be identified with the canonical map of spectral sequences E{"? — EPY.

Set G? = Gr?(M/N) for —(m —1) <p < —1 and G°* = &7 REy ). For —(m —1) <p < —1,
we define the R-homomorphism sPT14 : CP+1a 5 CP4 by

Criia =N, eertt T ora =N, oG
0 if f¢yBN p+q)
f @ Biitpa — F© B =l (~p<i<m—1),
i1 for f' € B(NL, )
f® Emmapt1 — 0 (i=m)

for f S B( p+q+1)

Lemma 5.6. For —(m—2) < p < —1, 67~ L90sP945P11906P9 = jdep,q and s~ (M=2)905—(m=1)a =

idcf(mfl),q:
—(m—1),q 5~ (m 1),q m—2).q §—(m—2).q 524 C1q s—La 0.0
K2 T T K2
(m—1), —(m-2), -2, -1,
0— s C—(m=1)q 0" o—(m=2),q 6 77 F o 010 9% 0. 0.

Proof. Let us prove that s~ (m=2)4 o §=(m=14 — jd._ (., 1),. For f® Eni1 € c—(m=1a —
Ny (1) ®r REm,1,

S—(m—?),q © 6_(m_1))q(f ® Em,l) = 3_(m_2)7q(ym—1f ® Em—l,l + (_1)q_m+2fy1 & Em,?)
= [f®@LEn:.

Hence, s7(Mm=2).q 5 §=(m—1),0 — 1dg—(m—1),q.

Let us show that 6P~19 o sP9 4 sPT1a 6 §P9 = jdrp.q for —(m —2) < p < —1. Note that
CP4 =N, ®p(RE1_p1®REy 5@ & REp ;myp). It suffices to prove that (67719 o sP7 +
P90 §P0)(f @ Ei—pi) = f® Bi_p, for =(m—2) <p< -1,1<i<m+p, and f € BN, ).
Note that

PUFREi—pi) = Yicp1f @ Ei_p1;+ (—1)PT fy @ B iya.
Assume that 1 <i <m+ p— 1 and that f € B(N} ). Then
®Eips (f & yi-pBN, 1 -1))
sPTLa o 6P ( f E,_,;) = { f P P p+q—1/)>
Y i) (=1)PFH f1y @ Bipyita (f =vipf)

Since

o) = { g, VU
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we have
§PH 0 sP(f @ Bip,;)

{ 0 (f ¢ yi—pB(N;!nJrqfl))v
FRE;_p;+ (=1)PTf'y, B i1 i1 (f = vi—pf')

Thereby, we obtain
(51)-141 0P 1 gPtha 4 P (f @ Ei—p,i) =f®Ei_p..

Assume that ¢ = m + p and that f € B(N]!Hq). Then s 0 67(f @ Epmip) = f @ Emmtp-
Since sP4(f ®Em,m+p) =0, 6P 190 sP9(f @ Epmtp) = 0. Hence (51)-141 osP4 4 gptlag P (f @
Erm+p) = [ ® Epy m+p. This completes the proof. O

Lemma 5.7. Let K*9 = N, @grRI,, C C*? =N, @r (> REkk). Then 6~14(C~H)NK% = 0.
Proof. Let # = fo@ Eo1 + f3®@FE3o+ -+ fi®Eii1+ -+ fm @ BEpym—1 € C™1%, where
fi € N;_l (2 <i < m). Note that
5 M Ux) =y1foa ® Brg + (1) foyn + y2fs) Bz + ((—1)9 fay2 + ysfa)Esz + - -
+ (1) fivic1 + vifir1) Eii + -+ (1) frn—1Ym—2 + Ym—1fm) Em—1,m-1
+ (=D fnYm-1 ® Epm.
Suppose that §=14(x) € K%9. Then

(5.2) y1fa = (1) fay1 + 2 f3,
(5.3) (=1)?fayr + yafs = (=1)? faya + y3 fa,
(5m) (_1)qu71ym72 + ymflfm = (—1)quym71-

We can write fo = f} + ya2f4 such that f5 € y1N,_, S ysN, @ @ ym—1N,_, and fi € N _,.
By (52), we obtain
yifs = (=1)%fy + (=)%Y f3y1 + y2 fs,

and hence

(5.4) yifs — (1)1 = p((=D"fsy + fi).
Since the right hand side of (&4]) has the leading term ys, we have y1 f4 — (—1)?f5y; = 0. Hence
y1 /4 = (=1)2fly1. We see that f} = cy'f_1 for some ¢ € R.

Similarly, we can write fy, = f7, + f},ym—2 such that f}, € N} 51 & BN, _5ym_3BN, _5ym_1
and f;; € N} _,. By (G.m), we obtain

(—1)qu,1ym,2 + ymflffln + ymflfflfmym72 = (_1)qfrlnym71a
and hence
(5.5) (=) fm1 + Ym-1r)ym—2 = (=1 Ym-1 — Ym—1[1n-

Since the left hand side of (5.5) has the last term y,,—2, we have (—=1)?f! ym-1 — Ym-1f,, = 0.
Hence Y111, = (=1)0f! ym_1. We see that f/, = dy? ', for some d € R.
By using (0.2), &.3), ..., and @), y1fo = (=1)?fmym—1. Then we obtain
yi(fs +y2fs) = (DU + fnym—2)ym—1,
nfy = (=1)"frnym-1.
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Since f5 = cy?™" and f, = dy '), ey? = (=1)%dy?,_,, which implies that ¢ = d = 0. Hence
yi1fo = y1(fs +y2fy) = y1yafy = 0. Therefore 6~ 14(x) = 0 by (52), (5.3), ..., and (Gml). This
completes the proof. O
Proposition 5.8. For —(m — 1) < p < —1, we have EY'? = 0 for all q. In particular, EY'? = 0
unless p = 0.

Proof. For —(m —1) <p < -2, EP'? =2 HP(C*%) = 0 by Lemma [5.6l For p = —1, let us consider
the commutative diagram with columns exact:

0
1
0 0 K4
1 \ \
T ooza TN ote T g0 g
Lo Lo 1o
W g N pote N poa
1 1 1
0 0 0.
It is easy to see that E; "¢ = H~1(C*%) = 0 by Lemmas [5.6 and 52l The last statement follows
from that EY"? = 0 unless —(m — 1) < p <0. O

We introduce the following claim. This is true for the case R is a field.

Claim 5.9. The R-module Ey? = EY?/Tm dy "% is free.

Under the hypothesis that Claim is true, let us calculate rankREg’q. By taking the Euler
characteristic of the cochain complex

o d-(m=1)q e d-(m=2).q d-24 B —1l.q
O—>E1(m Da El(m Dah N R W D =)
we obtain
0 0
Z (—1)Frankg ES? = Z (—1)*rankp Ef4
k=—(m-—1) k=—(m—1)

—1

= (m-Delg+ >, (D m+kplg+k).
k=—(m-—1)

Since ES4 =0 for —(m — 1) < k < —1 by Proposition [5.8,

—1
rankp 9 = (m—1)p(g)+ Y. (=DF(m+k)e(q+k).
k=—(m—1)
Hence
m—1
(5.6) rankgES? = (m —1)e(q) + (=)™ *ko(q —m + k).
k=1

Now, let us prove Claim To emphasize R, we denote by d; "*(R) : E; “%(R) — EY(R)
the differential d; "9 : E; "% — E9. We can ragard d; "%(S) as dy "Y(R) ®g S for any ring
homomorphism R — S.
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Lemma 5.10. The R-module Eg’q = E?’q/lm d;l’q is a free module over R. The rank of Eg’q
over R is given by (52.4).

Proof. When R is a field, the statement is true. For R = Z, let us consider the exact sequence

i
(5.7) Bz P gy s B0z) —s 0.

Note that Ey?(Z) is finitely generated over Z. Suppose that ES?(Z) has a torsion element z # 0
such that pr = 0 for a prime number p. By tensoring (5.7) by F,, we have an exact sequence

(Fp)

_ dy M U(F,
E; YR, T —" EVYE,) — EyY(Z) @ F, — 0,

which implies that Ey%(F,) = Ey9(Z) ® F,. By tensoring (5.7) by Q, we also have Ey4(Q) =
Eg "Y(Z) @7 Q. By the fundamental theorem of finitely generated abelian groups, dimg Eg UZ) @z
Q < dimg, EYY(Z) ®z F,, which contradicts to the fact that both Ey%(Q) and EY(F,) have the
same rank (5.6). Hence, Eg "Y(Z) has no torsion element. By using the fundamental theorem of
finitely generated abelian groups again, we see that Eg’q(Z) is a free module of rank (B.6]) over Z.

Let us consider the case that R is an arbitrary commutative ring. By tensoring (51) by R, we
have EYY(R) = EyY(Z) @z R. Since EyY(Z) is a free module of rank (5.6) over Z, ES?(R) is also
a free module of rank (5.6]) over R. This completes the proof. O

Theorem 5.11. Let m > 3. The cohomology group HH" (N, (R), M, (R) /N (R)) is a free module
over R for n > 0. The rank of HH" (N, (R), M, (R) /N (R)) is given by

m—1
rank g HH™ (N,,(R), M;,(R) /N,u(R)) = (m — 1)o(n) + Y (=1)™" *ko(n —m + k).
k=1

Proof. The spectral sequence collapses from the Es-page and there is no extension problem by
Corollary 5.4l By Lemma [5.10] Eg '? is a free module over R. The statement follows from that

HH" (Nop (R), My (R) /Nin (R)) = Ey™
and (5.40). O

Recall

> m—1
ft) = Z (rankgN,, (R),)t" =1+ Z Ktk
n=0 k=1
f!(t) = Z (rankRNm(R)!n) 1 — f(l_t) _ — 1
n=0 14+ Z(_l)mfkktmfk
k=1

in (@A), (£4), [@4), and Proposition T5 Let us define
h(t) = Y (rankgHH" (N (R), My (R)/Non (R))) 2"

n=0

Theorem 5.12. Let m > 3. The generating function h(t) is given by
h(t) =14 (m —2)f'(¢).
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Proof. By Theorem [B.11]

ht) = {(m -1+ mz_: (—1)’"*’%’"_’“} Ft)

This completes the proof. O
Corollary 5.13. Let m > 3. The rank of rankgHH" (N,,,(R), M,,(R)/N..(R)) 1is given by

m—1 (n=0),

rankgHH" (N, (R), My (R)/Non (R)) = { (m —2)p(n) (n>0).

