Japanese / English
山梨大学 医学教育センター 発生生物学
ホーム 研究内容 研究業績 メンバー 募集・アクセス
研究業績

1. 原著論文

64) Suzuki H, Ogawa T, Fujita S, Sone R, Kawahara A.
Cooperative contributions of the klf1 and klf17 genes in zebrafish primitive erythropoiesis.
Scientific Reports 13, 12279 (2023)
63) Suzuki T, Hirai Y, Uehara T, Ohga R, Kosaki K, Kawahara A.
Involvement of the zebrafish trap gene in craniofacial development.
Scientific Reports 11, 24166 (2021)
62) Sone R, Taimatsu K, Ohga R, Nishimura T, Tanaka M, Kawahara A.
Critical roles of the ddx5 gene in zebrafish sex differentiation and oocyte maturation.
Scientific Reports 10, 14157 (2020)
61) Nguyen VT, Bian L, Tamoaki J, Otsubo S, Muratani M, Kawahara A, Kobayashi M.
Generation and characterization of keap1- and keap1b-kockout zebrafish.
Redox Biology 36, 101667 (2020)
60) Suzuki H, Ishizaka T, Yanagi K, Sone R, Ohga R, Houhoh H, Kawahara A.
Charaterization of bilk/klf17-deficient zebrafish in posterior lateral line neuromast and hatching gland development.
Scientific Reports 9, 13680 (2019)
59) Yanagi K, Sone R, Ohga R, Kawahara A.
Involvement of the centrosomal protein55(cep55)gene in zebrafish head formation.
Genes to Cells 24, 642-649 (2019)
58) Iwasaki R, Tsuge K, Kishimoto K, Hayshi Y, Iwana T, Houhoh H, Inazumi T, Kawahara A, Tsuchiya S, Sugimoto Y.
Essential role of prostaglandin E2 and the EP3 receptor in lymphatic vessel development dueling zebrafish embryogenesis.
Scientific Reports 9, 7650 (2019)
57) kise R, Okabe R, Kano K, Inoue A, Kawahara A, Aoki J.
Identification and biochemical characterization of a second zebrafish autotoxin gene.
J. Biochem. 165, 269-275 (2019)
56) Hirayama J, Alifu Y, Hamabe R, Yamaguchi S, Tomita J, Maruyama Y, Asaoka Y, Nakahama K, Tamaru T, Takamatsu K, Takamatsu N, Hattori A, Nishina S, Azuma N, Kawahara A, Kume K, Nishina H.
The clock components Period2, Cryptochrome 1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythm and/or total activity levels in zebrafish.
Scientific Reports 9, 196 (2019)
55) Kawahara A, Morita H, Yanagi K, Ishizaka T, Taimatsu K, Ohga R.
Developmental expression of the slurp-like1/ly2.3/ly97.3 and slurp-like2/ly2.2/ly97.2 genes during zebrafish early embryogenesis.
Gene Expr. Patterns 30, 32-36 (2018)
54) Kawahara A, Morita H, Yanagi K, Suzuki H, Mori T, Ohga R, Taimatsu K.
Spatiotemporal expression of the cocaine- and amphetamine-regulated transcript-like (cart-like) gene during zebrafish embryogenesis.
Gene Expr. Patterns 30, 1-6 (2018)
53) Hino H, Nakanishi A, Seki R, Aoki T, Yamaha E, Kawahara A, Shimizu T, Hibi M.
Roles of maternal wnt8a transcripts in axis formation in zebrafish.
Dev. Biol. 434, 96-107 (2017)
52) Takeuchi M, Inoue C, Goshima A, Nagano Y, Miyamoto H, Shimizu T, Hashimoto H, Yonemura S, Kawahara A, Hirata Y, Yoshida M, Hibi M.
Medaka and zebrafish contactin1 mutants as a model for understanding neural circuits for motor coordination.
Genes Cells 22, 723-741 (2017)
51) Ota S, Taimatsu K, Yanagi K, Namiki T, Ohga R, Higashijima S, Kawahara A.
Functional visualization and disruption of targted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish.
Scientific Reports 6, 34991 (2016)
50) Mikami S, Nakaura M, Kawahara A, Mizoguchi T, Itoh M.
Mind bomb2 is dispensable for embryonic development and Notch signaling in zebrafish.