Proof. Note that the constant term of f'(¢) is 1. The statement follows from Theorem 5121 O

Remark 5.14. If m = 3, then ¢(n) = n+ 1 for n > 0. We can easily check that the result of
Corollary B.13] is compatible with [9] Theorem 5.4]:

2 (n=0),

rankrHH" (N3(R), M3(R)/N3(R)) = { n+1 (n>0).

Recall that HH™*(N,,,(R), M (R) /Ny (R)) = H™(C**(Ny(R), M, (R) /Ny (R))) (cf. &ID).
By the result above, we have:

Theorem 5.15. Let m > 3. For eachn > 0 and s € Z, HH"*(N,,,(R), M,,,(R) /Ny, (R)) is a free
R-module. The rank is given by

0 (n# ),
rankpHH™* (N, (R), My, (R) /N (R)) = ¢ m—1 (n=s5=0),
(m—2)p(n) (n=s>0).

Proof. As in Corollary B.4] we have
HH"™*(Np (R), M (R)/Nm (R)) = EZ7%° (N (R), M (R) /Non (R))
= By (N (R), M (R) /N (R)).

By the discussion above, we can verify the statement. |

As in the proofs of Claim [(.9] Lemma [5.10, and Theorem [5.11] we can show the following:

Proposition 5.16. Let m > 3. The cohomology group HH" (N, (R), My, (R)/J (N (R))) is a free
module over R for n > 0. The rank of HH" (N, (R), My, (R)/J (N (R))) is given by

m (n=0),

rank g HH" Ny (R), Mo (R)/J (N (R))) = { (m—1)¢(n) (n>0).
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For each n > 0 and s € Z, HH"*(N,(R), My (R)/J(Nin(R))) is a free R-module. The rank is
given by
0 (n # s),
rankpHH"*(N,,(R), M, (R)/J(Nyn(R))) =< m (n=s=0),
(m—1)p(n) (n=s>0).
5.3. The Zariski tangent space of the moduli of subalgebras of M,, at N,,. In the pre-
vious subsection, we have calculated rankgHH"(N,,, (R), M, (R)/N,,,(R)). In this subsection, we

calculate the dimension of the tangent space of the moduli of subalgebras of M,,, over Z at N,,, for
m > 3 by using rankgHH' (N,,(R), M,,(R) /N, (R)).

Proposition 5.17. Let R be a commutative ring. Set
NN, (R)) ={A e M,,(R) | [A,B] :== AB — BA € N,,,(R) for any B € N,,,(R)}.
For m >3, NN,,,(R)) = B;n(R).
Proof. It is easy to see that N(N,,(R)) 2 B,,(R). Let us show that N(N,,,(R)) C B,,(R). Recall
the Z-grading on M = M,,(R) in §5.1¢

M =PM,, where M, = @ R{E,;}.
reZ Jj—i=r
Set N(Np,(R))r = N(N,»,(R)) N M,.. Since N(N,,(R)) = @rezN (N, (R)), and By, (R) = ®r>oM,,
it suffices to prove that N(N,,(R)), = 0 for —(m — 1) < r < —1. Suppose that there exists
xr = alEl_nl + agEQ_ng + -+ am+TEm,m+r € N(Nm(R))T with a) =+ =0a;-1 = 0 and a; 75 0.
If —(m—1) <r < -2, then

[, Eiiv1] = aiFi—rit1 € Np(R).

This implies that a; = 0, which is a contradiction. If r = —1, then
[, Eiiv1] = aiFit1i+1 — aiEi s € Np(R).
Since m > 3, we see that a; = 0, which is a contradiction. Hence, N(N,,(R)) = B,,(R). O

m2—m+2 . .
Set d = rankgN,,(R) = — Recall the moduli of molds Mold,, 4, in other words, the

moduli of rank d subalgebras of the full matrix ring M,,, in [9, §3.1]. We can regard N,,, as a point
of Mold,, 4. Let us consider the Zariski tangent space Thiola,, ,/z,N,, Of Moldy, 4 over Z at N, (for
details, see [9, Definition 3.10]).

Theorem 5.18. The dimension of the Zariski tangent space Tniold,, 4/2,N,, 0f Moldy, 4 over Z at
N, is
3m? —Tm+4

dim T\iold,, 4/Z,N,, = 5

form > 3.
Proof. Let m > 3. For any field k,

dimy, HH' (N (), My (k) /Non (k) = (m = 2)¢(1) = (m — 2)(m — 1)
by Corollaries .14 and 5131 We also see that

m(m + 1)

dimy, N (N (K)) = dimy By (k) = =
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by Proposition 5171 Using [9, Corollary 3.14], we obtain

dim Tioid,, 42N, = dimg HH' (N (k(2)), My (k(2)) /N (k(2))) +m? — dimg N (N (k(2)))
_ 3m? —Tm + 4
— 5
where k() is the residue field of x = N,,. O

Remark 5.19. By Theorem B8, dim Tyola, ,/z,n, = 5 for m = 3. This result coincides with
dim TMold3’4/Z,N3 in [9, Table 2]

Remark 5.20. In the case m = 2, Na(R) coincides with Jo(R) defined in [9, Definition 4.16]. For
any field k, we have obtained

. 1 (ch(k 2),
iy, HH' (No (), M (k) /No (k) = { : ((Cb((k>)7i 2))
by [9, Corollary 4.20]. We also see that
_ | Ba(k) (ch(k) #2),
Ve = { i) (i 22
by [9, Proposition 4.21]. Using [9, Corollary 3.14] or [9, Example 4.22], we obtain

dim TMO]dQYg/Z,Nz = 2)
while Molds 5 = PZ (]9, Example 3.6]).

6. THE R-MODULE STRUCTURE OF HH*(N,,(R),N,,(R))

In this section, we determine the R-module structure of HH*(N,,,(R), N,,(R)) for m > 3. (The
case m = 2 will be discussed in §91) Throughout this section, we assume that m > 3. Set
N =N, (R), B=B,,(R), and J = J(N,,,(R)). In §6.11 we consider a spectral sequence converging
to the Hochschild cohomology HH*(N, N). In §6.2, we show that F%?(B) = 0 unless p = 0,m — 1,
where EV'Y(B) = HHPT?(N,B) is a spectral sequence converging to HH*(N,B). We also show
that E2(B) is a finitely generated free module over R for p = 0,m — 1. In §6.3] we calculate the
rank of E2Y(B) over R for p=0,m — 1. In §6.4] we show that E,"(N) is a finitely generated free
module over R for the spectral sequence EY'Y(N,N) = HHPT9(N,N). In §6.5] we calculate the
rank of E5'?(N) over R for any p. As a result, we determine the R-module structure of HH*(N, N).

6.1. Degeneration of spectral sequences. Recall the filtration {J'N} in 1)) or §5.11 Ob-
viously, J°N = J? as ideals of_ N. By regarding N as a subobject of the Z-graded R-algebra
M = M,,(R), we have FPN = J'N, where FPN = N N FP”M has been defined in §5.11 Using the
filtration {ij}, we have a spectral sequence

JEPI(N,N) = HHPT¢(N, N)
of R-algebras by Proposition By the argument in §5 we see that it can be promoted to a
spectral sequence of Z-graded R-algebras.
Proposition 6.1. The spectral sequence

JEPY(N,N) = HHP"9(N,N)
of Z-graded R-algebras collapses from the Es-page. There is an isomorphism
(6.1) HH"(N,N) = @@ HH™*(N,N) = 5/ ElL**(N,N)

n,s n,s

of bigraded R-modules, where HH™*(N,N) = / En-%$(N, N).
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Proof. Since the filtration {J'N} coincides with {FPN}, the spectral sequence {7 EP¢(N,N)},>
is isomorphic to {M EP9(N,N)},>1 given by Proposition Bl Therefore, these spectral sequences
collapse from the Fs-pages, and there are no extension problems as spectral sequences of Z-graded
R-modules by Theorem This completes the proof. O

Remark 6.2. We can also prove that (G.I)) is an isomorphism of bigraded R-algebras, which will
be proved in §71

In the sequel, we omit J of 7EV'?(N,N). We also write EP4(N) = EP¢(N,N) and EP*%*(N) =
EP%5(N,N). Here we rephrase Lemma [5.2] which will be used later.
Lemma 6.3. We have
! —
P () = { Nb,, @r GP(N) (g=s),
1 =
0 (¢ #s).

When we consider B as a Z-graded N-bimodule, we can obtain a spectral sequence
EYY(B) = HHPT9(N, G1?(B)) = HHP"(N, B)
by Proposition 5.1l For the Z-graded N-bimodule B/N, we also obtain a spectral sequence
EPY(B/N) = HHPT9(N, G1?(B/N)) = HH?"Y(N, B/N).
Then there exist morphisms of spectral sequences
E>*(N) — E**(B) — E>*(B/N).

Note that EV'?(N), E¥"?(B), and EV*?(B/N) are finitely generated free modules over R. Indeed, for

example, EVY(B) = N, ®p GrP(B) is a finitely generated free module over R. Unless 0 < p <

m—1, EP4(N) = EP9(B) = EP4(B/N) =0 for r > 1, since Gr?(N) = Gr?(B) = Gr?(B/N) = 0.
Let us describe results on EF*4(B/N) and HH*(N,,(R), B, (R)/N,(R)). Using

G (B/N)_{ 0 (p#0),

we obtain the following theorem.

Theorem 6.4. Forr > 1,

D,q _ N; ®r (B/N) (p=0),

Forn >0,
HH" (N, (R), B (R) /N (R)) = N, @ (B/N) = N, @p R™ .

In the sequel, if we emphasize the commutative ring R, then we write EP¢(N; R) = EP1(N),
EP4(B; R) = E»4(B), and EP¢(B/N; R) = E?9(B/N), respectively.



HOCHSCHILD COHOMOLOGY OF THE QUADRATIC MONOMIAL ALGEBRA N, 29

6.2. The freeness of EYY(B). In this subsection, we
We also show that F5(B) is a finitely generated free

EPY(B)=N.,, ®r Grp( ) is a finitely generated free

For 0 <p<m -2,

P,q

show that E5'?(B) = 0 unless p = 0,m — 1.
module over R for p = 0, m — 1. Note that
module over R for any p.

d
EPY(B) = Np,y @ Gr"(B) = EPTH(B) = Npig1 ® Gr"*1(B)
()P fypi1 @ B pyo (i=1),
i—1f @ Ei_1;
F® Eiigp — | W OB @<i<m-—p-1),

+(=1)PTH fyity @ B ipta
ymfpflf ® Em—p—1,m (Z =m— p)

for1 <i<m—p.