Biology Open 4, 1576-1582 (2015)
49) Stödberg T, McTague A, Ruiz AJ, Hirata H, Zhen J, Long P, Farabella I, Meyer E, Kawahara A, Vassallo G, Stivaros SM, Bjursell MK, Stranneheim H, Tigerschiöld S, Persson B, Bangash I, Das K, Hughes D, Leuko N, Lundeberg J, Scott RC, Poduri A, Scheffer IE, Smith H, Gissen P, Schorge S, Reith MEA, Topf M, Kullmann DM, Harvey RJ, Wedell A, Kurian MA.
Loss-of-function mutations in SLC12A5 encoding the potassium-chloride co-transporter KCC2 in migrating partial seizures of infancy.
Nature Communications 6, 8038 (2015)
48) Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A.
Efficient multiple genome modifications by the tracrRNA, crRNA and Cas9 protein complex in zebrafish.
PLoS One 10, e0128319 (2015)
47) Hisano Y, Inoue A, Taimatsu K, Ota S, Ohga R, Kotani H, Muraki M, Aoki J, Kawahara A.
Comprehensive analysis of sphingosine-1-phosphate receptor mutants during zebrafish embryogenesis.
Genes to Cells 20, 647-658 (2015)
46) Hisano Y, Inoue A, Okudaira M, Taimatsu K, Kotani H, Ohga R, Aoki J, Kawahara A.
Maternal and zygotic sphingosine kinase 2 are indispensable for cardiac development in zebrafish.
J. Biol. Chem. 290, 14841-14851 (2015)
45) Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A.
Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
Scientific Reports 5, 8841 (2015)
44) Kimura Y, Hisano Y, Kawahara A, Higashijima S.
Efficient generation of knock-in transgenic zebrafish carring reporter/driver genes by CRISPR/Cas9-mediated genome engineering.
Scientific Reports 4, 6545 (2014)
43) Ota S, Hisano Y, Ikawa Y, Kawahara A.
Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
Genes to Cells 19, 555-564 (2014)
42) Nakanaga K, Hama K, Kano K, Sato T, Yukiura H, Inoue A, Saigusa D, Tokuyama H, Tomioka Y, Nishida H, Kawahara A, Aoki J.
Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo.
J Biochem. 155, 235-241 (2014)
41) Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, Kujiura T, Kita H, Kimura T, Hira S, Okada Y, Hayashi-Takanaka Y, Obuse C, Kurumizaka H, Kawahara A, Yamagata K, Nozaki N, Kimura H.
Genetically encoded system to track histone modification in vivo.
Scientic Reports 3, 2436 (2013)
40) Iwasaki R, Tsuge K, Morimoto K, Inazumi T, Kawahara O, Kawahara A, Tsuchiya S, Sugimoto Y.
Molecular and pharmacological characterization of zebrafish 'contractile' and 'inhibitory' prostanid receptors.
Biochem. Biophys. Res. Commun. 438, 353-358 (2013)
39) Tsuge K, Iwasaki R, Morimoto K, Inazumi T, Kawahara O, Kawahara A, Tsuchiya S, Sugimoto Y.
Molecular and pharmacological characterization of zebrafish 'relaxant' prostanid receptors.
Biochem. Biophys. Res. Commun. 436, 685-690 (2013)
38) Hisano Y, Ota S, Takada S, Kawahara A.
Functional cooperation of spns2 and fibronectin in cardiac and lower jaw development.
Biology Open 2, 789-794 (2013)
37) Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A.
Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays.
Genes to Cells 18, 450-458 (2013)
36) Hisano Y, Ota S, Arakawa K, Muraki M, Kono N, Oshita K, Sakuma T, Tomita M, Yamamoto T, Okada Y, Kawahara A.
Quantitative assay for TALEN activity at endogenous genomic loci.
Biology Open 2, 363-367 (2013)
35) Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T.
Efficient TALEN construction and evaluation methods for human cell and animal applications.
Genes to Cells 18, 315-326 (2013)
34) Kawahara A, Endo S, Dawid IB.
Vap (Vascular Associated Protein): a novel factor involved in erythropoiesis and angiogenesis.
Biochem. Biophys. Res. Commun. 421, 367-374 (2012)
33) Yukiura H, Hama K, Nakagawa K, Tanaka M, Asaoka Y, Okudaira S, Arima N, Inoue A, Hashimoto T, Arai H, Kawahara A, Nishina H, Aoki J.
Autotaxin regulates vascular development via multiple LPA receptors in zebrafish.
J. Biol. Chem. 286, 43972-43983 (2011)
32) Hisano Y, Kobayashi N, Kawahara A, Yamaguchi A, Nishi T.
The sphingosine 1-phosphate transporter, SPNS2 functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720.
J. Biol. Chem. 268, 1758-1766 (2011)
31) Iida A, Sakaguchi K, Sato K, Sakurai H, Nishimura D, Iwaki A, Takeuchi M, Kobayashi M, Misaki K, Yonemura S, Kawahara A, Sehara-Fujisawa A.
Metalloprotease-dependent onset of blood circulation in zebrafish.
Current Biology 20, 1110-1116 (2010)
30) Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N.
The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors.
Science 323, 524-527 (2009)
29) Kitaguchi T, Kawakami K, Kawahara A.
Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis.
Mechanisms of Development 126, 314-323 (2009)
28) Fukui H, Hanaoka R, Kawahara A.
Non-canonical activity of Seryl-tRNA synthetase is involved in vascular development.
Circulation Research 104, 1253-1259 (2009)
27) Minehata K, Kawahara A, Suzuki K.
meis1 regulates the development of endothelial cells in zebrafish.
Biochem. Biophys. Res. Commun. 347, 647-652 (2008)
26) Hanaoka R, Dawid IB, Kawahara A.
Cloning and expression of zebrafish genes encoding the heme synthesis enzymes uroporphyrinogen III synthase and protoporphyrinogen oxidase.
DNA Sequence 18, 54-60 (2007)
25) Yamauchi H, Hotta Y, Konish M, Miyake A, Kawahara A, Itoh N.
Fgf21 is essential for hematopoesis in zebrafish.
EMBO reports 6, 649-654 (2006)
24) Hanaoka R, Katayama S, Dawid IB, Kawahara A.
Characterization of the heme synthesis enzyme coproporphyrinogen oxidase (CPO) in zebrafish erythrogenesis.
Genes to Cells 11, 293-303 (2006)
23) Kawahara A, Che YS, Hanaoka R, Takeda H, Dawid IB.
Zebrafish GADD45β genes are involved in somite development.
Proc. Natl. Acad. Sci. USA 102, 361-366 (2005)
22) Kawahara A, Dawid IB.
Developmental expression of zebrafish emx1 during early embryogenesis.
Gene Expression Patterns 2, 201-206 (2002)
21) Kawahara A, Chein CB, Dawid IB.
The homeobox gene mbx is involved in eye and tectum development.
Developmental Biology 248, 107-117 (2002)
20) Miyamoto T, Kawahara A, Teufel A, Mukhopadhyay M, Zhao Y, Dawid IB, Westphal H.
mbx, a novel mouse homeobox gene.
Dev. Genes Evol. 212, 104-106 (2002)
19) Kawahara A, Dawid IB.
Critical role of biklf in erythroid cell differentiation in zebrafish.
Current Biology 11, 1353-1357 (2001)
18) Kawahara A, Whilm T, Solnica-Krezel L, Dawid IB.
Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation.
Proc. Natl. Acad. Sci. USA 97, 12121-12126 (2000)
17) Kawahara A, Whilm T, Solnica-Krezel L, Dawid IB.
Functional interaction of vega2 and goosecoid homeobox genes in zebrafish.
Genesis 28, 58-67 (2000)
16) Kawahara A, Dawid IB.
Expression of the Krüppel-like zinc finger gene biklf during zebrafish development.
Mechanisms of Development 97, 173-176 (2000)
15) Matsumura H, Shimizu Y, Osawa Y, Kawahara A, Uchiyama Y, Nagata S.
Necrotic death pathway in Fas receptor signaling.
J. Cell Biol. 151, 1247-1255 (2000)
14) Tsujino S, Miyazaki T, Kawahara A, Maeda M, Taniguchi T, Fujii H.
Critical role of the membrane-proximal, proline-rich motif of the interleukin-2 receptor γc chain in the Jak3-independent signal transduction.
Genes to Cells 4, 363-373 (1999)
13) Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S.
Caspase-independent cell killing by Fas-associated protein with death domain.
J. Cell Biol. 143, 1353-1360 (1998)
12) Kawahara A, Kobayashi T, Nagata S.