Definition 6.5. For 1 < p < m — 1, we define an R-h

. -1
omomorphism s”? : EV? — EP™ 1 by

EP9(B) =Ny, ® Gr*(B) 5 EPM(B) =N, , ® G (B)
. . (f:yifR7fR€N;!D+q,1,
o ® Bitvit 1<i<m—p),
J& B ’_) (=1)PTfL @ By (i=1.r¢ leerq 15

0
for 1 <i<m—pand f€B(NL,,).

f fLypafLeNp-‘,-q 1)

(otherwise)

Lemma 6.6. For 1 <p<m —2, sPThdodl? + dp_l’q o s = idprap.

Proof. Let 1 <p<m—2. For1<i<m—pand f €

SP-H,Q fo) dzl)ﬂq(f ® E’i,i+p)

(=1)PH9H frypi1 @ Eapio

0

f® El,p-i-l

= (—1)PHH fryiy @ Bitiypit
fOEiitp

0

f ® Emfp m

For 1 <i<m—pand f € B(N p+q)
dfﬁl’q o S;wz(f ® Ei,z‘+p)

S .

I IA |/\ |

1
1
1
m —
=m —

.

S S~~~
=00 N T

B( p-‘rq)

=1 f—ylfR,fRENerq 1)

=1 f¢y1NP+q 17f fLypva 6I\Ip—i-q 1)7
f¢y1Np+q 1vf¢Np+q lyp)
<m—p—1,f=vyifr, fREN, , 1),
<m_p—1)f¢y’iN;!D+q71)7

pvf_ym ;DvafReNp-i-q 1)
p,f%ym ;DNp—i-q 1)

f®EBipe1 + (=1)P 9 frypr1 © Bz pio (i=1f=wfr frENL 4 1),
f®E1,p+1 (7' =1f ¢ le{ﬂrq nf= fLypva € Np+q 1)7
0 (i=1Ff ¢91Np+q 1fé¢ Np+q 1Yp)s
= fOEiivp+ (0P fRryiyy ® Eiprippn 2<i<m—p—1,f= ysz, frRENL 1),

0 (2<i<m-— p_1f¢yl p+q— 1)
[ ® Em—pm (i=m—=p,f=Ym—pfr, fr ENp+q 1)
0 (i=m-—p, & Ym-— pr+q71)

Hence, we see that sP*1:9 o d]"? + dﬁ)_l’q o sl = idgp.a(p,. |

Proposition 6.7. For 1 <p<m—2, E}‘(B;R) = 0.
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Proof. The statement follows from Lemma [6.6 O
By Proposition [6.7] E5?(B; R) = 0 unless p = 0,m — 1. For p = 0,m — 1, we have the following

proposition:

Proposition 6.8. For p=0,m — 1, EY'%(B; R) is a finitely generated free R-module.

Proof. Let p=0. For R =7, EJ%(B;Z) is a finitely generated free Z-module, since Ey?(B;Z) =

Kerd)"? is a submodule of the finitely generated free Z-module E"¢(B; Z) = N}, ®z Gr°(B). For an
arbitrary commutative ring R, we have an exact sequence

0 — EYY(B;Z) ®z R — EYY(B; R) — TorZ(Ey(B;Z), R)

by the universal coefficient theorem. By Proposition [6.7, Ezl’q(B;Z) = 0 for m > 3. Hence,
EYY(B;Z) ®z R = EYY(B; R). Therefore, EY?(B; R) is a finitely generated free R-module.
Let p = m — 1. By Lemma [6.6] and the diagram

m—3,q m—2,q

d
E{"™(B; R) ~— E{""*"(B; R) = E{""""(B; R) —0
sm—2:a sm—L.a
id id id
-3 it o A 1
E"9(B;R) —— E" 7(B; R) —— E]"” "%(B; R) ——= 0,
we obtain a short exact sequence
0— Imd" >? — E" "(B;R) — Ey" “(B;R) — 0,
which is split by s™ 9. Hence, E" "¥(B;R) = Im d]" *? @ Ey" “%(B;R). For R = Z,
Ey" _1’q(B;Z) is finitely generated free Z-module, since it is isomorphic to a submodule of the

finitely generated free Z-module E"~"(B; Z) = N, q-1 ®z Gr™ ! (B). For an arbitrary commu-
tative ring R, we have an exact sequence

0 — By 1(B;Z) ®z R — By~ "9(B; R) — Tory(Ey"!(B; Z), R)
by the universal coefficient theorem. By Ej“9(B;Z) = 0, Ey* "9(B;R) =~ Ey* "(B;Z) ®z R.
Hence, EJ*"9(B; R) is a finitely generated free R-module. O

Corollary 6.9. Form > 4 and 2 < p < m —2, EY/(N;R) = 0. For m > 3, E;n_l’q(N;R) is
isomorphic to the finitely generated free R-module Egn_l’q(B; R).

Proof. Since E{*(N) — EP4(N) — --- — E"M(N) — 0 is isomorphic to E{"(B) — E7%(B) —
oo = EMB) = 0, EPY(N; R) = EPY(B;R) for 2 < p < m — 1. The statements follow from
Propositions and O

Remark 6.10. Recall that E5'?(N) = 0 unless 0 < p < m — 1. Furthermore, we also see that
EPY(N) =0 unless p = 0,1,m — 1 for m > 3 by Corollary [6.9]

Definition 6.11. Let ¢ > 0. For I = (i1,42,...,1q) with 1 < i1,d9,...,iq < m —1, set yr =
YisYis -+ Uiy, € Nl For I = (i1,ia,...,iq), we define the length |I| of I by g. We also define

2(i, 1) = yiyr @ Eii + (=1 y1y; @ Eiy1441 € Ny @5 Gr%(B) = EP7(B)

for 1 <i<m—1and I with |I| =g.
Let ¢ = 0. We define

Z(i, (Z)) = Z(’L) =y & Ei,i — Y ® Ei+1,i+1 S N|1 SR GI‘O(B) = E?’I(B)
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for 1 <i<m—1. If I =, then put yg = 1 and |§] = 0. For ¢ > 0, set
Z(q) ={=2(,1)]|i=1,2,...,m—1,|I| = q}.

Proposition 6.12. As an R-submodule of EY°(B; R), Ey°(B; R) = RI,,. Forq >0, Ey "' (B;R) =
R{z|z € Z(q)} as R-submodules of """ (B; R) = Nis1 @R GrY(B).

Proof. Note that

0,q+1
BV B R) 2 Ny op GEO(B) o BLUYN(B; R) 2 Ny, 05 Gr'(B)

(=1)%fy1 ® Er o (i =1),
Vi1 f @ Ei_1; .
E;; ' <i<m-—1),
Fo b 7 +(=1)1fyi @ Eijitr @sism-1)
Ym-1f @ Em—1,m (i =m)

for feN,, . Let z=3", i®E;; € EYT(B; R) with f; € N, (1<i<m). Since

d(lqu+1 (2) = {(_1)qf1yl + ylf2} ® E1,2 + -+ {(_1)qu—lym—l + ym—lfm} ® Em—l,ma
z € Kerd) ¥ if and only if

(6.2) (=D fiyr =y fo, (1) faye = yafa, o (D) i 1Umo1 = Y1 fon-
When ¢ = —1, z € Kerd)" if and only if f; = fo = --- = f,, € R. Hence, E5°(B; R) = Kerd)" =
RI,,.

Let us consider EY?T! = Kerd) ! ¢ p)ot! =~ N., 1 ®r Gr(B) for ¢ > 0. It is easy to verify
that z(i, I) € Kerd" "', Conversely, suppose that z = 7" | f; @ E;; € Kerd)™' € E) 9T (B; R)
with f; € NE;+1 (1 <i<m). By ([62), there exists g1,92,-.-,dm—1 € N; such that

fi = o,
fo = (D151 + Y200,
fm1 = (DM g oYm—2 + Ym—19m-1,
Jm = (_1)q+lgmflym71-
Then
z={y11®E11+(-1)" M 1y1 @B o} 4+ -+ {Ym-19m-19Em—1,m—1+ (1) " g 1Ym—1® B}
Hence, z € R{z | z € Z(q)}. This completes the proof. O

Corollary 6.13. As R-modules, EY' (B; R) & R™~ 1.
Proof. By Proposition [6.12]
EJ'(B;R) = R{z(1),2(2),...,2(m —1)}.
It is easy to see that z(1),2(2),...,z(m — 1) are linearly independent over R. Hence, Ey'' (B; R) =
R™—1. g
Proposition 6.14. As quotient modules of E"~ 5~ (" V1B ~ N}, ®r Gt '(B) over R,
BT TDTURY = Reyy @ By n| I = (i, ... ig) i1 # 1,ig #m — 1}
m—1,—(m—1)

for ¢ > 0. Here, we understand that E, (B) = R{1 ® E1} when ¢ = 0. Moreover,

1@ Eim| I = (i1,...,1q),01 # 1,4 m — 1} are linearly independent in pr-bom=biag
Y , q q Y 2

over R.
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Proof. Let us consider
dp Bt gt et Dt S N @ G (B) — BY TN 2 N o GrTL(B).
Since

dT_z’_(m_l)Jrq(yJ @ FEim-1) = (—1)%9sym—1 ® E1,m,

dT_2’_(m_l)+q(y,J ® Ea.m) Y1YJ ® Eim

for |J| = ¢ — 1, we have
Im d" >~ " = R{y @ By | I = (in, ... ,ig),i1 = 1 o1 ig = m — 1},
Hence, we can see that the statement is true. |

6.3. The rank of EYY(B). In this subsection, we calculate the rank of the free R-module E5?(B).
We note that rankg E%?(B) = 0 unless p = 0 or m — 1 by Proposition [6.7 Recall

o(q) = rankRN;z.
for ¢ € Z. We shall show the following theorem:

Theorem 6.15. For each q € Z, we have

©(q) (p=10);
ran a = fils
krEy"(B) @)+ Y (=D k+Delg+m—k—1) (p=m—1).
k=0

6.3.1. The rank of Eg’q(B). First, we calculate the rank of Eg’q(B). In this subsubsection, we show
the following theorem, which claims the formula of rankRE;J ' in Theorem

Theorem 6.16. For each q € Z, we have
rankp Ey¢(B) = ¢(q).
Recall y; in Definition B.111 For ¢ > 0, we have ¢(q) = #B(q), where
B(g) ={0#yr € N| I =(i1,... i)}
We put

©(g;i1 # a)
SD(CLZI 7& (I,iq = b) =

ﬁB(Q7 z.1 7& (1)7
ﬁB(Q721 7é (I,iq = b)u
and so on, where
B(giin #a) = {yr € Blq)| ir # a},
B(Qvll#auzq:b) = {yIEB(Q)| il#auiq:b}u
and so on. For ¢(g;i1 # 1), we have the following lemma.
Lemma 6.17. For ¢ > 0, we have

m—1

plgin #£1) = > (1) plg - 1),

=0

where p(0;i1 £1) =1
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Proof. When ¢ = 0, we have
@011 #1) = 1= ¢(0).