Inhibition of Fas-induced apoptosis by Bcl-2.
Oncogene 17, 2549-2554 (1998)
11) Kawahara A, Enari M, Talanian RV, Wong WW, Nagata S.
Fas-induced DNA fragmentation and proteolysis of nuclear protein.
Genes to Cells 3, 297-306 (1998)
10) Kawahara A, Minami Y, Miyazaki T, Ihle J.N, Taniguchi T.
Critical role of the interleukin 2 (IL-2) receptor γ chain-associated Jak3 in IL-2-induced c-fos and c-myc, but not bcl-2 gene induction.
Proc. Natl. Acad. Sci. USA 92, 8727-8728 (1995)
9) Miyazaki T, Liu ZJ, Kawahara A, Minami Y, Yamada K, Tsujimoto Y, Barsoumian E.L., Perlmutter R.M., Taniguchi T.
Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation.
Cell 81, 223-231 (1995)
8) Minami Y, Nakagawa Y, Kawahara A, Miyazaki T, Sada K, Yamamura H, Taniguchi T.
Protein tyrosine kinase Syk is associated with and activated by the IL-2 receptor: possible link with the c-myc induction pathway.
Immunity 2, 89-100 (1995)
7) Fujii H, Nakagawa Y, Schindler U, Kawahara A, Mori H, Gouilleux F, Groner B, Ihle JN, Minami Y, Miyazaki T, Taniguchi T.
Activation of Stat5 by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor β chain but is not essential for the proliferative signal transduction.
Proc. Natl. Acad. Sci. USA 92, 5482-5486 (1995)
6) Miyazaki T*, Kawahara A*, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I., Silvennoinen O., Witthuhn B.A., Ihle J.N., Taniguchi T.
Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits.
Science 266, 1045-1047 (1994) *equal contribution
5) Kawahara A, Minami Y, Taniguchi T.
Evidence for the critical role of the cytoplasmic region of the IL-2 receptor γ chain in IL-2, IL-4 and IL-7 signalling.
Mol. Cell. Biol. 14, 5433-5440 (1994)
4) Minami Y, Kono T, Yamada K, Kobayashi N, Kawahara A, Permutter RM, Taniguchi T.
Association of p56lck with IL-2 receptor β chain is critical for the IL-2-induced activation of p56lck.
EMBO J. 12, 759-768 (1993)
3) Hatakeyama M, Kawahara A, Mori H, Shibuya H, Taniguchi T.
c-fos gene induction by interleukin 2: Identification of the critical cytoplasmic regions within the interleukin 2 receptor β chain.
Proc. Natl. Acad. Sci. USA 89, 2022-2026 (1992)
2) Satoh T, Minami Y, Kono T, Yamada K, Kawahara A, Taniguchi T, Kaziro Y.
Interleukin 2-induced activation of ras requires two domains of interleukin 2 receptor β subunit, the essential region for growth stimulation and lck-binding domain.
J. Biol. Chem. 267, 25423-25427 (1992)
1) Hatakeyama M, Kono T, Kobayashi N, Kawahara A, Levin SD, Perlmutter RM, Taniguchi T.
Interaction of the IL-2 receptor with the src-family kinase p56 lck: identification of novel intermolecular association.
Science 252, 1523-1528 (1991)

2. 英文総説

9)  Morita H, Taimatsu K, Yanagi K, Kawahara A.
Exogenous gene integration mediated by genome editing technologies in zebrafish.
Bioengineered 8, 287-295 (2017)
8)  Kawahara A, Hinao Y, Ota S, Taimatsu K.
Site-specific integration of exogenous gene using genome editing technologies in zebrafish.
Int. J. Mol. Sci. 17, E727 (2016)
7) Ota S, Kawahara A.
Zebrafish: A model verterate suitable for the analysis of human genetic disorders.
Congenital anomalities 54, 8-11 (2014)
6) Hisano Y, Kawahara A.
Genome editing using artificial site-specific nucleses in zebrafish.
Dev. Growth Differ. 56, 26-33 (2014)
5) Nishi T, Kobayashi N, Hisano Y, Kawahara A, Yamaguchi A.
Molecular and physiological functions sphingosine-1-phosphate transporters.
BBA 1841, 759-765 (2013)
4) Hisano Y, Nishi T, Kawahara A.