We consider the case when 0 < ¢ < m — 1. We have

o(gsin # 1)

= ¢(q) — (g i1 =1)

= ¢(q) —plqg—1;i1 #2)

= ¢(q) —plg—1) +plg—1;i1 =2)

= ¢(q) —plg—1) +p(g — 241 #3)

- t—1

= (—1)°¢(q—5) + (=1)'0(q —t;i1 At +1)
s=0
q—2

= (—1)%p(q — ) + (=17 p(151 # q)
s=0

= > (-1)°p(g—s)
s=0

We consider the case when ¢ > m. We have

o(qsin # 1)
= (—1)%p(q — )+ (—1)'p(q — tyir # t+ 1)

w
3
OJO

= (—1)%(q — ) + (=1)™p(q — (m — 2);iy #m — 1)

il
LL

= (=1)%¢(q — s).

@
Il
o

This completes the proof.

By Lemma [£16] we have another formula for ¢(g;é1 # 1).

Lemma 6.18. For ¢ > 0, we have

m—2
plgin #£1) =Y (=1)" " (m—1-r)p(q — 7).
r=1
Proof. By Lemma [6.17 we have
m—1
(Qa 1 # 1 + q - T

7":1
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Using Lemma [L.16] we obtain
plqiin # 1)

m—1 —1

(1) m=r)plg—r)+ Y _(=1)"0(q 1)
1

3

I
g

ﬂ
I
=

T

(=) (m = (r+1)p(qg—r)

3
i

|
g

33
P
%) -

= (=D N m—=1—=r)p(q—r).

%
Il

This completes the proof. 0

Now, we calculate rank g ESY(B) for ¢ > 0. Recall z(i, I) in Definition 611l By Proposition 612,
Ey™(B) = R{z| = € Z(¢)}

for ¢ > 0, where
2(q) = (D) i =1,...,m— 1,11 = qb.

Z(gin = {z(1) € Z(@lin#i+lig#i—1},
Hgin = (G0 € B £itlig=i—1),
Bgis = (G0 e3@li=itLig£i-1),
Z(g;i)a = {z2(6,1) € Z(q)| i1 =1+ 1,ig =17 —1}.

Here we understand Z(q;1)2 = Z(g;m)2 = Z2(q;0)5 = Z(g;m—1)5 = Z(q;1)a = Z(¢;m—1)4 = 0.

For any z(i,I) € Z(q;)4, we have z(i, 1) = 0. Note that
2(i,I) = yiyr ® B
for z(i,I) € Z(q;1)2, and
2(6,1) = (=)™ yry; @ Biyri
for z(i,I) € Z(q;4)3. It is easy to see that
R{z(i, 1) | 2(i, I) € Z(g;i)2} = R{z(i = 1, 1) | 2(: = 1,1) € Z(q;7)3}

for 2 <i<m —1and ¢ > 0. Hence, we have

m—1 m—1
BT (B) = Rzl z e | 2@ v U 2(a:2)-
i=1 =2

Proposition 6.19. For ¢ > 0, we have

rankpEy ™ (B) = (m — 1)e(q) — ¢(g; i1 # 1).
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Proof. We can easily see that

m—1 m—1

{z|0#£z€ U Z(q;i)1 U U Z(q;1)2}

i=1 =2

is linearly independent over R. Note that Z(q;1)2 = (). Hence, we have

2 m-—1
rankz B3 (B) SOD #z10#£ 2 € Z(gi)}
r=1 i=1
3 m-—1
= YD #H{z]0#2€ Z(q54) }—Zu{zm#zeZ(q, )}
r=1 i=1 i=1
m—1 m—1
= (o(q) —tB(gi1 =i+ 1,ig=i—1)) — Z 1B(q;i1 =i+ 1,ig #i—1)
i=1 i=1
m—1
= (m-1)plg) = Y _ #B(gir =i+ 1,ig=i—1)
=1
m—1
=) #B(gir =i+ 10y £i—1)
=1
m—1
= (m—1p(g)— Y _ tB(g;ir =i+1)
=1
= (m—1p(q) —plgir #1).
This completes the proof. O

Proof of Theorem[6.10. For q < 0, we have
rankz ESY(B) = 0 = (q).
For ¢ = 0, we have
rankz ES°(B) = 1 = ¢(0)
by Proposition [6.12] For ¢ = 1, we have
rankpEy' (B) = m — 1 = (1)

by Corollaries E.14] and [6.13]
We assume that ¢ > 1. By Proposition [.19, Lemmas [£.16] and [6.I8, we obtain

rankpEy1(B) = (m—1)p(q—1) —@(q— 1;i1 # 1)
= (m—-1p(g—1)+ i (=1)"(m—=1=r)p(g—1-71)

o(q)-
Therefore, we have proved Theorem O

6.3.2. The rank of Ey*"9(B). Next, we calculate the rank of the EJ*~"9(B). In this subsub-

section, we show the following theorem, which claims the equivalent formula of rankgE5"~ ba i

Theorem [6.15]



36 TOMOHIRO ITAGAKI, KAZUNORI NAKAMOTO, AND TAKESHI TORII

Theorem 6.20. For each q € Z, we have
m—1

rankp By’ 1T TUB) = 3 (1M (k + Dg(g — B) + (1) (g — m+ 1),
k=0
For ¢ < 0, Theorem [6.20Q] is true since the both sides of the formula are 0. It suffices to prove
Theorem for ¢ > 0. Let us consider the case when 0 < g < m — 1.

Proposition 6.21. For 0 < ¢ <m — 1, we have
q

rankp By 0T IN(B) = 3 (1) (g — i £ 1),
r=0

where (0541 #1) = 1.
Proof. By Proposition [6.14],
By VT UM(B) = R{y; @ Byl 1= (in,... ig) i1 # 1,ig #m — 1}

Since {yr ® Eim| I = (i1,...,1q),01 # 1,iq # m — 1,yr # 0} is linearly independent over R, we
have

rankRE;nfl’f(mfl)Jrq(B)
= (g1 #L,ig#m—1)
= (g1 #1) —(gin #1,ig=m—1)
= p(g;i1 #1) — (g — 191 # Lyig—1 # m—2)
= plai#1) —elg— L #1) +9(g— L # 1ig-1 =m—2)
= @i #1) —plg—1yi1 # 1) + (g — 2501 # 1,ig—2 # m — 3)
s—1
= D ()plg—rin A1) + (=1)%(q — spix # 1,ig-s #m — (s + 1))
r=0
q—2
= Y (-D"plg—rir # 1)+ (=) oLy # 1,i1 #m—q)
r=0
= ) (=D)7plg —riiz # 1),
r=0
which is what we wanted. O

Proposition 6.22. For 0 < g <m — 1, we have
q

rankRE;nil’f(mleq(B) = Z(—l)k(k + (g — k).
k=0

Proof. By Lemma and Proposition [6.2]] we have

q q-r
rankp By TITB) = Y1) (1) el — )
r=0 s=0

q

= D (-D*(k+1)p(q — k).

k=0
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This completes the proof. O

Let us consider the case when ¢ = m — 1.
Proposition 6.23. We have

m—2

rankp 0 (B) = 3 (1) p(m — 1~ rsiy # 1),
=0

Proof. By the proof of Proposition [6.2T] we have
rankp E5" " (B)
= om—1i1 # Lim1 #m—1)

m—3
= (—1)"p(m =1 —ryin # 1)+ (=1)" (L0 # 1,01 # 1)
r=0
m—2
= (=D)"p(m =1 —mryi1 # 1),
r=0
which is what we wanted. O

Proposition 6.24. We have

rankz By 0 (B) = (=1)™ + (=1)*(k+1Dp(m —1—k).

Proof. By Lemma [6.17 and Proposition [6.23] we have

rankz E5 "0 (B)

m—2

= (=1)"(m —1—riiy #1)
=0
m—2 m—1—r

= YUY Cem—1—r =)
=0 s=0
m—1

= (D (k+)p(m — 1 — k) — (=1)"™"p(0).
k=0

This completes the proof. O

Finally, let us consider the case when g > m.
Proposition 6.25. For g > m, we have

m—1

rankRE;nfl’f(mfl)Jrq(B) = Z (=1)"p(g —r;i1 £ 1).
r=0
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Proof. As in the proof of Proposition [6.21] we have
—1,—(m—1
rankp Ey" (m )+q(B)

= Sp(q;il 75177;q7ém_1)

'
|
—

= 2 (Delg=riin Z )+ (=1)°p(g = 8501 # 1,ig—s #m — (s + 1))

ﬂ
Il
=]

3
w

= (=1)7lg = r3in # 1) + (=1)""2p(q = (m = 2381 # 1,4g—(m—2) # 1)

ﬂ
Il
=]

3
N

I
g

(=D)7lg = r3in # 1) + (=1)" " (g = (m = 2501 # 1,ig—(m—2) = 1)

3
Il
=]

3

I
g

(=1)"p(qg —ryi1 # 1),
r=0

which is what we wanted.

Proposition 6.26. For g > m, we have

m—1

vankpEy U URIB) = ST 1)k + Diplg — k) + (<1)™ (g — m + 1),
k=0

Proof. By Lemma and Proposition [6.25], we have

rankRE;n*l’*(mleq(B)

m—1

= (=1)"p(g — i1 #1)
r=0
m—1 m—1

I
g

ﬂ
Il
=]

S

~
3

—1)

D)"Y (-Dp(g—7—s)
=0
= (—1)*Crp(q — k

wlqg — k),
where
{k+1 (0<k<m-1),
k:

2m—1)—k+1 (m<k<2(m-1)).
By Lemma .16 we have

m—1

()™ > (=D m—k)p((g—m+1) — k)
k=1
= (=D"p(g—m+1).
This completes the proof.

O

Hence, we have proved Theorem [6.20 by Propositions [6.22] [6.24] and [6.261 Therefore, we have

finished the proof of Theorem [6.15]
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Remark 6.27. We consider the cochain complex
(By ™" UTB). ),

where
E§m—1)—Tx—(m—1)+Q(B) ~ Ni]—r R Gr(mfl)fr(B)-
Since
rankRE(mfl)fr’f(mleq(B) =(r+1)plg-—r)

for 0 < r < m — 1, the Euler characteristic of ("~ "™~ 1)+q( B),d;) is given by
x(Ef’f(mleq(B = ym=1 Z (r+1)p(g—r).

For q € Z, we can directly verify that
X(Ey " TUB)) = rankpEy T VYB) 4 (—1)™ trankp By T D T(B)
*,—(m—1
= (&)
by Theorems and

Summarizing the discussion in §6.3] we have the following theorems by Theorems and [6.15]

Theorem 6.28. Let m > 3. The Hochschild cohomology HH" (N, (R), B, (R)) is a free R-module
for n>0. Forn >0, the rank of HH"(N,,(R), B, (R)) is given by
rankgHH" (N,,, (R), B;n(R))
—2
= 2p(n)+ (=)™ Hm—-1Dpn—-—m+1)+ (=D)*(k + Dp(n — k).
1
Theorem 6.29. Let m > 3. Forn > 0 and s € Z, HH"*(N,,(R),B,,(R)) is a free R-module.

Furthermore,

3

=
Il

HH"™*(N,,,(R), B (R)) = Ey ™" (B (R))
as R-modules and
rank gk HH™*(N,,, (R), B/n (R))

o5 B (n=5),
= (=) p(s) + (-D)*k+Dp(s+m—k—1) (n=s+m—1),
0 ’ (otherwise).

3

=
Il

6.4. Freeness of Ey?(N). We have shown that E2?(N) = 0 unless p = 0,1,m — 1 (Remark B.10)
and that Ey'~"(N) is a finitely generated free module over R by Corollary 6.9 In this subsection,
we show that Ey?(N) is a free R-module. We also show that Ey°(N) = R and ESY(N) = 0 for
q# 0.

Proposition 6.30. For ¢ =0, Ey°(N) = R and Ey°(N) — EY°(B) is an isomorphism.
Proof. Let us consider d"° : EY(N) = Nj @ Gr'(N) —» E}°(N) = N} @z Gr'(N). For ¢l,, €
N} @g Gr’(N) = RI,,, with ¢ € R,

m—1
dOOCI Zyzc_cyz ®Ezz+1—0
=1
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Hence, Ey°(N) = Kerd)" = RI,, = R. Since EY°(B) = RI,, by Proposition 512, EJ°(N) —
EYY(B) is an isomorphism. O
Proposition 6.31. For ¢ # 0, EYY(N) = 0.
Proof. Obviously, Ey%(N) = Kerd?? = EY"Y(N) = 0 if ¢ < 0. We only need to consider the case
that ¢ > 0. Let us consider d"? : EY"(N) 2 N} @ Gr”(N) — E}/(N) 2 N}, @ Gr' (N) for ¢ > 0.
Let z € Kerd)?. Note that d)"? can be regarded as a restriction of d"? : E)/(B) — E}'%(B) =
Ell’q(N). As in the proof of Proposition [6.12] there exists g1,92,...,9m_1 € N;,l such that

2=y101 Q@ E1 1+ {1292 + (—1)%1n} @ Bz 0 + -+

+ {ym—lgm—l + (_1)qgm—2ym—2} & Em—l,m—l + (_1)qgm—lym—1 ® Em,m-
Using z € EYY(N) = N, ®r Rl we have
(6.3) 191 = Y292 + (=1)%q1y1 = - = (=1)gm_1Yym—1.
The left hand side and the right hand side of (63) are contained in leE;—l and Niﬁlym_l, re-
spectively. Hence, the both sides of (6.3) are contained in le;_zym,l, while yoga + (—1)%g1y1 €
ygNiz_l + Niz_lyl. This implies that y1g1 = --- = (—1)q+1gm_1ym_1 = 0 and that z = 0. Thus,
we have EyY(N) = Kerd?? = 0 for ¢ > 0. O
Theorem 6.32. For q € Z, E;’Q(N) is a finitely generated free module over R.
Proof. We have an exact sequence of cochain complexes
0 — E7Y(N; R) — F}Y(B; R) — E7Y(B/N; R) — 0.

This induces a long exact sequence
(6.4) ---— EyY(N;R) — EyY(B;R) — EJ*(B/N; R) — E;H’Q(N;R) —

Let ¢ = 0. The map Eg’O(N;R) — Eg’O(B;R) is an isomorphism by Proposition Since
Ey°(B; R) = 0 by Proposition[6.7, we obtain that Ey°(N; R) = ES°(B/N; R), which is isomorphic
to the finitely generated free R-module B/N by Theorem [6.4l

Let g # 0. Since EyY(N; R) = 0 and Ey%(B; R) = 0 by Propositions 631 and 6.7} we obtain an
exact sequence

(6.5) 0 — EJ%(B; R) — EJY(B/N; R) — E,(N; R) — 0.
By the universal coefficient theorem, we have an exact sequence

0 — EyY(N;Z) ® R — Ey“(N; R) — Tor’(E3%(N;Z), R) — 0.
Since E3?(N;Z) is a free Z-module by Corollary £, we obtain an isomorphism
(6.6) Ey9(N;Z) ® R — Ey'(N; R).

Let k be a field. Note that ES%(B;Z) and Ey?(B/N;Z) are finitely generated free Z-modules
by Proposition and Theorem [B.4] and hence that dimy ES?(B;k) = rankzEYY(B;Z) and
dimy, Ey9(B/N; k) = rankz Ey“(B/N; Z) by E,;“(B;Z) = Ey(B/N;Z) = 0 (Proposition 6.7 and
Theorem [64]) and the universal coefficient theorem. By (63) and (66]), we obtain

dimy By Y(N; Z) @ k- = dimy Ey9(N; k)
= dimy, ESY(B/N; k) — dimy, Ey?(B; k)
= ranky EYY(B/N; Z) — rank; Ey4(B; Z).
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This shows that dimg Ey?(N;Z) ® k is independent from the field k. Since each EPY(N;Z) is
a finitely generated free Z-module, E;’Q(N;Z) is finitely generated Z-module. Thus, we see that
E21 1(N;Z) is a finitely generated free Z-module by the fundamental theorem of finitely generated
abelian groups. Hence F,“(N; R) = E,“(N;Z) ® R is a finitely generated free R-module. O

5. The rank of E}'Y(N). Note that rankgpEL?(N) = 0 unless p = 0,1 or m — 1. In this
subsection, we calculate the rank of EY?(N) for p = 0,1, m — 1, which is a finitely generated free
R-module. As a result, we can determine the R-module structure of HH" (N, N).

Theorem 6.33. We have

1 (g=0),
rankp EY4(N) = { 0 EZ#O;
1 m_l (q:0)7
rankpEy(N) =
na () {(m—2)w(q) (¢ #0),
m—1
vk IN) = (<1)(g) + S (<1)F(k + gl +m— k — 1),
k=0

Proof. When p = 0, recall that Ey°(N) = R and ESY(N) = 0 for ¢ # 0 by Propositions and
B31 When p = m—1, since Ey*~"(N) = EJ"~"%(B) by Corollary[6.9) we have rankg Ey*~ "4(N) =
rankp E5"~"9(B), which can be calculated by Theorem .15

We consider the case when p = 1. Recall the proof of Theorem We have an exact sequence

0 — EJY(N) — EJ%(B) — Ey%(B/N) — Ey%(N) — 0.
When ¢ = 0, we have seen that Ey°(N; R) = ES(B/N; R) = B/N. Hence, we obtain
rankp By *(N) = m — 1.
When ¢ # 0, since Eg’q(N) = 0 by Proposition [5.31], we have

rankgpEyY(N) = rankpFEy“(B/N) — rankpEy?(B)
= (m—=1)p(q) —»(qg)
= (m—=2)p(q).
Here we used Theorems [6.4] and 0

Summarizing the discussions above, we have the following theorems by Proposition [6.1] and
Theorem [6.33]

Theorem 6.34. Let m > 3. The Hochschild cohomology HH" (N,,,(R), Ny, (R)) is a free R-module
for n > 0. The rank of HH"(N,,,(R),N,,(R)) is given by

rankp HH" (N, (R), N,,,(R))

2 (n=0),

2m —4 (n=1),
= m—1

p(n) + (m —4)p(n = 1) + (=1)"p(n —m + 1) +Z Fk+Do(n—k) (n>2).

k=
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Theorem 6.35. Let m > 3. Forn > 0 and s € Z, HH"*(N,,(R),N,,(R)) is a free R-module.
Furthermore,
HH™* (N (R), N (R)) = E5 > (N (R))

as R-modules and

rank g HH™* (N, (R), Ny (R))

1 (n=0,s=0),
m—1 (n=1,s=0),

_ ) el (n=s+1,5#0),
(D)) + Y (-D*k+1Dp(s+m—k—1) (n=s+m~—1),
0 - (otherwise).

7. PRODUCT STRUCTURE ON HH*(N,,(R),N,,(R))

In this section, we describe the product structure on HH*(N,, (R), N, (R)) for m > 3. In .11 we
deal with the case m = 3 explicitly, which is different from the case m > 4. In §7.2 we deal with the
case m > 4 in general. In any case, there exists an augmentation map € : HH*(N,,(R),N,,,(R)) —» R

as an R-algebra homomorphism such that the Kernel HH*(N,,(R),N,,(R)) of € satisfies
HH*(N,,,(R),N,,(R)) - HH*(N,,(R),N,,(R)) = 0.
In particular, we see that HH*(N,, (R), N, (R)) is an infinitely generated algebra over R.

7.1. The case m = 3. In this subsection, we set m = 3 and N = N3(R). Recall N' = R(y1,v2)/(y192)
in 21 We define c(i,j) € N' by _
c(i,j) = ysyi € N'
fori,7 > 0. (Set ¢(0,0) = 1.) Then we can describe the homogeneous part N}, of N' of degree n by
N, = R{c(i,j) |i,§ > 0,i+j =n}
for n > 0. Note that ¢(n) = rankgN} =n + 1.
Let us consider the spectral sequence
EP? = HHPT (N, Gr?(N)) = HH?"?(N, N).