The functional roles of sphingosine-1-phosphate (S1P) in immunity.
J. Biochem. 152, 305-311 (2012)
3) Kawahara A, Stainier DYR.
Noncanonical activity of seryl-tRNA synthetase and vascular development.
Trends in Cardiovascular Medicine 19, 179-182 (2009)
2) Kawahara A.
Genetic dissection of cardiac progenitor migration.
Inflammation and Regeneration 29, 324-328 (2009)
1) Taniguchi T, Miyazaki T, Minami Y, Kawahara A, Fujii H, Nakagawa Y, Hatakeyama M., Liu Z.-J.
IL-2 signaling involves recruitment and activation of multiple protein kinases by IL-2 receptor.
Ann. NY. Acad. Sci. 766, 235-244 (1995)

3. 英文書籍

5)  Kawahara A.
CRISPR/Cas9-mediated targeted knock-in of exogenous reporter genes in zebrafish.
Methods in Molecular Biology 1630: 165-173 (2017)
4)  Ota S, Kawahara A.
Site-specific integration of exogenous gene using genome editing technologies in zebrafish.
Methods in Molecular Biology 1451, 53-63 (2016)
3) Kawahara A, Yabe T, Ansai S, Takada S, Kinoshita M.
Genome editing in zebrafish and medaka.
Springer Targeted Genome Editing Using Site-Specific Nucleases, 119-131 (2015)
2) Hisano Y, Nishi T, Kawahara A.
Sphingosine 1-phosphate signaling via transporters in zebrafish and mice.
Springer Bioactive Lipid Mediator, 207-220 (2015)
1) Nishi T, Kobayashi N, Hisano Y, Kawahara A, Yamaguchi A.
Functional and physiological roles of sphingosine-1-phosphate transporter.
Wiley Lysophospholipid receptors, 185-200 (2013)

4. 和文総説、和文書籍

15) 曽根良太、川原敦雄
生殖腺および孵化腺の調節遺伝子の破壊による有害外来魚の駆除
化学工業, 71,12, 727-731 (2020)
15) 鈴木啓章、川原敦雄
ゲノム編集技術を活用した有害外来魚の戦略的な駆除
Bioindastry, ? -? (2020)
14) 川原敦雄、星島一幸
ゼブラフィッシュでのゲノム編集
実験医学別冊 ゲノム編集実験スタンダード 221-234 (2019)
13) 久野悠、川原敦雄
スフィンゴシン1-リン酸(S1P)輸送体であるSpns2の分子機能
生化学 90, 574-580 (2018)
12) 川原敦雄、東島眞一
ゼブラフィッシュにおけるゲノム編集の技術革新
実験医学別冊, 90-97 (2016)
11) 泰松清人、川原敦雄
小型魚類でのゲノム編集の利用
ゲノム編集入門, 裳華房, 93-114 (2016)
10) 川原敦雄、木下政人
小型魚類でのゲノム編集
実験医学別冊, 158-174 (2015)
9) 太田聡、川原敦雄
ゼブラフィッシュにおけるゲノム編集
NTS刊, 191-199 (2015)
8) 太田聡、川原敦雄
ゼブラフィッシュにおけるゲノム編集と生命科学への応用
実験医学 32, 1721-1725 (2014)
7) 久野悠、川原敦雄
スフィンゴシン-1-リン酸の分泌機構と生理機能
医学のあゆみ 248, 1014-1018 (2014)
6) 木下政人、安齋賢、久野悠、川原敦雄
小型魚類におけるTALENおよびCRISPR/Cas9を用いた遺伝子改変
実験医学別冊, 169-179 (2013)
5) 久野悠、川原敦雄
ゼブラフィッシュを用いた脂質メディエーター研究
遺伝子医学 MOOK 24, 112-116 (2013)
4) 川原敦雄、岡田康志
TALENによる遺伝子改変ゼブラフィッシュの作成
細胞工学 32, 558-563 (2013)
3) 川原敦雄
循環器系および免疫系を制御するスフィンゴシン-1-リン酸
臨床検査 56, 198-202 (2011)
2) 川原敦雄
ゼブラフィッシュの順遺伝学から解明された心臓形成を司る分子実体
生化学 83, 379-387 (2011)
1) 川原敦雄
スフィンゴシン 1-リン酸の輸送体
細胞 42, 38-41 (2010)