By the discussions in §6] we have E? = EP:4 and

20a = { R{c(0,0)® I3} (¢ =0),
- 0 (g #0),
Ric(i,q—i+1)®@ F12,¢(¢+1,0)® B2 3] 0<i<q} (¢>1),
Eld ~ R{c(0,1) ® E1,2,¢(1,0) @ E2 3} (g =0),
0 (¢ <0),
R{c(i,j)® Ersli+j=q+2,i>0,5>0} (¢=>0),
E%0 = R{c(0,0) ® E1 3} (q=-2),
0 (otherwise).

By direct inspection, we obtain the following lemma.

Lemma 7.1. The element ¢(0,0) ® I3 € E%C is a unit of the bigraded algebra EX*. For any
r,s > 1, the product map E2:2 ®p E;gq/ — EngquW' is a zero map.
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We have
F'HH*(N,N) = Im(HH*(N, F'N) — HH*(N, N))
and
EP:4 =~ FPHAPTY(N,N)/FPTHHPTI(N,N).
The map

HH°(N,N) = F°HH°(N,N) — FOHH°(N,N)/F*HH°(N,N) = £%°
gives an augmentation map e : HH*(N,N) — R. Note that
HHY(N,N) = R{c(0,0) ® I3,¢(0,0) ® F; 3}
and
e(c(0,0)®1I3) = 1,
€(c(0,0)® E13) = 0.
We can identify FTHH*(N,N) with the kernel of . By Lemma [Z] the product map
F'HH*(N,N) ®z F'HH*(N,N) — F?HH*(N,N)

is trivial. Hence we obtain the following theorem.

Theorem 7.2. There is an augmentation map € : HH*(N,N) — R such that €(c(0,0) ® I3) = 1
and €(¢(0,0) ® Ey 3) = 0. Let HH (N,N) be the kernel of e. Then we have

HH (N,N)-HH (N,N) = 0.
7.2. The case m > 4. Let N = N,,,(R) for m > 4. Recall that we have a decomposition
C*(N,N) = @ C**(N,N)

SEZ

which is compatible with the filtration. We regard
C?(N,N) = @ C*(N,N)

SEZL
as a Z-graded R-module. Then the triple (C*(N,N),d, {F"C*(N,N)},>0) is a filtered differential
graded algebra in the category of Z-graded R-modules. Thus, we obtain a multiplicative spectral
sequence

EPY(N) = HHPT(N,N)

in the abelian category of Z-graded R-modules (for details, see §3.1 and §3.3)).

Lemma 7.3. Let m > 4. If a € HH' 9N N) and b € HH'T79(N,N), then ab = 0 in
HEp2tatd at+d (N,N).

Proof. By Theorem [6.35] we may assume that ¢,¢' > 0. Let z € EL%7 and y € E;éql’q/ be
elements which represent a and b, respectively. Since E22’q+q,’q+ql (N) = 0 for m > 4 by The-
orem [6.33] Egéﬁq/vqﬁ (N) = 0. Hence zy = 0, which implies that ab is represented by an
element in E7-hatd =mi3.0+¢(N), By Lemma B3] if m > 4, then E7—bLatd —m+3.a+d (N) =
Ein_l"”q/_mw’ﬁq/ (N) = 0. Therefore ab = 0. O

Recall I, € C°°(N,N) is a generator of HH”’(N,N) (¢f Proposition 630 and Theorem B.35).
By the decomposition HH*(N,N) = EBn>O7S€Z HH™*(N,N), we have an augmentation map € :
HH*(N,N) — R as an R-algebra homomorphism such that €(I,,,) = 1 and ¢(HH™*(N,N)) = 0 for
(n,s) # (0,0). We can identify F*HH*(N, N) with the kernel of €. Using Lemma [T.3] we see that
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HH™*(N,N) -HH" (N,N) =0if (n,s) # (0,0) and (n',s") # (0,0). Hence, we have the following
theorem.

Theorem 7.4. Let m > 4. There is an augmentation map € : HH*(N,N) — R such that e(I,,) = 1
for I, € HH*(N,N) and e(HH™ >~ (m=Y(N,N)) = 0. Let HH (N,N) be the kernel of e. Then
we have

HH (N,N)-HH (N,N) = 0.
Corollary 7.5. Let m > 3. The Hochschild cohomology algebra HH* (N, N) is an infinitely gener-
ated algebra over R.

Proof. Suppose that there exists a finite set G = {z; | 1 < i < [} of generators of HH*(N,N) as
an R-algebra. We may assume that x; is contained in HH"** (N, N) for each i. By Theorems
and T4 x;x; = 0 if (ni,8:) # (0,0) and (nj,s;) # (0,0). However, rankgHH**1*(N, N) =
(m —2)p(s) > 0 for s > 0 by Theorem This implies that G can not generate HH*(N, N),
which is a contradiction. Hence, HH*(N, N) is an infinitely generated algebra over R. O

Remark 7.6. By [5l Theorem 7.3], if A = KQ/I is an indecomposable monomial algebra over
a field K, then HH*(A)/N is a commutative finitely generated K-algebra of Krull dimension at
most one, where N is the ideal of HH*(A) generated by the homogeneous nilpotent elements. In
the N,,(K) case for m > 3, N' = HH (N,,(K),N,,(K)) = Kere, and HH*(A)/N = K has Krull

dimension zero.

8. GERSTENHABER BRACKET ON HH*(N,,(R),N,,(R))

In this section, we describe the Gerstenhaber bracket on HH* (N, (R), Ny (R)).
8.1. Cocycle representatives. Set N = N,,,(R) for m > 3.

Proposition 8.1. For ¢ > 0,
Ey4(N,N) = R{yi 191 ® Bi1i — (—1)%ryi @ Ei i1 | 1< i <m,|I| = ¢}
as R-subquotients of Ell’q(N, N) = Ni1+1 ®pr GrH(N). Here, yi 1yr @ Ei_15 — (—1)%yry; @ Ei 41 is
regarded as —(—1)%yryyn @ E12 if i =1 and ym—1Yr @ Em—1,m if { = m, respectively.
Proof. Let M = M,,,(R). We have an exact sequence of cochain complexes
0 — E7Y(N,N) — E7Y(N,M) — E}"(N,M/N) — 0.
This induces a long exact sequence
(8.1) - — EPIN,N) — B3N, M) — E39(N,M/N) — B3 V9N, N) — ---
Since
— 0 — 0 — EMN,B) — E/N,B) — EY(N,B) —
3 3 3 1 3
— 0 — 0 — EYY(NM) — EMNM) — EP(N,M) —
is an isomorphism of cochain complexes, Ey?(N, M) = Ey%(N,B) = 0 by Proposition 6.7l Then
there is an surjection
(8.2) §: EYY(N,M/N) — E}Y(N,N),
Using Eg’q(N,M/N) = N!q ®r (®™,RE;;)/RI,), we obtain a set of generators {y; ® E;; | 1 <

7 S m, |I| = q} Of Eg’q(N,M/N) Since 5(y] [ E”) = Yi—1Yr1 X Ei*l,i — (—1)qy[yz X Ei,i+17 we can
verify the statement. O
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By Proposition Bl the R-module E;’III(N, N) is generated by

Yi1Yr Q i1 — (—U'”yzyi ® Eiit1

for 1 <i <m. Let {I;,}U{E}; | 1 <i < j <m} be the dual basis of {/;,} U{E;; [1<i<j<m}
of Ny (R) over R. For I = (i1,...,i|7)), we set
E; = E;ﬁl;il-‘rlE;;Jz-i-l e E;1\7i\1\+1'

If [I| = 0, then set Ej = 1.

Lemma 8.2. In the cochain complex C*(N,N), the cochain

Y BiBieBy - (-0 Y BBl ©Ei

1<k<i i<k<m
is a cocycle.
Proof. The lemma follows from the following calculations:
d(E};E7 @ E; 5)

= Y EjLELE @By — Y ELELE @Ej+ ()Y ELEE, ® Ei,
k<i i<k<j i<k

d(E;E}; @ Ei ;)
= Y ELEiE, @B — (D) Y EjEfE; ;@ By + (-1 E{E; B, ® Ei .

k<i i<k<j j<k
O
We define
a(i, I) € HHYIFLII(N, N)
to be the cohomology class represented by the cocycle
(8.3) > EpE;@Er:— (-1 > EjE;, @ By
1<k<i i<k<m
Lemma 8.3. The cohomology class a(i,I) corresponds to
Yioryr @ By — (—)/yry @ B
under the isomorphism
HHHLI(N, N) = B3N, N,
Proof. This follows from the fact that
Zl§k<i E; ;ET @ Ey; — (-l Zz‘<k§m ETE]), @ Eik
= B ETQE 1, — (_1)|I|E;E;i+l ® Fi i1
in C*(N, Gr'N). O

Proposition .14 shows that the R-module Ey*~ 177" "(N N) is generated by
Yy & El,m

over R. By the direct calculation, we obtain the following lemma.
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Lemma 8.4. In the cochain complex C*(N,N), the cochain

E?} X El,m
s a cocycle. The cohomology class represented by E% ® Ey ., corresponds to yj ® Ey ., under the
isomorphism HHII=(m=1(N N) =~ E;n_u‘”_(m_l)(N,N).

We define
d(J) e HHII=(m=1 (N N)

to be the cohomology class represented by £} ® E1 .

8.2. Construction of an R-basis of HH*(N,,(R),N,,(R)). In this subsection, we construct an
R-basis of HH*(N,,(R), N,,(R)). We set

1=[l®1] € HH"’(N,N).
By Theorem [6.35 Propositions and Bl and Lemmas and B4 HH* (N, N) is generated by
{1} U{a(i, D) [ 1 <i<m,|I| >0}u{d(J])[|J| >0}
as R-modules. Since
{yr @ Bym| I = (i1,...,1q),01 # 1,iq #m — 1}
is an R-basis of E;nil’qf(mfl)(B) = E;nil’qf(mfl)(N) by Proposition 614
{d(J) | J = (1> dq)sr # Ldg #m— 1}

is an R-basis of R{d(J) | |J| = q}.
Let us consider HH?"1¢(N,,,(R), N,,,(R)) for ¢ > 0. Set

S(@)={I="0(>1,...,1g) | 1 <id1,...5¢ <m—1,yr #0}
for ¢ > 0 and §(0) = {0}. Note that §S(¢) = rankgN,,(R), = ¢(q) for ¢ > 0. By Proposition Bl
and Lemma B3, HH?™(N,, (R),N,,(R)) = Ey%(N,N) is generated by {a(i,I) | 1 <i < m,I €
S(q)} for ¢ > 0. Recall the long exact sequence (G4 in Theorem .32
(8.4) ... — ESI(N,B) = ES9(N,B/N) - E3/(N,N) —> --- .
For1<i<m,letb(i,I) = Ef®E;; € EYY(N,B/N) for ¢ > 0 and b(i,0) = 1® E; ; € EY°(N, B/N)
for ¢ = 0. We see that 6(b(i, I)) = a(i, I). Since .1, b(i,I) = Ef @ I, = 0 € Ey*(N, B/N),
(8.5) a(l,)+a(2,I)+---+a(m,I)=0.
In Definition [6.11] we have defined

26, 1) = yiyr @ Eii + (1) y1y; © Eipr i1 € By "7(N, B)

for I € S(g) and 1 < i < m — 1 (see also Proposition [6.12). Note that n(z(¢,I)) = b(i, (4, 1)) +
(=1)7F'p(i 4 1,(I,1)), where 7 is the R-homomorphism 7 : Ey¢(N,B) — Ey4(N,B/N) in (84).
Since 0(m(2(i, I))) = d(b(i, (i, 1))) + (=1)7*18(b(i + 1, (1,4))) = 0,

(8.6) ali, (i, 1)) + (=) a(i + 1,(1,4)) = 0

for € S(g) and 1 <i<m—1.
Let us construct an R-basis of HHY"14(N N) = E,*%(N,N). Let ¢ = 0. By Theorem B.35
rank g HH"*(N,N) = m — 1. The set {a(i,0) | 1 <i < m — 1} is an R-basis of HH"(N, N), since

a(m,0) = —a(1,0) — a(2,0) —--- —a(m — 1,0)
by &3).
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Let ¢ > 0. By Theorem [6.35, rankpgHHIT¢(N, N) = (m — 2)¢(q). Set
T(q) ={G 1| 1<i<m,IeS(q}
Note that {a(i, I)| (i,I) € T(q)} generates HHYt"¢(N,N) as an R-module.
Definition 8.5. For ¢ > 0, set
T(q):={0,1)eT(q) | I=(i,J) for some J € S(q — 1)}

for 1 <i < m — 1. We also define

T(a)? {(, (i,7)) € T(@)i | ysyi = 0},

T(a)i = {(,(i, 7)) € T(a)i | yoys # 0}
Note that 7 (q); = T(¢)? 1T (¢)} forg>0and 1 <i<m—1.
Lemma 8.6. Let 1 <i<m — 1. For (i,(i,J)) € T(q)?, a(i, (i,J)) = 0. For (i,(i,J)) € T(q)},
(8.7) a(i, (i, J)) + (=1)%a(i + 1,(J,4)) =0
Proof. By direct calculation and (8.6, we can verify the statement. g
Definition 8.7. For ¢ > 0, set

(QT@QU(UuﬂmuwM@@MENmQUT@;1

U(U«m@ﬂn@@MeﬂmQ

U{(mv(m_lv‘]) | (m_lv(m_le))ET(Q)von—l}
U{(L(m_lvj) | (m_lv(m_lv‘])) ET(Q)}n—l}

T@"=T@\T()"-
Note that £7(g) = mep(q), 1T (q)™ = 231" 47 (q)i = 2¢(q), and 47 (¢)* = (m —2)¢(q) for ¢ > 0.
Proposition 8.8. For ¢ > 0, {a(i,I) | (i,I) € T(¢)*} is an R-basis of HHITHI(N,N) =
Ey?(N,N).
Proof. Set T = R{a(i,I) | (i,I) € T(q)*}. Let us show that 7 = HH?"™9(N,N). Tt suffices
to prove that a(i,I) € T for any (:,I) € T(q)~. If (i,1) € (Uy;_ll T(q)?), then a(i,I) =
0 € T by Lemma B8 We easily see that T(¢)} C T(¢)" for 1 <i < m—2. Put T (¢) =
U2 {6+ 1,(14) | G, (i, J)) € T(q)}}. If (i, 1) € T~ (q)', then a(i,I) € T by &1). If (i,1) €
U2 {(m, (i, ) | (G, (i, ) € T(q)s}, then a(i, I) € T, since

and

R{ a(i, (i, J)) UT }+R{a(i71)|(ia~’)€7'(Q)/}QT
and
(8.8) a(i,I) == a(j,I)
J#i
by B3). For (i,I) € {(m,(m—1,J) | (m—1,(m J)) € T(q)%_1}, we see that a(i, ) € T by

using a(m — 1, (m — 1, J)) =0,a(j,(m—-1,J)) €T for 1<j<m-—2and (88). Summarizing the
discussion above, we have a(i,I) € T for any (i,I) € T(q) with ¢ # 1,m — 1.
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For (m —1,(m —1,J)) € T(q)L,_;, let us prove that a(1, (m —1,J)),a(m —1,(m —1,J)) € T.
By () and (ES),

alm—1,(m—1,J)) + (=1)%(m,(J,m—1)) = 0,
a(l, m—1,J)+al2,(m—-1,J)+ - +alm—1,(m—1,J))+a(m,(m—-1,J)) = 0.

Using a(j, (m — 1,J)),a(m,(J;m — 1)) € T for j # 1,m — 1, we obtain a(1, (m — 1,J)),a(m —
1,(m—-1,J)) eT.
Hence, a(i,I) € T for any (i,I) € T(¢q)~ and T' = HH?""9(N, N). Since rankgHH?""9(N,N) =
1T () = (m —2)p(q), {a(i, 1) | (i,I) € T(g)*} is an R-basis of HHIT¢(N, N). O
By the discussion above, we obtain the following corollary.
Corollary 8.9. We have an R-basis

S :{utmmﬂy“ﬂm%4ﬁnU<UamJn@neT@ﬂ>

q>0

U UL 1T = G- vda)sdn # 1,dg #m — 1}

q=>0
of HH" (N (R), Nip (R)).
8.3. Gerstenhaber bracket. In this subsection, we calculate the Gerstenhaber bracket [, ] of

HH"*(N,,,(R), N (R)). By Corollary B9, we have the R-basis S of HH*(N,,(R),N,,(R)). For
investigating the Gerstenhaber bracket on HH* (N, N), we only need to calculate [z, y] for z,y € S.

We easily obtain the following lemmas.
Lemma 8.10. For any z € HH**(N,N), we have
[1,z] =0.
Lemma 8.11. For any J,J', we have

[d(.7),d(J")] = 0.

Next, we will calculate [d(J), a(i, I)].
For I = (i1,...,41)), J = (j1,..-,44), and 1 < k < |I], we set

JZI: (jlu'"7.7./@—177;17'"7iu\7jk+17"'7j\,]\)'

We also set

Jr)y={ke{1,2,..|J|} jx =r}.
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Proposition 8.12. We have
[d(J),a(i, )]

(~)Maer, ) - 3 (AT o (1,1)) (i=1),

keJ(1)

_ Y eI -1, ) - 3 (-0 o (L) (1< <m),

keJ(i—1) keJ(i)

> (=nEilagg o (m—~1,1)) - (=D)MIAT=Dg( g, 1) (i = m).
keJ(m—1)

Next, we will calculate [a(i, ), a(i’, I')].

Lemma 8.13. Letz = 2 + 22+ + 2™~ € CPTL2(N,N)NC" (N,N) and y = y* +y% + - +
ym e C1L(N)N) ﬁ€q+l(N,N) be cocycles, where x* € CPTY(N, F'N) and y* € C9TH(N, F*N).
Then we have

roy=a'oy' mod CPTITI(N, F?N).
Proof. Since z' € CPT1P(N,N) N 6”*1(N, N), 2! is a linear combination of

* *
{EilyilJrlEizqinrl - E

?p+17ip+1+
modulo CPT1(N, F2N). It is easy to see that z' o (y?> +--- +¢y™ 1) =0 mod CPT¢ (N, F2N).
Hence, we can verify the statement. O

1®Ei,i+1 | 1 §i1,i2,...,ip+1,i§m—1}

Lemma 8.14. Let x = z* + 2% +-- -+ 2™~ € CPT1P(N,N) ﬁ@pH(N,N) andy =yl +y%+---+
ym e C1L(N)N) ﬁ€q+l(N,N) be cocycles, where x* € CPTY(N, F'N) and y* € C9TH(N, F*N).
Let [z],[y] € HH*TV*(N,N) be the cohomology classes represented by x,vy, respectively. Then the
element of Ey*T9(N,N) that corresponds to the Gerstenhaber bracket [[z], [y]] € HHPF2HLPHe (N N)

is represented by x' oy — (—1)U=I=D(yI=Dgyl o g1,

Proof. By Lemma BI3 [z,y] = ' o y' — (=1)IzI=D¥I=Dyl 6 21 mod CPT9tY(N, F2N). The
proposition follows from the isomorphism HHPY?F1PHe(N N) =~ E}PTY(N N) since [[z],[y]] €
HHPHat+1pta (N,N). 0

We set
A, I, 1)

= > (—1)’“”/|a(i,lz(i’—l,I’))— > (—1)(’““)”/‘(1(@',]2(I’,z”))

kel(i’'—1) kel(i’)

_(_1)”"]/‘ Z (_1)k|1|a(ilvll 2 (z - 171)) - Z (_1)(k+1)‘1‘a(ilvll 2 (Ivi))

kel’(i—1) kel (i)
By direct calculation, we have the following proposition.
Proposition 8.15. We have
A, 1, T') (i # ),

[a(i’m’a(i’”]_{ AG, L, 1)+ ai, (1)) = (=)W (i, (1,1)) - (i =),
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8.4. Batalin-Vilkovisky structure on HH*(N,,(R),N,,(R)). Recall that a Batalin-Vilkovisky
algebra is a Gerstenhaber algebra (A*,U, [, ]) with an operator A : A* — A*~1 of degree —1 such
that Ao A =0 and

(8.9) [a,b] = (=D)IA@@UD) — A(a) Ub— (—1)?la U A(D)}

for homogeneous elements a,b € A* (see, for example, [I, Definition 3.6]). In this subsection,
we consider the question whether the Hochschild cohomology HH* (N, (R), N,,,(R)) has a Batalin-
Vilkovisky algebra structure over R which gives the Gerstenhaber bracket [, | or not.

Lemma 8.16. Let A be an associated algebra over R such that A is a projective module over
R. Assume that HH*(A, A) UHH'(A, A) = 0 for any k,1 > 0. If there exist a € HH*(A, A) and
b e HH'(A, A) with k,1 > 2 such that [a,b] # 0, then HH* (A, A) has no Batalin-Vilkovisky algebra
structure over R which gives the Gerstenhaber bracket [, |.

Proof. Suppose that HH*(A, A) has a Batalin-Vilkovisky algebra structure which gives the Ger-
stenhaber bracket [, ]. By (89) and aUb = A(a)Ub = aUA(b) = 0, we obtain [a, b] = 0, which is a
contradiction. Hence, HH*(A, A) has no Batalin-Vilkovisky algebra structure which gives [, |. O

Let us show that HH* (N, (R), N,,, (R)) has no Batalin-Vilkovisky algebra structure over R giving
[, ] for m > 3.

Lemma 8.17. Let m > 3. For a(1,(1,1)),a(1

,(2,1)) € HH**(N,p (R), Non (R),
[a(1, (1, 1)), a(1, (2, 1)

)] =a(1,(2,1,1,1)) # 0.

Proof. By Proposition BI5 [a(1,(1,1)),a(1,(2,1))] = a(1,(2,1,1,1)). Since (1,(2,1,1,1)) €
T(4)", a(1,(2,1,1,1)) # 0 by Proposition B8 O

Theorem 8.18. For m > 3, HH"(N,,(R),N,,(R)) has no Batalin-Vilkovisky algebra structure
over R which gives the Gerstenhaber bracket [, ].

Proof. The statement follows from Theorems and [[4] and Lemmas and BTT O

9. APPENDIX: THE CASE m = 2

In this appendix, we deal with No(R) for a commutative ring R. Set N = N3(R). Putting x =
E12 € N, we see that N 2 R[z]/(2?). Throughout this section, we set Ann(2) = {a € R | 2a = 0}.
We introduce the following proposition without proof, which gives a projective resolution of N over
N¢ = N ®gr N° over R.

Proposition 9.1 ([4, Proposition 1.3], [I3} Example 2.6]). The following complex gives a projective
resolution of N over N¢:

(9.1) s N® I NE s N N S N 0,

where
[ (z®1+1®x)(a®Db) (i:even),
di(“®b)_{ (t®1-10z)(a®b) (i:odd)
and p(a ® b) = ab.

In [9], we have calculated HH" (N2(R), M3(R)/N2(R)) by using the projective resolution above.

Theorem 9.2 ([9, Proposition 4.19]). We have

HH"(N2(R),M2(R)/Na(R)) = { ﬁ g é; /r;% ((Z :; i)v;g)).’
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Corollary 9.3 ([9, Corollary 4.20]). Let k be a field. For each n >0,
n ~§ k (ch(k)#2),
HE" (N () Mo/ Na () = {072
By using the same discussions in §5.11and §5.2] we also have the following result.

Theorem 9.4. For eachn >0 and s € Z,

R (n:even,s =n),

Ann(2) (n:even,s =n+1),
HH™*(N2(R),M3(R)/N2(R)) =< R/2R  (n:odd,s =n),

R (n:odd,s =n+1),

0 (otherwise).

Next, let us consider HH"(N3(R),N2(R)). By taking Homye(—,N) of (@I)), we obtain the
following complex

*

0 —» Home (N, N) -2 Hompye (N, N) -2 Homye (N¢,N) -2 ... |

which is isomorphic to

6/1 6/2 6/3
0—N-—N-—7N-—7---|

where §’* : N — N is defined by

/i 2za (i :even),
0 (“)_{ 0 (i:odd).

Thus, we obtain

Theorem 9.5. We have
N3 (R) (n=0),
HH"(N2(R),N2(R)) 2 < Na(R)/(2E12N2(R)) 2 R® (R/2R) (n:even,n > 0),
RE; 2 ® Ann(2)I, 2 R @ Ann(2) (n : odd).

Notice that HH" (N3 (R), N2(R)) is not a free R-module in general, which is different from the
case N,,(R) for m > 3.
Third, let us consider the product structure on HH"(N2(R),Na(R)). Set N = N/RI; = Rz.

Recall the reduced bar complex B,(N,N,N) = N®pg N g r N. Let us consider a homomorphism
of chain complexes

i — NoagN??@gN — N@zgN@gN — NozgN ““5 N — 0
(9.2) f2d fid fod [

s, Ne Sy Ne AN BN 0,
where f, : B,(N,N,N) = N®pg N®” ®z N — N¢ is the N®-homomorphism defined by [p(x®P) =
I, ® I for p > 0. By taking Homye(—,N) of ([@2), we have a quasi-isomorphism of cochain

complexes
11 5/2 6/3
0 — N — N — N —
3 3 3
—0 st =1 52 =2 5°
0 — C(NNN) — C(N,N) — C'(N,N) — -+
where
C?(N,N) = Homye (N ®z N7 @5 N, N) = Homp (N7, N).
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For p > 0, we define f,,gp € C”(N,N) by
fp(x®p) = I27
gp(2®7) = B,
respectively. Then C"(N,N) = R fp @ Rgp. By rephrasing Theorem [0.5] we obtain
Theorem 9.6. For n > 0, we have
RfO®Rgo (’I’L:O),
HH"(N2(R),N2(R)) =< Rfn® (R/2R)g, (n:even,n>0),
Ann(2)f, @ Rgn, (n:odd).
By direct calculation, we obtain the following theorem.
Theorem 9.7. For any a € HH*(N3(R),N2(R)), foa = afo = a. Fori,j >0, we have
fifi = [fifi = [+
figi = 9ifi = i+
9i9; = 0.
Remark 9.8. For an odd integer ¢ > 0, if a; € Ann(2), then a;f; € H_H_i(Ng(R),Ng(R))
Ann(2)f; © Rg;. For an even integer j > 0, (a;fi)g; = aigir; € HH/(No(R),N2(R))
Ann(2) fiy1 @ Rgi+j is well-defined.

Remark 9.9. Theorem [0.7is compatible with the result in [6] Theorem 7.1]: Let k be a commu-
tative ring with ch(k) = p, where p is a prime number or 0. For Ay = k[X]/(X?), the Hochschild
cohomology ring of A, has the following structure

* ~ k[w,y,z]/(x2,y2—2’) 1fp:2
HI (4,) = { klz,y, 2]/ (2*, 222, yz,y®) if p#2and 2 € kX,

where degz = 0,degy = 1, and degz = 2. (Note that ¢ in [6 Theorem 7.1] is needed to be
regarded as n.)

Remark 9.10. We can show that HH*(N3(R),N3(R)) is a finitely generated algebra over R if
and only if Ann(2) is a finitely generated ideal of R. Indeed, the “only if” part follows from that
HH'(N3(R),No(R)) = R @® Ann(2). If Ann(2) = Raj + --- + Ras, then HH*(Ny(R),No(R)) is
generated by

IR

{fovgoaalfla B aasflagla f2}
as an R-algebra. In particular, if R is a noetherian ring, then HH*(Ny(R),N2(R)) is a finitely
generated algebra over R.

By calculating E5'%*(Ny(R), N2(R)) in §6.1] directly, we also have the following result.

Theorem 9.11. For each n >0 and s € Z,
(n=0,s=-1),
(n:even,n =s2>0),
(n:even,n=s+12>2),
nn(2) (n:odd,n=s2>1),
(n:odd,n=s4+12>1),
(otherwise).

Finally, let us consider the Gerstenhaber bracket on HH" (N2(R), N3 (R)). We can easily verify
the following result.
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Theorem 9.12. We have

[fi, f;] = 0 (i,5>0),

0 (i :even, j:even),
[firg;] = fixj—1  (i:0dd, j:even),

ifitj—1  (J:odd),

0 (i : even, j: even),
9i0;] = —(j —1)gitj—1 (i:odd, j:even),
9093 (0 —1)gitj—1 (i : even, j:odd),

(i—5)givj—1  (i:odd, j:odd).
Suppose that R is a field k of characteristic ch(k) # 2. Then

kf0®kgo (’]’L:O),
HH"(No(k),Na(k)) 2 < kfy (n :even,n > 0),
kgn (n :odd),

where fj is the unit and fo, = 3", g2n+1 = f591 = 9115, f290 = g0f2 = gog1 = 9190 = 0 for n > 0.
In particular, HH* (N3 (k), N2(k)) is generated by go, g1, f2 as a k-algebra.

Theorem 9.13. Let k be a field of characteristic ch(k) # 2. For ¢ € k, define an operator
A, : HH*(Ny(k), No(k)) — HH*'(Na(k), No(k)) by

Ac(fo) = Ac(go) =0,
Ac(g1) = fo + cgo,
Ac(fon) =Ac(f3)=0  (n>0),
Ac(gant1) = Ac(f3'g1) = 2n+ 1) f2 (n>0).

Then A. gives HH*(N2(k), N2(k)) a Batalin-Vilkovisky algebra structure which induces [, |. In
particular, Batalin-Vilkovisky algebra structures on HH*(Na(k), Na(k)) giving [, ]| are not unique.

Proof. By direct calculation, we can verify (8.9). |

Suppose that R is a field k of characteristic ch(k) = 2. Then
HH" (N2 (k),Nao(k)) = kf, ® kgn (n >0),

where fy is the unit and f, = f' gn = fl'go = gof, g3 = 0 for n > 0. In particular,
HH*(Ny(k),No(k)) is generated by go, f1 as a k-algebra.

Theorem 9.14. Let k be a field of characteristic ch(k) = 2. For ¢, € k, define an operator
Ao HH*(No(k), No(k)) — HH* "1 (Ny(k), No(k)) by

Acer(fon) = Docr(gan) =0 (n > 0),
AC,C’(f2n+1) = Cf2n + C/gzn (n > 0),
Ac,c’ (g2n+1) - _f2n + CGdon (n 2 0)

Then A. o gives HH*(N2(k),Na(k)) a Batalin- Vilkovisky algebra structure which induces [, ]. In

particular, Batalin-Vilkovisky algebra structures on HH*(Na(k), Na(k)) giving [, ]| are not unique.

Proof. By direct calculation, we can verify (8.9). O
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